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In this paper, a new modifed Kumaraswamy distribution is proposed, and some of its basic properties are presented, such as the
mathematical expressions for the moments, probability weighted moments, order statistics, quantile function, reliability, and
entropy measures. Te parameter estimation is done via the maximum likelihood estimation method. In order to show the
usefulness of the proposedmodel, some well-established actuarial measures such as value-at-risk, expected-shortfall, tail-value-at-
risk, tail-variance, and tail-variance-premium are obtained. A simulation study is carried out to assess the performance of
maximum likelihood estimates. Te empirical analysis is carried out to show that our proposed model is better in performance as
compared to other competitive models related to the extended Kumaraswamy model.Tus, insurance claim data and engineering
related real-life data sets are considered to prove this claim.

1. Introduction

Te discipline of actuaries, the actuarial statistics, has also
received increased attention in statistical science with the
existence of agricultural statistics, mathematical statistics,
medical statistics, bio-statistics, computational statistics,
reliability analysis, and survival analysis. Te actuaries are
always looking for ways to model insurance risk data using
heavy-tailed and other models. According to some re-
searchers, the insurance risk data may be unimodal [1],
positively skewed [2], or having a longer tail [3]. It has also
been claimed by many authors that the heavy-tailed dis-
tributions are better for estimating risk from insurance risk
data and sometimes perform better as compared to other
existing models. In order to improve risk assessment, there is
always a need for a fexible model that can provide better
estimates of well-established actuarial measures, and also
provide a better goodness-of-ft to actuarial data sets. Such
adaptable models may entice more researchers and

practitioners, who are always on the lookout for ways to
reduce their losses in terms of insurance risk or risk returns.

Modern distribution theory also emphasizes on the
development or proposal of new models, which can be
extended, generalized, or modifed. Some newmodels which
are applied to claimed data sets have been reported in recent
literature, for example, Ahmad et al. [4] defned the expo-
nentiated power Weibull distribution, which is based on
heavy-tailed models and has applications in medical care
insurance and vehicle insurance. Ten, Affy et al. [5]
proposed a new heavy-tailed exponential distribution with
application to unemployment claim data. Furthermore,
some new unit models have been developed to model dif-
ferent phenomenons in [6–20].

P. Kumaraswamy introduced the well-known Kumar-
aswamy (Kw) distribution in 1980 with the application to
hydrology. Te probability density function (pdf) and cu-
mulative distribution function (cdf) for unit support (0, 1)
are given by the following equations:
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f(t) � ab
a− 1 1 − t

a
( 

b− 1
, t ∈ (0, 1), (1)

and

F(t) � 1 − 1 − t
a

( 
b
, (2)

respectively, where both parameters a> 0 and b> 0 are
shapes parameters, and the corresponding rv (rv) having pdf
(1) is denoted by t ∼ Kw(a, b). Te Kw model exhibits
fexible shapes such as unimodal (symmetrical, left-skewed,
and right-skewed), bathtub, J, and reversed-J (uni-
antimodal). Te hazard rate shapes of the Kumaraswamy
model are increasing and bathtub-shaped which are useful
for investigations of the lifetime and reliability phenomenon.
Only a few authors [21, 22] have explored some more
properties of the Kw model that are not addressed in the
original novel paper. If we consider the Kw model to have
unit support, then a few models for Kw’s power function
distribution have been reported in the literature [23]. Te
Kumaraswamy exponentiated Weibull was studied by [24].
In addition to that, Tahir et al. and Ramzan et al. [25, 26] also
presented new Kumaraswamy models and extended gen-
eralized inverse Kumaraswamy models, respectively. Tere
is also a modifed Kw distribution introduced by Alshkaki
[27]. However, none of the authors has investigated actuarial
data using the Kw distribution or some of its modifed
versions.

As a result, in this article, we attempted to bridge the gap by
employing the proposed Kwmodel to assess actuarial data, and
report computation results of actuarial measures. Tus, we
propose the frst “transformation of the Kw distribution for a
new unit distribution” based on novel variable transformation

that can be written as “t � (1 − logy)− 1” (further details will
be provided later). More specifcally, we modifed the func-
tionalities of the former Kw distribution in a totally new way,
giving new possibilities for the pdf (a quick look to Figure 1
shows a lot) fexibility on the basis of ourmodel.We investigate
diferent phenomenon, including those in actuarial science and
engineering to complete the objective of our paper.

Te organization of our paper is as follows: In Section 2,
the proposal for a new modifed Kumaraswamy distribution
(MKw) is presented, while in Section 3 some basic math-
ematical properties of the proposed MKw model are dis-
cussed, including the linear representation of the pdf, the
quantile function, the expression of moments, probability
weighted moments, the pdf of order statistics, stress-
strength-reliability, and entropies. In Sections 4 and 5, the
parameter estimation of MKw is dealt, and then a simulation
study is conducted to assess the parameters performance of
the proposed model. In Section 6, some well-established
actuarial measures such as value-at-risk (VaR), expected
shortfall (ES), tail-variance (TV), tail-value-at-risk (TVaR),
and tail-variance premium (TVP) are obtained. Te em-
pirical investigation is carried out in Section 7, where the
usefulness of the proposed MKw model is shown by ana-
lyzing fve real-life data sets. Section 8 concludes our paper
fnal remarks.

2. New Modified Kumaraswamy Distribution

Te new modifed Kw (MKw) distribution is derived from
the Kw distribution by using the following original variable:
t � (1 − logy)− 1 in the cdf. Hence, based on equation (2),
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Figure 1: Plots of MKw pdf for some diferent parametric values.
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the cdf and pdf are, respectively, given by the following
equations:

FMKw(y) � F (1 − logy)
− 1

  � 1 − 1 − (1 − logy)
− a

 
b
, (3)

fMKw(y) � aby
− 1

(1 − logy)
− (a+1) 1 − (1 − logy)

− a
 

b− 1
, y ∈ (0, 1). (4)

To the best of our knowledge, it is the frst “transfor-
mation for a new unit distribution” based on the trans-
formation t � (1 − logy)− 1, opening some new horizon of
modeling. Te rv associated with pdf (4) is denoted by
Y ∼ MKw(a, b), having same shape parameters a> 0 and
b> 0. Te survival hazard rate and cumulative hazard rate
functions of MKw model are, respectively, given by the
following equations:

SMKw(y) � 1 − (1 − logy)
− a

 
b
,

hMKw(y) �
ab(1 − logy)

− (a+1)

y 1 − (1 − logy)
− a

 
,

HMKw(y) � − b ln 1 − (1 − logy)
− a

 .

(5)

Te possible shapes of the pdf and hrf of the newly
proposed model are displayed in Figures 1 and 2. Te pdf of
MKw distribution exhibits fexible shapes such as unimodal
(right-skewed, symmetrical, and left-skewed), reversed-J, J,

and bathtub (uniantimodal). Te hrf of MKw distribution
exhibits fexible shapes such as increasing function and
bathtub shape.

3. Properties of the MKw Distribution

Several mathematical properties of the newly investigated
MKw distribution are reported in the following section.

3.1. Quantile Function. Te quantile function (qf) is impor-
tant for obtaining information about the median and other
positional measures. Furthermore, qf is also an important tool
for generating random variates. Te qf of the proposed family
after inverting equation (3) becomes as follows:

QY(u; a, b) � exp 1 − 1 − (1 − u)
1/b

 
− 1/a

 , u ∈ (0, 1). (6)

3.2. Analytical Shapes of the pdf and hrf. Ignoring the de-
pendence of parameters, the shapes of the pdf as well as hrf
can be viewed analytically. Te solutions of the following
equations give the critical point of the pdf as follows:
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Figure 2: Plots of MKw hrf for some diferent parametric values.
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−
1
y

+
a + 1

y(1 − logy)
−

a(b − 1)[1 − logy]
− (a+1)

1 − [1 − logy]
− a � 0, (7)

and the solutions of the following equations give the critical
point of the hrf as follows:

−
1
y

+
a + 1

y(1 − logy)
−

a[1 − logy]
− (a+1)

y 1 − [1 − logy]
− a

 
� 0. (8)

It can be noted that the parameter b has no infuence on
the solutions of the above equations.

3.3. Expansion of the MKw pdf. We derive the linear ex-
pansion of the MKw pdf by using the generalized binomial

expansion (1 − z)p � 
∞
i�0 (− 1)i p

i
 zi twice in equation

(3), which becomes as follows:

FMKw(y) � 1 − 
∞

i�0
(− 1)

i b

i
  

∞

j�0

− ia

j
 [− logy]

j
. (9)

By separating the null values for the indices, we obtain
the following equation:

FMKw(y) � − 
∞

i�1
(− 1)

i
b

i
  − 

∞

i,j�1
(− 1)

i b

i
 

− ia

j
 [− logy]

j
. (10)

Furthermore, we use a result given by Castellares and
Lemonte (2014, Proposition 2), which states that

[− log (1 − z)]
δ

� 
∞

m�0
ρm(δ)z

m+δ
, (11)

where δ ∈ R, |z|< 1, ρ0(δ) � 1, ρm(δ) � δψm− 1(m + δ − 1)

for m≥ 1, and ψm(·) are Stirling polynomials. Te frst four
polynomials are ψ0(w) � 1/2, ψ1(w) � (2 + 3w)/24,
ψ2(w) � (w + w2)/48, and ψ3(w) � (− 8 − 10w + 15w2 +

15w3)/5760.
By using equation (11) with y in place of (1 − z), we

rewrite equation (10) as follows:

FMKw(y) � 
∞

i�1
(− 1)

i+1 b

i
  − 

∞

m�0


∞

j�1
vm,j[1 − y]

m+j
, (12)

where vm,j � vm,j(a, b) � 
∞
i�1 (− 1)i b

i
 

− ia

j
 ρm(j) (for

m≥ 0 and j≥ 1).
Changing indices s � m + j, we can rewrite F(x) as

follows:

FMKw(y) � 
∞

i�1
(− 1)

i+1 b

i
  − 

∞

m�0


∞

s�m+1
vm,s− m[1 − y]

s
,

(13)

and by interchanging the sums, we obtain the following
equation:

FMKw(y) � 
∞

i�1
(− 1)

i+1 b

i
  − 

∞

s�1


s− 1

m�0
vm,s− m[1 − y]

s
. (14)

By expanding through binomial and interchanging the
sums, we can write as follows:

FMKw(y) � 
∞

i�1
(− 1)

i+1 b

i
  − 

∞

s�1


s

l�0
(− 1)

l
s

l
 tsy

l
, (15)

where ts � 
s− 1
m�0 vm,s− m (for s≥ 1).

After interchanging sums, we get the following equation:

FMKw(y) � 
∞

i�1
(− 1)

i+1 b

i
  + 

∞

l�0
ϖly

l
, (16)

where (for l≥ 0)

ϖl � 
∞

s�δl

(− 1)
l+1 s

l
 ts,

δ0 � 1, and

δl � l, (for(l ≥ 1)).

(17)

By diferentiating FMKw(y), we have the following
equation:

fMKw(y) � 
∞

l�0
ϖlly

l− 1
. (18)

3.4. Moments. Te r th raw or ordinary moment of Y, say
E(Yr), can be yielded by using the following defnition:

μr
′ � E Y

r
(  � 

∞

0
y

r
fMKw(y) dy. (19)

By using equation (18), the r th moment expression for
the MKw distribution will be as follows:

μr
′ � 
∞

l�0
ϖll 

1

0
y

r+l− 1dy, (20)

and

μr
′ � 

∞

l�0
ϖllB(r + l, 1), (21)
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where B(.) denotes the beta function of the frst kind.
Furthermore, the actual or meanmoments and cumulants of
Y yielded from equation (21) are as follows:

μr � 
n

s�0
(− 1)

s
r

s
 μ′s1 μr− s

′ ,

κr � μn
′

r− 1

s�1

r − 1

s − 1
 κsμr− s

′ .

(22)

Here, κ1 � μ1′. However, by using the relationship between
mean moments and ordinary moments, the measure of
skewness as well as measure of kurtosis can be obtained. Te
r th descending factorial moment of Y (for r� 1, 2, ...) is as
follows:

μr
′ � E Y

(r)
  � E[Y(Y − 1) × · · · ×(Y − r + 1)],

� 
r

k�0
s(r, k)μk

′,
(23)

where s(r, k) � (k!)− 1|dkk(r)/dyk|y�0 is the frst kind Stirling
number.

Table 1 provides the results of the frst four raw mo-
ments, variance, skewness, and kurtosis under diferent
parametric values (a, b). Te graphical illustration of
skewness and kurtosis is shown in Figures 3 and 4 depending
on the parameters a and b.

Te r th incomplete moment of MKw distribution can be
expressed as follows:

Ir(y) � 
∞

l�0
ϖl

ly
r+l

r + l
. (24)

Te incomplete moments are used to compute the well-
known curves, namely, the Bonferroni and Lorenz curves.
Incomplete moments can also be used to calculate mean
waiting time and mean residual life.

3.5. Probability Weighted Moments. Te authors [28] in-
troduced the idea of computing probability waiting mo-
ments (PWMs). PWMs are the expected function of any rv

with existing means. For r≥ 1, q≥ 0, the (r, q) th PWMs of Y

is defned by the following equation:

ρr,q � E Y
r
F(y)

q
  � 

∞

0
y

r
FMKw(y)

q
fMKw(y)dy. (25)

Inserting equations (3) and (4) in equation (25), we have
the following equation:

ρr,q � ab 
1

0
y

r
y

− 1
[1 − logy]

− (a+1) 1 − [1 − logy]
− a

 
b− 1

× 1 − 1 − [1 − logy]
− a

 
b

 
q

dy.

(26)

After using binomial series expansions by using similar
fashion in the expansion of the pdf of the MKw distribution,
then the expression for ρr,q can be expressed as follows:

ρr,q � 
∞

l�0
ηl 

1

0
y

l+r− 1dy,

� 
∞

l�0
ηl

1
l + r

,

(27)

where

ηl � 
∞

i,j,k�0


∞

s�1
(− 1)

i+j+k+l
ab

q

i
 

b(i + 1) − 1
j

 
− ai − a − 1

k
 

s

l
 ts. (28)

3.6. Order Statistics. Let Y1, Y2, . . . , Yn be a random sample
of size n from the MKw (a, b) distribution. Ten, the pdf of
the r th order statistics is as follows:

fr;n(y) �
n!

(r − 1)!(n − r)!


∞

i�0
(− 1)

i
n − r

i

⎛⎝ ⎞⎠FMKw(y)
i+r− 1

fMKw(y). (29)

Inserting equations (3) and (4) in equation (29), we get
the following equation:
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fr;n(y) �
n!

(r − 1)!(n − r)!


∞

i�0
(− 1)

i
aby

− 1
[1 − logy]

− (a+1) 1 − [1 − logy]
− a

 
b− 1

× 1 − 1 − [1 − logy]
− a

 
b

 
i+r− 1

.

(30)

After simplifcation, we get n th order statistic density as
follows:

fr;n(y) � 
∞

p�0
ηpy

p
, (31)

where

Table 1: Te rth moments, variance, skewness, and kurtosis of MKw (a, b) distribution for diferent parameter values.

Parameters μ1′ μ2′ μ3′ μ4′ Variance Skewness Kurtosis

(3.1, 2.5) 0.5305 0.3416 0.2399 0.1778 0.0602 0.1222 2.1939
(1.8, 2.4) 0.3449 0.1907 0.1222 0.0851 0.0717 0.1304 1.9760
(4.1, 2.7) 0.6108 0.4195 0.3066 0.2336 0.0464 0.4019 2.7795
(3.5, 1.5) 0.6678 0.5010 0.3977 0.3273 0.0550 0.6465 2.9301
(2.9, 5.3) 0.3516 0.1703 0.0945 0.0570 0.0467 0.0318 2.0953
(3.5, 4.2) 0.4729 0.2726 0.1729 0.1166 0.0490 0.0460 2.2029
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Figure 3: Plots of MKw skewness for some parametric values.
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Figure 4: Plots of MKw kurtosis for some parametric values.
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ηk � 
∞

i,j,k,l�0


∞

s�1
(− 1)

i+j+k+l+p
n − r

i

⎛⎝ ⎞⎠
i + r − 1

j

⎛⎝ ⎞⎠
b(j + 1) − 1

l

⎛⎝ ⎞⎠ ×
− a(k + 1) − 1

l

⎛⎝ ⎞⎠ab
s

p

⎛⎝ ⎞⎠ts

n!

(r − 1)!(n − r)!
. (32)

Te order statistics of the MKw distribution are
expressed in terms of linear expansion. To study the dis-
tributional behavior of the set of observations, we can use a
minimum and maximum (min-max) plot of the order
statistics. Figure 5 represents the min-max plot that depends
on extreme order statistics, and it is introduced to capture all
information not only about the tails of the distribution, but
also about the whole distribution of the data.

3.7. Reliability. Reliability is an important measure, and
several applications are documented in the felds of eco-
nomics, physical science, and engineering. Reliability en-
ables us to determine the failure probability at a certain point
in time. Let say Y1 and Y2 be the two rv following the MKw
distribution. Te component fails if the applied stress ex-
ceeds its strength, if Y1 >Y2 the component will perform
satisfactorily. Te reliability is defned by the following
expression:

P Y1 >Y2(  � 
1

0
f2(y) 1 − F1(y) dy,

P Y1 >Y2(  � 
1

0
a2b2y

− 1
[1 − logy]

− a2+1( ) 1 − [1 − logy]
− a2 

b2− 1 1 − [1 − logy]
− a1 

b1dy.

(33)

Let a1 � a2 � a, then the above equation will be as
follows:

P Y1 >Y2(  � 
1

0
ab2y

− 1
[1 − logy]

− (a+1) 1 − [1 − logy]
− a

 
b2− 1 1 − [1 − logy]

− a
 

b1dy. (34)

After solving, it gives the result as follows:

P y1 >y2(  � 

∞

l�0

1
l
Wl, (35)

where

Wl � 
∞

i,j�0


∞

s�1
ab2(− 1)

i+j+l b1 + b2 − 1
i

 
− a(1 + i) − 1

j
 

s

l
 ts. (36)

3.8. Entropy. Entropy measures are important for high-
lighting the uncertainty variation of the rv. Assume Y is a rv

with pdf f(y). Te two important entropy measures,
namely, Rényi and Shannon entropies, can be yielded by the
following expressions.

3.8.1. Rényi Entropy. Te Rényi entropy is defned by the
following equation:

I(δ) �
1

1 − δ
log [I(δ)], (37)

where I(δ) � 
∞
− ∞ fMKw(y)δ(y)dy, δ > 0, and δ ≠ 1.

Inserting equation (4) in fMKw(y)δ(y) as follows:

fMKw(y)
δ
(y) � aby

− 1
[1 − logy]

− (a+1) 1 − [1 − logy]
− a


b− 1

 
δ
. (38)
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By using the similar binomial series expansion as in
Section 3.3, we have the following equation:

fMKw(y)
δ
(y) � 

∞

l�0

1
l − δ + 1

ωl. (39)

After incorporating the result in equation (37), the ex-
pression for Rényi entropy is reduced as follows:

Iδ(f) �
1

1 − δ
log 
∞

l�0
ωl

1
l − δ + 1

⎡⎣ ⎤⎦, (40)

where

ωl � 
∞

i,j�0


∞

s�1
(− 1)

i+j+l δ(b − 1)

i
 

− ai − aδ − δ
j

 
s

l
 ts.

(41)
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Figure 5: Min-max plot of order statistics of the MKw model for some parametric values.
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3.8.2. Shannon Entropy. Te Shannon entropy is obtained as
follows:

ρy � E − log [f(y)]  � E − log aby
− 1

[1 − logy]
− (a+1) 1 − [1 − logy]

− a
 

b− 1
  ,

E[− log (ab)] � − log (ab),

E[logy] � 
∞

l�0
ϖl

1
l

,

(42)

where

ϖl � ab 
∞

i,j�0


∞

s�1
(− 1)

i+j+l
b − 1

i

⎛⎝ ⎞⎠
− a(i + 1) − 1

j

⎛⎝ ⎞⎠
s

l

⎛⎝ ⎞⎠ts,

(a + 1)E[log 1 − logy ] � 
∞

l�0
ϖl

1
l

,

(43)

where

ϖl � (a + 1)ab 
∞

i,j�0


∞

k,s�1

(− 1)
i+j+l+2k+1

k

b − 1

i

⎛⎝ ⎞⎠
− a(i + 1) − 1

j

⎛⎝ ⎞⎠
s

l

⎛⎝ ⎞⎠ts,

(b − 1)E log 1 − 1 − logy 
− a

(   � 
∞

l�0
ϖl

1
l

,

(44)

in which

ϖl � (b − 1)ab 
∞

i,j�0


∞

k,s�1

(− 1)
i+j+l+2k+1

k

b − 1

i

⎛⎝ ⎞⎠
− a(k + i + 1) − 1

j

⎛⎝ ⎞⎠
s

l

⎛⎝ ⎞⎠ts. (45)

4. Estimation

In this section, we estimate the unknown parameters of the
MKw model using the widely used estimation method
known as maximum likelihood estimation (MLE). Tere are
several advantages of MLE over other estimation methods,

for instance, maximum likelihood estimates fulfll the re-
quired properties that can be used in constructing conf-
dence intervals, as well as delivering a simple approximation
that is very handy while working with the fnite sample. Te
well-known R package called “adequacymodel” is imple-
mented to estimate the unknown parameters in the appli-
cation section. Te log-likelihood function l(Ω) for the
vector of parametersΩ � (a, b)⊤ can be expressed as follows:
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L(Ω) � n log (ab) − 
n

i�1
log yi(  +(b − 1) 

n

i�1
log 1 − 1 − logyi  

− a
,

− (a + 1) 
n

i�1
log 1 − logyi .

(46)

Te score components are as follows:

zL

za
�

n

a
− 

n

i�1
log 1 − logyi  +(b − 1) 

n

i�1

1 − logyi 
− a log 1 − logyi 

1 − 1 − logyi 
− a ,

zL

zb
�

n

b
+ 

n

i�1
log 1 − 1 − logyi  

− a
.

(47)

By setting these equations to zero and solving them si-
multaneously, the MLE of the model parameters is obtained.

5. Simulation Study

Tis section yielded a simulation study in order to test the
performance of MLEs in the newly proposed MKw distri-
bution. N is replicated 1000 times with various sample sizes,
n � 50, 100, 200, 300, 400, and 500 of the MKw model by
taking a � 1.90, b � 1.40; a � 2.10, b � 2.40; a � 3.10,

b � 2.90; a � 3.50, b � 3.90; and a � 3.0, b � 3.0.
Te calculation of estimates is based on the bias, mean

square error (MSE), and average estimate (AE) of the MLEs
of the model parameters, namely,

Bias(α) � 
N

i�1

αi

N
− α,

MSE(α) � 
N

i�1

αi − α( 
2

N
.

(48)

Te R programming language is used for the empirical
study, and the results of Tables 2–6 show that as sample sizes
increase, both the mean square error and the bias reduce.
Tus, MLEs perform well in evaluating the parameters of the
MKw distribution.

6. Actuarial Measures

6.1. Value-at-Risk. Te Value-at-Risk (VaR), also known as
quantile risk or simply “VaR,” is extensively used as a standard
fnal market risk measure. It plays an important role in many
business decisions; the uncertainty regarding foreign markets,
commodity prices, and government policies can signifcantly
afect frm earnings.Te loss portfolio value is defned by a level
of confdence, such as q � (90%, 95%, or99%). For the MKw
model, VaR is defned by the following expression:

% QY(q; a, b) � exp 1 − 1 − (1 − q)
1/b

 
− (1/a)

 , q ∈ (0, 1).

(49)

6.2. Expected-Shortfall. One of the other measures is called
expected shortfall (ES), which is considered as a better
measure than VaR introduced by [29]. Te ES can be yielded
by the following equation:

ESq(y) �
1
q


q

0
VaRy dy, (50)

for 0< q< 1. Ten, we have the following equation:

ESq(y) �
1
q


q

0
exp 1 − 1 − (1 − y)

1/b
 

− (1/a)
 dy. (51)

6.3. Tail-Value-at-Risk. Te problem of risk measurement
is one of the most important problems in risk manage-
ment. Tail-value-at-risk (TVaR) or conditional tail ex-
pectation is an important measure in fnance and
insurance that is defned as the expected value of the loss if
the loss is greater than the VaR. Its mathematical ex-
pression is as follows:

TVaRq(y) �
1

1 − q

1

VaRq

yfMKw(y)dy. (52)

By inserting equation (18) in equation (52), we get the
TVaR as follows:

TVaRq(y) �
1

1 − q


∞

l�0
ϖll(l + 1)

− 1 1 − VaR(l+1)
q . (53)

6.4. Tail-Variance. Te tail-variance (TV) is defned by the
following expression:

TVq(y) � E Y
2
|Y>yq  − TVaRq 

2
. (54)

Consider I � E[Y2|Y>yq]. Ten, we have the following
equation:
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I � TVaRq(y) �
1

1 − q

1

VaRq

y
2
fMKw(y)dy,

I �
1

1 − q


∞

l�0
ϖll(l + 1)

− 2 1 − VaR(l+2)
q .

(55)

Substituting equation (53) and equation (55) in equation
(54), we obtain the expression for TV for the MKw model.

6.5. Tail-Variance Premium. Te Tail-variance premium
(TVP) is a mixture of both central tendency and dispersion
statistics. It is defned by the following expression:

TVPq(Y) � TVaRq + δTVq, (56)

where 0< δ < 1. Using expression equation (53) and equa-
tion (54) in equation (56), we obtain the TVP for MKw
model.

A sample of 100 is randomly drawn and the efect of
shape and scale parameters of the proposed models are
underlined for both risk measures. Various combinations of
the scale and shape parameters are executed
I� [a � 2.1, b � 4.2], II� [a � 1.8, b � 5.1],
III� [a � 1.1, b � 3.5], and IV� [a � 3.8, b � 6.1], and
change in the curve of VaR and ES are illustrated in Figure 6.

7. Applications

In this section the proposed MKw model is compared to its
counterpart models Gamma Kumaraswamy(GaKw) [30],
Size-Biased Kumaraswamy (SBKw) [31], Kumaraswamy

Table 3: Biases, MSEs, and AE for scenario-II.

n � 50 n � 100 n � 200 n � 300 n � 400 n � 500
a b a b a b a b a b a b

Bias 0.079 0.189 0.045 0.081 0.023 0.028 0.013 0.027 0.010 0.017 0.009 0.015
MSE 0.115 0.422 0.056 0.165 0.027 0.071 0.017 0.050 0.013 0.037 0.010 0.030
AE 2.179 2.589 2.145 2.481 2.113 2.428 2.113 2.432 2.110 2.427 2.109 2.415

Table 4: Biases, MSEs, and AE for scenario-III.

n � 50 n � 100 n � 200 n � 300 n � 400 n � 500
a b a b a b a b a b a b

Bias 0.096 0.235 0.059 0.126 0.037 0.048 0.020 0.042 0.010 0.027 0.007 0.022
MSE 0.251 0.691 0.105 0.270 0.052 0.115 0.034 0.076 0.025 0.058 0.020 0.045
AE 3.196 3.135 3.159 3.026 3.117 2.948 3.120 2.942 3.110 2.927 3.091 2.922

Table 5: Biases, MSEs, and AE for scenario-IV.

n � 50 n � 100 n � 200 n � 300 n � 400 n � 500
a b a b a b a b a b a b

Bias 0.124 0.353 0.054 0.161 0.020 0.069 0.017 0.056 0.015 0.045 0.006 0.028
MSE 0.292 1.554 0.133 0.584 0.064 0.267 0.044 0.176 0.031 0.115 0.013 0.075
AE 3.624 4.253 3.554 4.061 3.517 3.969 3.520 3.956 3.515 3.945 3.501 3.903

Table 6: Biases, MSEs, and AE for scenario-V.

n � 50 n � 100 n � 200 n � 300 n � 400 n � 500
a b a b a b a b a b a b

Bias 0.102 0.235 0.066 0.138 0.025 0.052 0.020 0.043 0.010 0.021 0.008 0.013
MSE 0.215 0.732 0.112 0.331 0.048 0.129 0.032 0.084 0.025 0.065 0.021 0.050
AE 3.102 3.235 3.066 3.185 3.025 3.052 3.020 3.043 3.010 3.021 3.008 3.013

Table 2: Biases, MSEs, and AE for scenario-I.

n � 50 n � 100 n � 200 n � 300 n � 400 n � 500
a b a b a b a b a b a b

Bias 0.088 0.088 0.041 0.051 0.023 0.023 0.012 0.015 0.007 0.011 0.009 0.010
MSE 0.122 0.108 0.055 0.045 0.027 0.021 0.017 0.014 1.907 1.410 0.010 0.008
AE 1.988 1.488 1.941 1.451 1.923 1.423 1.912 1.415 0.014 0.010 1.909 1.410
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(Kw), and Beta by using the fve data sets. Te detailed
description of the data sets are given below.

Data Set 1: Drilling Data 1: Te frst data set based on 50
observation of holes having diameter 12mm and thickness
of sheet 3.15mm. Te data set is also used by [32]. Te
following are the data observation: 0.040, 0.020, 0.060, 0.120,
0.140, 0.080, 0.220, 0.120, 0.080, 0.260, 0.240, 0.040, 0.140,
0.160, 0.080, 0.260, 0.320, 0.280, 0.140, 0.160, 0.240, 0.220,
0.120, 0.180, 0.240, 0.320, 0.160, 0.140, 0.080, 0.160, 0.240,
0.160, 0.320, 0.180, 0.240, 0.220, 0.160, 0.120, 0.240, 0.060,
0.020, 0.180, 0.220, 0.140, 0.060, 0.040, 0.140, 0.260, 0.180,
and 0.160. Data Set 2: Drilling Data 2: Te second data set is
based on 50 observations of holes having diameter 9mm and
thickness of sheet 2mm.Te data set is also used by [32].Te
following are the data observation: 0.060, 0.120, 0.140, 0.040,
0.140, 0.160, 0.080, 0.260, 0.320, 0.220, 0.160, 0.120, 0.240,
0.060, 0.020, 0.180, 0.220, 0.140, 0.220, 0.160, 0.120, 0.240,
0.060, 0.020, 0.180, 0.220, 0.140, 0.020, 0.180, 0.220, 0.140,
0.060, 0.040, 0.140, 0.220, 0.140, 0.060, 0.040, 0.160, 0.240,

0.160, 0.320, 0.180, 0.240, 0.220, 0.040, 0.140, 0.260, 0.180,
and 0.160.

Data Set 3: Milk Production Data: Te third data revealed
the overall yield production of 107 cows at frst birth of SINDI
race. Te data set is also used by [33]. Te following are the
data observation: 0.4365, 0.4260, 0.5140, 0.6907, 0.7471,
0.2605, 0.6196, 0.8781, 0.4990, 0.6058, 0.6891, 0.5770, 0.5394,
0.1479, 0.2356, 0.6012, 0.1525, 0.5483, 0.6927, 0.7261, 0.3323,
0.0671, 0.2361, 0.4800, 0.5707, 0.7131, 0.5853, 0.6768, 0.5350,
0.4151, 0.6789, 0.4576, 0.3259, 0.2303, 0.7687, 0.4371, 0.3383,
0.6114, 0.3480, 0.4564, 0.7804, 0.3406, 0.4823, 0.5912, 0.5744,
0.5481, 0.1131, 0.7290, 0.0168, 0.5529, 0.4530, 0.3891, 0.4752,
0.3134, 0.3175, 0.1167, 0.6750, 0.5113, 0.5447, 0.4143, 0.5627,
0.5150, 0.0776, 0.3945, 0.4553, 0.4470, 0.5285, 0.5232, 0.6465,
0.0650, 0.8492, 0.8147, 0.3627, 0.3906, 0.4438, 0.4612, 0.3188,
0.2160, 0.6707, 0.6220, 0.5629, 0.4675, 0.6844, 0.3413, 0.4332,
0.0854, 0.3821, 0.4694, 0.3635, 0.4111, 0.5349, 0.3751, 0.1546,
0.4517, 0.2681, 0.4049, 0.5553, 0.5878, 0.4741, 0.3598, 0.7629,
0.5941, 0.6174, 0.6860, 0.0609, 0.6488, and 0.2747.

Table 7: MLEs and their standard errors (in parentheses) for data set 1.

Distribution a b α β
MKw 6.0882 (0.6881) 380.3097 (244.1106) — —
Kw 2.0774 (0.2548) 33.1374 (13.9216) — —
GaKw 0.0050 (0.0006) 0.4761 (0.2325) 0.2183 (0.4126) 38.2676 (26.4870)
SBKw 1.4472 (0.2530) 19.9669 (7.5763) — —
Beta 2.6826 (0.5072) 13.8658 (2.8280) — —

Table 8: MLEs and their standard errors (in parentheses) for data set 2.

Distribution a b α β
MKw 5.9715 (0.6781) 397.1149 (258.2666) — —
Kw 1.9586 (0.2441) 31.2634 (13.1620) — —
GaKw 0.0118 (0.0032) 0.3421 (0.0526) 0.0456 (0.0166) 58.1448 (11.3249)
SBKw 1.3155 (0.2417) 18.1894 (6.8386) — —
Beta 2.4004 (0.4511) 13.5216 (2.7704) — —
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Figure 6: Plot of (a) VaR and (b) ES of the MKw model for some parametric values.
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Data Set 4: Unemployment Claim Data 1: Te usefulness
of the proposed MKw model is determined by taking into
the account a heavy tailed real data sets from insurance feld.
Te given data was used by [5] and consisted of 58 values
related to the monthly metrics on the unemployment in-
surance: 0.188, 0.202, 0.195, 0.385, 0.489, 0.545, 0.541, 0.535,
0.521, 0.508, 0.512, 0.507, 0.519, 0.493, 0.487, 0.460, 0.490,
0.460, 0.490, 0.500, 0.400, 0.350, 0.370, 0.410, 0.400, 0.400,
0.410, 0.400, 0.420, 0.450, 0.450, 0.420, 0.390, 0.340, 0.360,
0.400, 0.440, 0.390, 0.410, 0.450, 0.460, 0.470, 0.490, 0.460,
0.410, 0.390, 0.400, 0.440, 0.420, 0.420, 0.450, 0.470, 0.530,
0.420, 0.490, 0.440, 0.420, and 0.400.

Data Set 5: Unemployment Claim Data 2: 0.823, 0.864,
0.816, 0.841, 0.831, 0.833, 0.894, 0.869, 0.866, 0.860, 0.837,
0.826, 0.804, 0.809, 0.758, 0.770, 0.778, 0.707, 0.814, 0.825,
0.906, 0.924, 0.927, 0.920, 0.770, 0.544, 0.550, 0.608, 0.630,
0.650, 0.820, 0.873, 0.900, 0.916, 0.899, 0.862, 0.695, 0.650,
0.751, 0.862, 0.702, 0.530, 0.764, 0.898, 0.897, 0.908, 0.902,
0.879, 0.645, 0.739, 0.765, 0.803, 0.708, 0.669, 0.561, 0.579,
0.701, and 0.839.

We used the MLE method in order to fnd the unknown
values of the MKw parameters. Several goodness-of-ft

(GoF), namely, Akaike information criterion (AIC), cor-
rected AIC (CAIC), Bayesian information criterion (BIC),
Hannan-Quinn information criterion (HQIC), Cramér-von
Mises (CvM), Anderson–Darling (AD) and Kolmog-
rov–Smirnov (KS) measures were used to elect an adequate
model.

Tables7–11 list the MLEs and standard error for the
MKw model and other competitive distributions such as,
Gamma Kumaraswamy(GaKw) [30], Size-Biased Kumar-
aswamy (SBKw) [31], Kumaraswamy (Kw), and Beta. While
the AIC, CAIC, BIC, HQIC, and other GoFs for the MKw
model and other competitive models (GaKw, SBKw, Kw,
and Beta) for data sets 1, 2, 3, 4, and 5, respectively. Te
values of the GoFs in Tables 12–16 indicate that the MKw
model shows small values of the GoFs, and thus provides the
best ft as compared to the other models. Te plots in
Figures 7–11 also support our claim.

7.1. Numerical Illustration of VaR and ES. Here we dem-
onstrate the numerical as well as graphical presentation of the
two important risk measures, VaR and ES. Te comparative

Table 9: MLEs and their standard errors (in parentheses) for data set 3.

Distribution a b α β
MKw 4.3358 (0.3836) 6.9958 (1.3323) — —
Kw 2.1949 (0.2224) 3.4363 (0.5820) — —
GaKw 5.7675 (3.1728) 0.1429 (0.3857) 0.0246 (0.0784) 0.3087 (0.2001)
SBKw 1.3874 (0.2340) 3.0666 (0.4894) — —
Beta 2.4125 (0.3145) 2.8297 (0.3744) — —

Table 10: MLEs and their standard errors (in parentheses) for data set 4.

Distribution a b α β
MKw 13.5478 (1.2846) 2300.6454 (1625.7869) — —
Kw 7.4038 (0.7572) 311.4870 (175.9728) — —
GaKw 0.02961 (0.01302) 0.4896 (0.0805) 0.06987 (0.0336) 74.1031 (18.4789)
SBKw 6.8374 (0.7688) 236.1314 (133.0104) — —
Beta 16.8271 (3.0993) 22.2029 (4.1042) — —

Table 11: MLEs and their standard errors (in parentheses) for data set 5.

Distribution a b α β
MKw 10.6993 (1.3748) 5.2102 (1.2979) — —
Kw 8.3089 (1.1153) 3.9795 (0.9392) — —
GaKw 0.0156 (0.0094) 0.0673 (0.0105) 0.0085 (0.0007) 55.0201 (11.8362)
SBKw 7.4980 (1.1251) 3.8346 (0.8871) — —
Beta 11.4662 (2.1510) 3.1426 (0.5562) — —

Table 12: Te statistics AIC, CAIC, BIC, HQIC, CvM, AD, and K-S for data set 1.

Distribution l AIC CAIC BIC HQIC CvM AD K-S KS
P value

MKw − 57.0040 − 110.0079 − 109.7526 − 106.1839 − 108.5517 0.0738 0.4483 0.0911 0.8005
Kw − 56.0687 − 108.1374 − 107.8820 − 104.3133 − 106.6811 0.1023 0.6243 0.1103 0.5777
GaKw − 55.8026 − 103.6052 − 102.7164 − 95.9572 − 100.6928 0.1122 0.6821 0.1213 0.4537
SBKw − 55.2067 − 106.4134 − 106.1581 − 102.5893 − 104.9572 0.1269 0.7708 0.1237 0.4290
Beta − 54.6067 − 105.2133 − 104.9580 − 101.3893 − 103.7571 0.1479 0.8926 0.1415 0.2697
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study of VaR and ES of the proposed MKw model with its
counterparts (Kw, SBKw, and Beta models) is performed by
taking MLEs estimates of the parameters for the models in
both data sets. It is worth-emphasizing that a model with

higher values of the risk measures is said to have a heavier tail.
Tables 17 and 18 provide the numerical illustration of the VaR
and ES for fourmodels of data 4 and 5 and yield that theMKw
model has higher values of both the risk measures as

Table 15: Te statistics AIC, CAIC, BIC, HQIC, CvM, AD, and K-S for data set 4.

Distribution l AIC CAIC BIC HQIC CvM AD K-S KS
P value

MKw − 74.2589 − 144.5178 − 144.2996 − 140.3969 − 142.9126 0.1066 0.7794 0.1116 0.4658
Kw − 72.7587 − 141.5174 − 141.2992 − 137.3965 − 139.9122 0.1165 0.9517 0.1156 0.4205
GaKw − 69.0701 − 130.1402 − 129.3854 − 121.8984 − 126.9298 0.1791 1.4926 0.1404 0.2033
SBKw − 72.3566 − 140.7132 − 140.4950 − 136.5923 − 139.1080 0.1199 0.9939 0.1137 0.4411
Beta − 65.5272 − 127.0544 − 126.8362 − 122.9335 − 125.4492 0.2678 2.1072 0.1686 0.0738

Table 16: Te statistics AIC, CAIC, BIC, HQIC, CvM, AD, and K-S for data set 5.

Distribution l AIC CAIC BIC HQIC CvM AD K-S KS
P value

MKw − 53.0937 − 102.1874 − 101.9692 − 98.0665 − 100.5823 0.0644 0.4753 0.0762 0.8893
Kw − 52.6921 − 101.3841 − 101.1659 − 97.2632 − 99.77896 0.0837 0.5819 0.0895 0.7421
GaKw − 52.9883 − 97.97656 − 97.22184 − 89.7348 − 94.76622 0.0659 0.4849 0.0781 0.8712
SBKw − 52.5935 − 101.187 − 100.9688 − 97.0661 − 99.58185 0.0870 0.6009 0.0920 0.7097
Beta − 52.0797 − 100.1593 − 99.94115 − 96.0385 − 98.55416 0.1064 0.7122 0.1047 0.5485
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Figure 7: Plots of estimated pdf, estimated cdf, estimated hrf, and failure rate for data set 1.

Table 14: Te statistics AIC, CAIC, BIC, HQIC, CvM, AD, and K-S for data set 3.

Distribution l AIC CAIC BIC HQIC CvM AD K-S KS
P value

MKw − 28.5855 − 53.1709 − 53.0556 − 47.8253 − 51.0039 0.0470 0.3097 0.0549 0.9033
Kw − 25.3947 − 46.7894 − 46.6740 − 41.4437 − 44.6223 0.1561 1.0090 0.0763 0.5626
GaKw − 27.6338 − 47.2676 − 46.8754 − 36.5763 − 42.9335 0.0916 0.5807 0.0747 0.5895
SBKw − 24.2495 − 44.4989 − 44.3836 − 39.1533 − 42.3319 0.1918 1.2271 0.0813 0.4788
Beta − 23.7772 − 43.5545 − 43.4391 − 38.2088 − 41.3874 0.2083 1.3263 0.0910 0.3384

Table 13: Te statistics AIC, CAIC, BIC, HQIC, CvM, AD, and K-S for data set 2.

Distribution l AIC CAIC BIC HQIC CvM AD K-S KS
P value

MKw − 58.9481 − 113.8963 − 113.6409 − 110.0722 − 112.4400 0.1246 0.7590 0.1323 0.3458
Kw − 57.5214 − 111.0428 − 110.7875 − 107.2188 − 109.5866 0.2068 1.1717 0.1693 0.1139
GaKw − 56.1787 − 104.3573 − 103.4684 − 96.7092 − 101.4449 0.2391 1.3370 0.1824 0.0717
SBKw − 56.4011 − 108.8023 − 108.5469 − 104.9782 − 107.3460 0.2531 1.4122 0.1843 0.0670
Beta − 55.9312 − 107.8624 − 107.6071 − 104.0384 − 106.4062 0.2768 1.5347 0.1981 0.0396
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Figure 10: Plots of estimated pdf, estimated cdf, estimated hrf, and failure rate for data set 4.
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Figure 11: Plots of estimated pdf, estimated cdf, estimated hrf, and failure rate for data set 5.
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Figure 9: Plots of estimated pdf, estimated cdf, estimated hrf, and failure rate for data set 3.
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Figure 8: Plots of estimated pdf, estimated cdf, estimated hrf, and failure rate for data set 2.
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Table 17: Numerical illustration of VaR and ES data set 4.

VaR ES
q MKw Kw SBKw Beta MKw Kw SBKw Beta
0.55 0.46462 0.13487 0.44590 0.38257 0.39855 0.13475 0.38377 0.32340
0.60 0.47272 0.13489 0.45424 0.39193 0.40439 0.13476 0.38930 0.32872
0.65 0.48078 0.13491 0.46266 0.40166 0.40996 0.13477 0.39461 0.33395
0.70 0.48896 0.13494 0.47132 0.41197 0.41531 0.13478 0.39978 0.33915
0.75 0.49743 0.13496 0.48043 0.42315 0.42050 0.13480 0.40485 0.34437
0.80 0.50647 0.13498 0.49030 0.43566 0.42558 0.13481 0.40988 0.34968
0.85 0.51650 0.13500 0.50144 0.45029 0.43063 0.13482 0.41493 0.35515
0.90 0.52842 0.13502 0.51494 0.46877 0.43572 0.13483 0.42009 0.36093
0.95 0.54477 0.13504 0.53393 0.49622 0.44100 0.13484 0.42555 0.36726
0.99 0.58559 0.13506 0.56667 0.54748 0.44563 0.13485 0.43046 0.37329

Table 18: Numerical illustration of VaR and ES data set 5.

VaR ES
q MKw Kw SBKw Beta MKw Kw SBKw Beta
0.55 0.84093 0.10671 0.81009 0.81124 0.73779 0.09838 0.71068 0.71145
0.60 0.85232 0.10822 0.82236 0.82411 0.74686 0.09914 0.71948 0.72030
0.65 0.86342 0.10974 0.83448 0.83690 0.75540 0.09990 0.72786 0.72878
0.70 0.87441 0.11125 0.84667 0.84980 0.76351 0.10065 0.73591 0.73696
0.75 0.88549 0.11277 0.85913 0.86303 0.77127 0.10141 0.74371 0.74492
0.80 0.89692 0.11428 0.87220 0.87692 0.77877 0.10217 0.75132 0.75273
0.85 0.90912 0.11580 0.88636 0.89198 0.78607 0.10292 0.75884 0.76047
0.90 0.92285 0.11731 0.90259 0.90918 0.79328 0.10368 0.76637 0.76824
0.95 0.94019 0.11882 0.92356 0.93116 0.80053 0.10444 0.77406 0.77621
0.99 0.96187 0.12004 0.95380 0.96187 0.80659 0.10504 0.78061 0.78300
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Figure 12: Plot of (a) VaR and (b) ES of MKw and Kw model data 4.
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compared to their counterparts (Kw, SBKw, and Beta
models). Te graphical demonstration of the models from
Figures 12 and 13, also revealed that the proposed model has
heavier tail than Kw, SBKw, and Beta model. Te readers are
referred to [34] for detailed discussion of VaR and ES and
their computation by using an R package.

It is clear that, the MKw model provides a better ft than
the other tested models, because it has the smallest value
among AIC, CAIC, BIC, HQIC, CvM, AD, and K-S.

8. Concluding Remarks

We proposed a modifed Kumaraswamy distribution by
modifcation [1 − logy]− 1 for (0, 1). We reported some
mathematical properties of the modifed Kumaraswamy
distribution. We solved the quantile function, which helped
in the simulation study. We simulated some parameter
values, which showed that the model’s behavior was good.
We also analyze this distribution with well-known models
such as Gamma Kumaraswamy, Size-Biased Kumaraswamy,
Kumaraswamy, and Beta using well-established GoF test-
statistics for fve real-life data sets including insurance claim
data. We observed that our model performed better than the
other comparative models on the basis of numerical results,
GoFs, and graphical measures. We hope that the proposed
modifed distribution will get great attention from
researchers.
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