
Pattern Recognition 132 (2022) 108879

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

Weighting and pruning based ensemble deep random vector

functional link network for tabular data classification

Qiushi Shi a , Minghui Hu

a , Ponnuthurai Nagaratnam Suganthan

a , b , ∗, Rakesh Katuwal a

a School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
b KINDI Center for Computing Research, College of Engineering, Qatar University, Doha, Qatar

a r t i c l e i n f o

Article history:

Received 23 February 2022

Revised 28 April 2022

Accepted 26 June 2022

Available online 27 June 2022

Keywords:

Ensemble deep random vector functional

link (edRVFL)

Weighting methods

Pruning

UCI classification datasets

a b s t r a c t

In this paper, we first integrate normalization to the Ensemble Deep Random Vector Functional Link net-

work (edRVFL). This re-normalization step can help the network avoid divergence of the hidden features.

Then, we propose novel variants of the edRVFL network. Weighted edRVFL (WedRVFL) uses weighting

methods to give training samples different weights in different layers according to how the samples

were classified confidently in the previous layer thereby increasing the ensemble’s diversity and accuracy.

Furthermore, a pruning-based edRVFL (PedRVFL) has also been proposed. We prune some inferior neu-

rons based on their importance for classification before generating the next hidden layer. Through this

method, we ensure that the randomly generated inferior features will not propagate to deeper layers.

Subsequently, the combination of weighting and pruning, called Weighting and Pruning based Ensemble

Deep Random Vector Functional Link Network (WPedRVFL), is proposed. We compare their performances

with other state-of-the-art classification methods on 24 tabular UCI classification datasets. The experi-

mental results illustrate the superior performance of our proposed methods.

© 2022 Elsevier Ltd. All rights reserved.

1

R

i

s

b

r

m

t

c

f

l

s

w

r

p

e

f

t

H

t

f

t

r

b

m

a

a

b

u

t

2

t

d

s

n

E

w

n

w

c

h

0

. Introduction

Deep learning has been extremely successful in recent years.

anging from vision and video tasks to natural language process-

ng, these deep neural networks have reached state-of-the-art re-

ults in multiple domains [1,2] . In conventional neural networks,

ack-propagation methods are used to train a large number of pa-

ameters in these models [3] . Although such a training method

akes it possible to optimize the parameters, the time-consuming

raining process has become a severe problem in recently designed

omplex neural networks. Also, a BP-trained neural network may

all into a local minimum and gives a sub-optimal result [4–6] . By

ooking at the Kaggle competitions that have no relation with vi-

ion or sequence, we can easily find that deep learning is not al-

ays the best solution for diverse tasks [7,8] .

At the same time, another kind of neural network based on

andomization is attracting significant attention because of its su-

eriority to overcome the shortcomings of the conventional mod-

ls [5,9,10] . It has been successfully applied to a range of tasks

rom classification [11–13] , regression [14,15] , visual tracking [16] ,

o forecasting [17,18] . Instead of using back-propagation to train,
∗ Corresponding author.

E-mail addresses: qiushi001@e.ntu.edu.sg (Q. Shi), e200008@e.ntu.edu.sg (M.

u), epnsugan@ntu.edu.sg (P.N. Suganthan), rakeshku001@e.ntu.edu.sg (R. Katuwal) .

o

T

d

ttps://doi.org/10.1016/j.patcog.2022.108879

031-3203/© 2022 Elsevier Ltd. All rights reserved.
his randomization-based neural network frequently uses a closed-

orm solution to optimize parameters in the model [19] . Unlike

he BP-trained neural networks which need multiple iterations, the

andomization-based neural networks only need to be trained once

y feeding all the samples to the model together. Among these

odels, Random Vector Functional Link Network (RVFL) [20,21] is

 typical representative with a single hidden layer. Its universal

pproximation ability has been proved in [22] . The weights and

iases are randomly generated in this neural network. And its

niqueness lies in a direct link that connects the information from

he input layer to the output layer. It has various applications [23–

5] . However, due to different random seeds and perturbations in

he training set, this randomized neural network can perform quite

ifferently in each realization [26] . To increase the performance,

tability, and robustness of this model, two improved structures

amed Deep Random Vector Functional Link Network (dRVFL) and

nsemble Deep Random Vector Functional Link Network (edRVFL)

ere proposed [27] . The dRVFL network is a deep version of RVFL

etwork, which allows the existence of multiple hidden layers,

hile edRVFL network treats each hidden layer as a classifier to

ompose an ensemble.

However, with the edRVFL network goes deeper, the divergence

f the randomized hidden features will become a serious problem.

herefore, using normalization methods to re-normalize the hid-

en features is extremely important for improving the performance

https://doi.org/10.1016/j.patcog.2022.108879
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108879&domain=pdf
mailto:qiushi001@e.ntu.edu.sg
mailto:e200008@e.ntu.edu.sg
mailto:epnsugan@ntu.edu.sg
mailto:rakeshku001@e.ntu.edu.sg
https://doi.org/10.1016/j.patcog.2022.108879

Q. Shi, M. Hu, P.N. Suganthan et al. Pattern Recognition 132 (2022) 108879

o

m

b

i

r

f

t

F

s

p

e

s

s

f

c

a

r

d

c

i

w

i

W

e

m

p

w

h

[

w

w

t

n

N

h

s

c

I

t

c

m

i

D

t

R

d

t

f

w

a

c

t

Fig. 1. The structure of RVFL network. The original features have two ways to trans-

fer to the output layer: One is going through the hidden layer(the blue lines and the

green lines), and the other one is transferred through the direct link(the red lines).

(For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

l

e

t

S

n

o

f

2

s

2

p

g

r

w

n

p

d

o

t

a

O

w

t

t

c

M

M

c
f the edRVFL network. In this paper, we employ the batch nor-

alization scheme [28] to do the re-normalization work. To the

est of our knowledge, this is the first time that batch normal-

zation is introduced to the randomized neural network. After the

e-normalization process, the mean and the variance of the hidden

eatures will become 0 and 1. Then, we scale and shift these values

o increase the expression capacity of the neural network.

Besides, there are still some drawbacks to the edRVFL network.

irstly, for every layer (or classifier) in the edRVFL network, they

hare the same training samples. Meanwhile, these training sam-

les have the same weights in the training process. Compared to

nsemble methods that using differing training bags for each clas-

ifier, these ensemble frameworks which utilize similar training

ets usually perform worse [29,30] . Moreover, the testing accuracy

or the last few layers may slightly go down when the network be-

omes deeper. We believe that some inferior features can be gener-

ted since we randomly generate the weights for the hidden neu-

ons. And these useless features will propagate to deeper layers in-

ucing further inferior features to decrease the overall testing ac-

uracy.

Thus, for solving the first problem, we introduce a weight-

ng matrix. Each training sample will be allocated a particular

eight when performing the closed-form solution depending on

ts performance in the previous layer. Our approach differs from

eighted Extreme Learning Machine [31] which gives weights to

ach sample for addressing the problem of imbalance learning. The

ain purpose is to ensure that different classifiers can have their

reference for a particular portion of the training samples that

ere not classified with high confidence in the previous layer. We

ave also tried to apply the sample weighting method of Adaboost

32] . However, most of the samples will be given weights near zero

hile only a few can be allocated reasonable weights. Therefore,

e propose a new weighting method for the edRVFL network in

his paper, and this improved variant of the edRVFL network is

amed Weighted Ensemble Deep Random Vector Functional Link

etwork (WedRVFL).

Besides, pruning algorithms are widely used to reduce the

eavy computational cost of deep neural networks in low-resource

ettings [33] . Different effective techniques have been proposed to

ut off the redundant part of the neural network models [34–37] .

n our case, we perform it by selecting some inferior features in

he hidden layer and prune them permanently. The selection pro-

ess can help to prevent the propagation of inferior features and

aintain the testing accuracy for deeper layers. We named this

mproved variant of edRVFL network as Pruning-based Ensemble

eep Random Vector Functional Link Network (PedRVFL). Although

here was previous work that applying pruning strategy to the

VFL network in [38] , we would like to highlight that our work is

ifferent from theirs at the following point: They do pruning after

raining to shrink the size of the neural network. However, we per-

orm pruning during the generation step so that inferior features

ill not propagate to deeper layers. Additionally, we integrate the

dvantages of WedRVFL and PedRVFL to create a combined model

alled Weighting and Pruning based Ensemble Deep Random Vec-

or Functional Link Network (WPedRVFL).

The key contributions of this paper are summarized as follows:

• We introduce the batch normalization to the edRVFL network

for re-normalizing the hidden features.
• We employ the weighting scheme to allocate different weights

to different samples in the edRVFL network. We name it We-

dRVFL network. The weight matrix changes according to the

samples’ predictions in the previous layers. This method can

make sure that each hidden layer in the network has different

biases for each sample and increase the ensemble classification

accuracy.
2
• We propose pruning based edRVFL network called PedRVFL net-

work. Instead of pruning neurons after the training process, we

cut off the inferior neurons according to their importance for

classification when we are training the model. This method can

prevent the propagation of detrimental features and increase

the classification accuracy in deeper layers.
• The combination of weighting and pruning based edRVFL net-

work named WPedRVFL network is also presented in the paper.
• The empirical results show the superiority of our new methods

over 11 state-of-the-art methods on 24 UCI benchmark datasets.

The rest of the paper is organized as follows: Section 2 out-

ines the basic concepts of RVFL network and illustrates the

nsemble deep version of this structure. Section 3 introduces

he re-normalization method for the edRVFL network. Then

ection 4 gives details about our new proposed versions of edRVFL

etwork. In Section 5 , the performance of our methods, as well as

ther classification methods are compared. Finally, conclusions and

uture research directions are presented in Section 6 .

. Related works

In this section, we give a brief review of the structure of the

tandard RVFL network and ensemble deep RVFL network.

.1. Random vector functional link network

As shown in Fig. 1 , a basic RVFL network consists of one in-

ut layer, one hidden layer, and one output layer [20] . Unlike the

eneral neural network, the uniqueness of RVFL network is its di-

ect link between the input layer and the output layer. This frame-

ork conveys both the linear features in the input layer and the

on-linearly transformed features in the hidden layer to the out-

ut layer. Because the parameters for the hidden layer are ran-

omly generated and kept fixed during the training process, the

nly thing it needs to learn is the output weights β. The solution of

he β can be computed by solving the optimization problem given

s follows:

 RV F L = min

β
|| D β − Y || 2 2 + λ|| β|| 2 2 (1)

here D represents all the input features and output features, Y is

he true vector we want to fit, and λ is a regularization parameter

hat controls how much the RVFL network cares about its model

omplexity.

Normally, this kind of optimization problem can be solved via

oore-Penrose pseudoinverse [39] and ridge regression [40] . For

oore-Penrose pseudoinverse, the algorithm does not consider the

ontribution of the part || β|| 2 , and λ is simply set to 0. So the

Q. Shi, M. Hu, P.N. Suganthan et al. Pattern Recognition 132 (2022) 108879

Fig. 2. The structure of edRVFL network. The whole network can be treated as several independent classifiers, and each classifier l has its own output weights βl and output

O l . The final output is obtained by applying some ensemble methods to these independent outputs.

s

β

M

s

P

D

D

t

p

2

l

D

p

f

s

T

r

t

f

fi

H

w

l

t

H

fi

i

s

P

f

l

a

3

t

Fig. 3. The range of the input features and the generation of the first hidden layer.

A

d

t

n

a

h

W

t

i

g

m

h

c

i

e

d

d

t

o

i

i

p

m

v

μ

σ

olution is given by:

= D

+ Y (2)

oreover, for the ridge regression where λ is not equal to 0, the

olution can be written as:

rimal Space: β = (D

T D + λI) −1 D

T Y (3)

ual Space: β = D

T (DD

T + λI) −1 Y (4)

epending on the number of total feature dimensions, the compu-

ational complexity for RVFL training can be reduced by using the

rimal or dual solution [5] .

.2. Ensemble deep random vector functional link network

With deep learning methods become more and more popu-

ar today, the deep version of the RVFL networks called Ensemble

eep Random Vector Functional Link Network (edRVFL) was pro-

osed by [27] . It is generally accepted that ensemble learning per-

orms better than a single learner. Inspired by this idea, the author

eparates the whole network into several independent classifiers.

he structure of edRVFL can be found in Fig. 2 .

For easy to understand, here we set the number of hidden neu-

ons in each hidden layer the same to n and the total number of

he hidden layers to l. Biases will also be omitted in the formula

or simplicity. Let X be the input features, and the output of the

rst hidden layer can be represented as:

(1) = g(XW

(1)) , W

(1) ∈ R

d×n (5)

here d is the feature number of the input and g(·) is the non-

inear activation function used in each hidden neuron. When l > 1 ,

his formula becomes:

(l) = g([H

(l−1) X] W

(l)) , W

(l) ∈ R

(n + d) ×n (6)

This framework treats every hidden layer as a single classi-

er. For one classifier (hidden layer), the original features (features

n the input layer) and all the hidden features in this layer, are

erving as the input for this classifier’s prediction. Either Moore-

enrose pseudoinverse [39] or ridge regression [40] can be chosen

or solving the optimization problem. After getting all the hidden

ayers’ predictions, an ensemble method such as major voting or

veraging is employed to reach the final output.

. Proposed re-normalization scheme for the edRVFL network

For the edRVFL network, the input samples are normalized so

hat the mean equals to 0 and the variance is 1 for each feature.
3
lso, the hidden weights of the edRVFL network are uniform ran-

omly generated within [−1 , 1] . Suppose the feature number of the

raining sample is d and let the range of its i th normalized feature

f i to be [a i , b i] , where a i ≤ 0 and b i ≥ 0 . Then the input of the jth

ode’s activation function in the first hidden layer can be written

s:

 j =

d ∑

i =1

w i j f i (7)

here w i j is the hidden weight between the i th normalized fea-

ure and the jth hidden node. We summarize the above operation

n Fig. 3 .

Based on the condition that w i j ∈ [−1 , 1] , the range of h j can be

iven by [
∑ d

i =1 a i ,
∑ d

i =1 b i] . And this range will keep increasing with

ore and more hidden layers been generated. Since randomization

as the potential to generate inferior features, and this situation

an be worse due to this large range. Therefore, re-normalization

s crucial for avoiding divergence of the hidden features in the

dRVFL network.

Batch normalization is widely used in back-propagation-based

eep neural networks to address the Internal Covariate Shift issue

uring the training process [28] . In this work, we use it to help

he edRVFL network re-normalize its hidden features. To the best

f our knowledge, this is the first time that batch normalization is

ntroduced to the randomized neural network. The batch normal-

zation generally has two steps. The first step is to make the in-

uts’ mean and variance to 0 and 1, respectively. Suppose we have

 inputs and let the i th input to be x i , then the mean value μ and

ariance σ 2 can be obtained by:

=

1

m

m ∑

i =1

x i (8)

2 =

1

m

m ∑

i =1

(x i − μ) 2 (9)

Q. Shi, M. Hu, P.N. Suganthan et al. Pattern Recognition 132 (2022) 108879

Fig. 4. The structure of WedRVFL network. From l ≥ 2 , it gives each training sample different importance values when calculating β. This method ensures that every hidden

layer has its preference for a particular subset of hard-to-classify training samples.

x̂

s

y

w

t

s

p

t

t

4

w

n

S

s

4

l

t

m

V

t

p

n

s

t

o

(

i

o

w

o

t

n

F

w

t

w

d

f

a

s

s

l

i

t

o

m

s

n

ω

w

ω
t

W

s

g

(

P

D

w

d

d

c

e

e

s

i

b

c

p

And the normalization can be done by:

 i =

x i − μ√

σ 2 + ε
(10)

After we have normalized the inputs, we can do scaling and

hifting to increase the approximation ability of the network:

 i = γ ̂ x i + α (11)

Here γ and α are parameters that we need to set for the net-

ork. In the back-propagation-based deep neural networks, these

wo parameters are learned by the back-propagation which are

imilar to the hidden weights. However, we treat γ and α as hy-

erparameters for the edRVFL network. The validation set is used

o help us find the best configuration of these two hyperparame-

ers.

. Ensemble deep random vector functional link networks

ith weighting & pruning

In this section, we propose two improved variants of edRVFL

etwork called WedRVFL and PedRVFL in Section 4.1 and

ection 4.2 . In Section 4.3 , their combination WPedRVFL is pre-

ented.

.1. Weighted ensemble deep random vector functional link network

Weighting [41] is a widely used method in boosting ensemble

earning and can make each classifier focus its preference on a par-

icular set of samples. Therefore, we propose our own weighting

ethods in this paper. In our Weighted Ensemble Deep Random

ector Functional Link Network (WedRVFL), we apply weighting by

reating each hidden layer as an independent classifier. The sam-

les which are hard to predict will be given higher weights in the

ext classifier. The typical structure of the WedRVFL network is

hown in Fig. 4 .

The generation step for the WedRVFL is exactly the same as

he basic edRVFL using (5) (6) . Moreover, the way of calculating the

utput weights β1 of the first hidden layer is also based on (3) and

4) (Ridge regression is chosen here). Suppose there are m train-

ng samples, after finishing the training for the first layer, some

f these samples are predicted correctly while others are assigned

rong labels in this layer’s classification. Denote these two groups

f samples as S r and S w

, respectively. And let the size of S r and S w

o be n r and n w

. Then we can have:

 r + n w

= m (12)

or these samples in set S w

, which means they are predicted

rongly in the current layer, we should give them a higher impor-

ance value in the next layer. On the other hand, for these samples
4
hich have correct classification, their importance value should be

ecreased in the next classifier.

In the first hidden layer, there is no weighting scheme for dif-

erent samples. However, we still can treat this situation as that

ll the training samples are sharing the same weight 1. From the

econd hidden layer, we give the samples in set S r weight ω r and

amples in set S w

weight ω w

. Since we know that ω r should be

ess than 1 and a positive value. The range of ω r is (0,1] (ω r = 1

f all the samples are predicted correctly in the last layer). Recall

hat when all the samples are sharing the same weight 1, the sum

f these weights is equal to the size of the training set m . For nu-

erical stability, we should follow the same rule in our weighting

cheme. Therefore, we can obtain the following equation:

 r × ω r + n w

× ω w

= m (13)

So that the weight ω w

for set S w

can be expressed by ω r as:

 w

=

m − n r × ω r

n w

(14)

It is worth mentioning that although we have two different

eights for S r and S w

, we only need to set one hyperparameter

 r during the experiments. The validation set can be used to find

he best setting for this hyperparameter.

After getting the value of ω w

, we can create the weight matrix

 l , where W l ∈ R

m ×1 and l ≥ 2 (weighting scheme starts from the

econd hidden layer). The i th value in W l represents the weight we

ive to the i th training sample (either ω r or ω w

). Thus, when l ≥ 2 ,

3) and (4) will turn into new forms:

rimal Space: βW

l = (D

T W

∗
l D + λI) −1 D

T W

∗
l Y (15)

ual Space: βW

l = D

T (W

∗
l DD

T + λI) −1 W

∗
l Y (16)

here W l
∗ =

⎡

⎢ ⎢ ⎢ ⎣

W

(1)
l

0 · · · 0

0 W

(2)
l

· · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · W

(m)
l

⎤

⎥ ⎥ ⎥ ⎦

, which is the (m × m)

iagonal form of W l .

From the above, we know that the training samples which are

ifficult to train will be given higher importance values when cal-

ulating the loss in the next layer. This method ensures that for

ach training sample, whether it is hard to train or not, there will

xist some corresponding layers that are good at predicting such

amples. Hence, every sample may have been predicted correctly

n some layers. Intuitively, the wrong prediction of WedRVFL can

e less than the normal edRVFL after ensemble aggregation. This

laim is supported by our empirical simulation results in the ex-

erimental part.

Q. Shi, M. Hu, P.N. Suganthan et al. Pattern Recognition 132 (2022) 108879

Fig. 5. The structure of PedRVFL network. It chooses to cut off some inferior neurons starting from the first hidden layer. Here h 1 ,n , h 2 , 1 , and h l−1 , 2 are identified as inferior

ones and will be removed.

4

n

I

m

a

e

n

i

W

p

i

g

i

a

P

I

r

a

s

c

c

v

f

e

p

θ

D

l

p

h

a

m

4

f

t

a

d

s

Algorithm 1: WPedRVFL.

Input : A set of training samples X ∈ R

m ×d .

1 for Every Hidden Layer l do

2 Initialize the hidden weights.

3 Do re-normalization and generate the hidden features

using (11), (5) and (6).

4 Weighting: Get the optimal output weights βW

l
by (15)

and (16). When l = 1 , all the samples share the same

weight 1.

5 Predict the labels of the training samples.

6 Weighting: Calculate the weight ω w

for the wrong

predicted samples based on the ω r we set by (14).

7 Pruning: Obtain the importance value θ for each hidden

nodes using (17).

8 Pruning: Cut off a number of the inferior neurons

according to the pruning rate p we set.

9 end

10 Combine all the predictions from every hidden layer using

ensemble methods.

Output : Hidden weights, the final prediction of the training

samples, and the output weights βW

l
of every

hidden layer.

r

e

e

t

b

b

b

l

4

s

p

n

o

h

l

a

N

S

p

.2. Pruning based ensemble deep random vector functional link

etwork

The pruning method is widely used in today’s neural networks.

t was proposed to improve the efficiency of the neural network

odels when facing a limited computational budget. However, we

pply the pruning method in our model for a completely differ-

nt reason. Since the weights between hidden layers in our neural

etwork are randomly generated and kept fixed, we believe some

nferior features will be created and propagated to deeper layers.

ith the layer number increasing, the accuracy of a single layer’s

rediction will slightly go down. Hence, we decide to cut off some

nferior hidden neurons to prevent them from participating in the

eneration of the deeper hidden layers. The structure of PedRVFL

s shown in Fig. 5 .

For deciding which neurons should be cut off, [34] proposed

 pruning method based on the sensitivity calculation. Besides,

enalty-term methods are also widely used by researchers [42,43] .

n recent days, some new pruning schemes targeted on deep neu-

al networks have been investigated [36,37] . In this paper, we set

 criterion based on the output weights which also belongs to the

ensitivity methods. For each hidden neuron h l,n in layer l, it has k

orresponding weights in the βl where k refers to the number of

lasses. Let these weights be a l,n, 1 , a l,n, 2 . . . a l,n,k , and the absolute

alue for them represent the importance for this neuron to dif-

erent classes. Therefore, we should use the sum of these values to

valuate how much is this hidden neuron contributed to the whole

rediction:

l,n =

k ∑

i =1

| a l,n,i | (17)

epending on the pruning rate we set, hidden neurons with the

owest values of θ are pruned. It is worth mentioning that by ap-

lying the pruning method, our neural network will have fewer

idden neurons. That means the complexity of the framework is

lso reduced. However, according to the experimental results, this

odel turns out to have better performance on multiple tasks.

.3. Weighting and pruning based ensemble deep random vector

unctional link network

Weighting and Pruning based Ensemble Deep Random Vec-

or Functional Link Network (WPedRVFL) is a combination of the

bove two models. It has both advantages of WedRVFL and Pe-

RVFL. The structure of this neural network is shown in Fig. 6 .

To better illustrate the training procedure of the WPedRVFL, we

ummarize the steps in Algorithm 1 .
5
It is also worth highlighting that a BP-trained network needs to

e-train all the parameters in the previously trained hidden layers

very time if we set different number of the hidden layers. How-

ver, in our edRVFL based neural networks, we only need to train

he model once with the maximum permitted hidden layer num-

er. Since there is no need for training the hidden weights and

iases in edRVFL based neural networks, results of different num-

ers of hidden layers can be obtained by eliminating the last few

ayers’ predictions in the final output.

.4. Justification for choosing tabular datasets

Deep neural networks show great performance in diverse areas

uch as image classification, object detection, and natural language

rocessing. However, the concept of the neural network is not

ew. The shallow neural networks also reach good performance

n UCI tabular datasets. On the contrary, most deep networks may

ave poor results on the tabular data because of over-fitting prob-

ems [44] . We believe the advantages of deep neural networks

re brought by their specific structures, such as the Convolutional

eural Network (CNN) block for image-related tasks and the Long

hort-Term Memory (LSTM) for text-related datasets. Since our

roposed models are randomized neural networks that do not have

Q. Shi, M. Hu, P.N. Suganthan et al. Pattern Recognition 132 (2022) 108879

Fig. 6. The structure of WPedRVFL network. It combines the weighting and the pruning methods to achieve better performance.

Table 1

Datasets used in this work.

Dataset #Patterns #Features #Classes

abalone 4177 9 3

adult 48,842 15 2

arrhythmia 452 263 13

bank 4521 17 2

cardio-10 2126 22 10

cardio-3 2126 22 3

chess-krvkp 3196 37 2

congressional-voting 435 17 2

contrac 1473 10 3

glass 214 10 6

letter 20,000 17 26

molec-biol-splice 3190 61 3

monks-3 554 7 2

musk-2 6598 167 2

oocytes_trisopterus_states_5b 912 26 2

pendigits 10,992 17 10

spambase 4601 58 2

statlog-image 2310 19 7

statlog-landsat 6435 37 6

statlog-shuttle 58,000 10 7

wall-following 5456 25 4

waveform 5000 22 3

waveform-noise 5000 41 3

wine-quality-white 4898 12 7

∗ We name these datasets the same as in [44] .

t

p

t

f

f

5

5

m

o

a

o

[

u

5

a

r

Table 2

Hyperparameters considered for edRVFL based methods.

Hyperparameter Considered values

Regularization parameter λ λ belongs to 2 x , x ∈ [−12 , 12]

Number of hidden neurons n [20,1000]

Maximum number of hidden

layers l max

10

γ in batch normalization [0.5,2]

α in batch normalization [–2,2]

Weight ω r for the correctly

predicted samples

(0,1], 1 means there is no

weighting in the network

Pruning Rate p [0,1), 0 means there is no pruning

in the network

e

m

l

1

1

1

1

1

normalization proposed in this work.
hese specific feature extraction modules, we only investigate their

erformance on UCI tabular datasets. Therefore, we set the limita-

ion of tabular data classification in this research. However, once

eatures are extracted by CNN or LSTM, edRVFL can be employed

or the classification of the extracted tabular features [45] .

. Experiments

.1. Datasets

In this paper, we use 24 classification datasets from the UCI

achine learning repository [46] to compare the performance of

ur methods with other state-of-the-art networks. These datasets

re from diverse application areas like physics, geology, and biol-

gy and usually serve as the benchmarks for the classification task

44,46] . We follow the same data pre-processing and partitions as

sed in [44] . The details of these datasets are shown in Table 1 .

.2. Other methods used for comparison

For evaluating the performance of our proposed edRVFL vari-

nts, we compare them with other 4 deep learning models, 4

andomized neural networks, 1 random forest, and the original
6
dRVFL network without re-normalization in this work. These

ethods (1–10), as well as our new proposed methods (11–14), are

isted as follows:

1) Self Normalizing Neural Network (SNN): Self normalizing net-

works with SELUs activation function and ranks the best among

the FNNs [44] .

2) MSRAinit (MS): The deep neural network with Microsoft weight

initialization [47] .

3) Highway (HW): Highway networks [48] .

4) ResNet (ResNet): Residual networks adapted to FNNs using

residual blocks with 2 or 3 layers [49] .

5) Stochastic configuration networks (SCN): The randomized neu-

ral network generated incrementally by stochastic configura-

tion [50] .

6) Broad learning system (BLS): The RVFL based model with a

complete paradigm shift in discriminative learning [51] .

7) Type-2 fuzzy BL S (FBL S): The fuzzy BL S learning algorithm [52] .

8) Heterogeneous oblique random forest (obRaF(H)): The hetero-

geneous version of the oblique random forest [53] .

9) Hierarchical ELM (H-ELM): Hierarchical Extreme Learning Ma-

chine for multi-layer perception [54] .

0) edRVFL_O: The original ensemble deep random vector func-

tional link neural network without re-normalization [27] .

1) edRVFL_N: The new edRVFL network with re-normalization

that proposed in this work.

2) PedRVFL: Pruning based edRVFL with re-normalization pro-

posed in this work.

3) WedRVFL: Weighting based edRVFL with re-normalization pro-

posed in this work.

4) WPedRVFL: The combination of PedRVFL and WedRVFL with re-

Q
.
 Sh

i,
 M

.
 H

u
,
 P.N

.
 Su

g
a

n
th

a
n
 et

 a
l.

P
a

ttern
 R

eco
g

n
itio

n
 13

2
 (2

0
2

2
)
 10

8
8

7
9

Table 3

Comparison of Accuracy(%) on 24 UCI Datasets.

Dataset SNN [44] MS [47] HW [48] Resnet [49] SCN [50] BLS [51] FBLS [52] obRaF(H) [53] H-ELM [54] edRVFL_O [27] edRVFL_N

† WedRVFL † PedRVFL † WPedRVFL †

abalone 66.57 62.84 64.27 64.66 64.00 60.06 64.17 65.93 63.77 65.83 ±0.36 66.13 ±0.32 66.87 ±0.22 67.05 ±0.01 66.89 ±0.15

adult 84.76 84.87 84.53 84.84 85.01 85.15 85.61 85.21 85.05 85.21 ±0.15 85.26 ±0.15 85.30 ±0.13 85.42 ±0.14 85.46 ±0.14

arrhythmia 65.49 63.72 62.83 64.60 44.91 62.23 68.40 72.33 72.12 69.06 ±0.69 72.43 ±0.66 73.22 ±0.32 73.66 ±0.39 73.88 ±0.36

bank 89.03 88.76 88.85 87.96 88.83 88.19 88.69 89.07 89.20 89.77 ±0.11 90.13 ±0.11 90.92 ±0.11 90.19 ±0.11 91.14 ±0.01

cardio-10 83.99 84.18 84.56 81.73 81.26 83.47 82.15 82.37 82.39 82.37 ±0.47 83.24 ±0.42 84.56 ±0.52 84.08 ±0.26 85.30 ±0.26

cardio-3 91.53 89.64 91.71 90.21 91.57 91.33 92.87 93.47 90.68 92.71 ±0.25 93.42 ±0.25 93.47 ±0.21 93.55 ±0.01 94.20 ±0.18

chess-krvkp 98.37 99.00 99.00 99.12 97.77 98.75 98.68 99.15 99.00 99.08 ±0.15 99.21 ±0.17 99.36 ±0.01 99.33 ±0.01 99.47 ±0.01

congressional-voting 61.47 60.55 58.72 59.63 60.09 59.40 57.79 61.19 61.24 61.01 ±0.28 61.98 ±0.29 61.91 ±0.23 61.93 ±0.27 62.16 ±0.25

contrac 51.90 51.36 50.54 51.36 47.75 41.78 49.38 51.97 54.08 51.33 ±0.50 54.04 ±0.49 55.53 ±0.51 54.94 ±0.37 55.68 ±0.19

glass 73.58 60.38 64.15 64.15 66.79 61.23 65.66 73.95 68.87 65.13 ±0.88 70.73 ±0.83 71.75 ±0.67 71.19 ±0.47 72.35 ±0.87

letter 97.26 97.12 89.84 97.62 86.11 93.99 92.75 97.39 93.15 97.43 ±0.23 97.54 ±0.22 97.77 ±0.15 97.66 ±0.07 97.73 ±0.11

molec-biol-splice 83.72 84.82 88.33 85.57 75.75 74.84 77.24 86.76 82.40 84.01 ±0.38 84.31 ±0.39 84.07 ±0.50 85.22 ±0.22 85.69 ±0.57

monks-3 60.42 74.54 58.80 58.33 69.42 52.37 59.95 55.84 78.70 55.02 ±2.02 75.48 ±2.04 80.29 ±1.93 81.98 ±1.12 82.35 ±1.57

musk-2 98.03 99.45 99.15 99.64 96.71 98.77 97.12 98.03 98.32 98.54 ±0.25 99.33 ±0.26 99.54 ±0.19 99.28 ±0.01 99.74 ±0.01

oocytes_trisopterus_states_5b 93.42 94.30 93.42 89.47 89.91 57.46 83.33 93.75 92.06 93.91 ±0.20 93.97 ±0.20 94.19 ±0.18 95.20 ±0.23 95.21 ±0.30

pendigits 97.06 97.14 96.71 97.08 97.05 97.45 98.44 97.14 97.41 97.49 ±0.12 97.97 ±0.13 98.05 ±0.15 97.89 ±0.11 98.20 ±0.11

spambase 93.00 94.61 94.35 94.61 91.71 92.15 90.60 94.87 92.67 93.83 ±0.16 94.08 ±0.17 94.11 ±0.23 94.18 ±0.01 94.72 ±0.14

statlog_image 95.49 97.57 95.84 95.84 94.97 89.90 94.73 97.38 95.28 96.82 ±0.21 97.05 ±0.17 97.56 ±0.14 97.44 ±0.18 97.40 ±0.13

statlog_landsat 91.00 90.75 91.10 90.55 90.25 83.47 86.95 91.79 91.22 91.15 ±0.51 91.64 ±0.51 92.19 ±0.25 92.15 ±0.17 91.85 ±0.12

statlog_shuttle 99.90 99.83 99.77 99.92 99.79 96.82 99.15 99.90 99.88 99.91 ±0.02 99.92 ±0.02 99.93 ±0.01 99.93 ±0.01 99.94 ±0.01

wall-following 90.98 90.76 92.30 90.12 85.41 89.53 83.84 90.64 89.46 90.28 ±0.43 90.79 ±0.45 91.04 ±0.55 91.37 ±0.31 92.20 ±0.33

waveform 84.80 83.12 83.20 83.60 84.76 83.48 80.86 86.28 86.16 85.95 ±0.11 85.97 ±0.11 86.59 ±0.01 86.83 ±0.01 86.97 ±0.12

waveform-noise 86.08 83.28 86.96 85.84 83.70 82.44 84.66 86.76 86.08 85.68 ±0.14 86.17 ±0.11 86.92 ±0.01 86.98 ±0.15 87.13 ±0.13

wine-quality-white 63.73 64.79 55.64 63.07 55.96 55.15 51.47 63.21 55.49 63.29 ±0.40 63.70 ±0.39 64.76 ±0.38 64.22 ±0.41 65.66 ±0.31

Mean Accuracy 83.40 83.22 82.27 82.48 80.40 78.31 80.60 83.93 83.53 83.12 ±0.38 84.77 ±0.37 85.41 ±0.32 85.49 ±0.21 85.89 ±0.27

Ave. Rank 8.23 8.42 8.88 9.06 11.54 11.92 10.92 6.27 8.67 7.75 5.31 3.31 3.15 1.58

∗ Methods with † are proposed in this paper with re-normalization.

7

Q. Shi, M. Hu, P.N. Suganthan et al. Pattern Recognition 132 (2022) 108879

Table 4

Statistical comparison between WPedRVFL and each of the other networks.

Methods Ave. Rank p-value

WPedRVFL 1.58

PedRVFL 3.15 4.2e-4

WedRVFL ∗ 3.31 1.6e-4

edRVFL_N

∗ 5.31 1.8e-5

obRaF(H) [53] 6.27 1.1e-3

edRVFL_O

∗ [27] 7.75 1.8e-5

SNN

∗ [44] 8.23 7.1e-5

MS ∗ [47] 8.42 2.6e-5

H-ELM

∗ [54] 8.67 1.8e-5

HW

∗ [48] 8.88 1.3e-4

Resnet ∗ [49] 9.06 1.8e-5

FBLS [52] 10.92 2.6e-5

SCN

∗ [50] 11.54 1.8e-5

BLS ∗ [51] 11.92 1.8e-5

∗ Lower rank reflects better performance. The p− value is obtained from the paired

Wilcoxon test. Methods that are significantly worse than the best method are

marked with “∗”.

5

t

w

s

i

l

t

b

l

k

a

t

f

[

t

t

d

e

w

i

o

w

c

e

w

m

T

5

s

[

f

c

r

e

s

r

p

T
a

b
le

5

S
ta

ti
st

ic
a

l
co

m
p

a
ri

so
n

o

f
a

ll

th

e

m

e
th

o
d

s.

W
P

e
d

R
V

F
L

†
P

e
d

R
V

F
L

†
W

e
d

R
V

F
L

†
e

d
R

V
F

L_
N
 †

o
b

R
a

F
(H

) [
5

3
]

e
d

R
V

F
L_

O
 [2

7
]

S
N

N
 [4

4
]

M
S
 [4

7
]

H
-E

LM
 [5

4
]

H
W
 [4

8
]

R
e

sn
e

t [
4

9
]

F
B

L
S
 [5

2
]

S
C

N
 [5

0
]

B
L

S
 [5

1
]

W
P

e
d

R
V

F
L
 †

+
+

+
+

+
+

+
+

+
+

+
+

+
P

e
d

R
V

F
L
 †

-
+

+
+

+
+

+
+

+
+

+
+

W
e

d
R

V
F

L
 †

-
+

+
+

+
+

+
+

+
+

+
+

e
d

R
V

F
L

_
N
 †

-
-

-
+

+
+

+
+

+
+

+
+

o
b

R
a

F
(H

) [
5

3
]

-
-

-
+

+
+

+
+

+
+

e
d

R
V

F
L

_
O
 [2

7
]

-
-

-
-

-
+

+
+

+
S

N
N
 [4

4
]

-
-

-
-

+
+

+
+

M
S
 [4

7
]

-
-

-
-

+
+

+
H

-E
L

M
 [5

4
]

-
-

-
-

-
+

+
+

H
W
 [4

8
]

-
-

-
-

-
+

+
R

e
sn

e
t [

4
9

]
-

-
-

-
-

-
-

+
+

F
B

L
S
 [5

2
]

-
-

-
-

-
-

-
-

-
-

S
C

N
 [5

0
]

-
-

-
-

-
-

-
-

-
-

B
L

S
 [5

1
]

-
-

-
-

-
-

-
-

-
-

-

∗
T

h
e

e

m
p

ty

ce

ll

in

th

e

ta

b
le

m

e
a

n
s

th
e

co

rr
e

sp
o

n
d

in
g

m

e
th

o
d

in

th

e

ro

w

a

n
d

co

lu
m

n

h

av
e

n

o

si

g
n

ifi
ca

n
t

st
a

ti
st

ic
a

l
d

if
fe

re
n

ce
.

T
h

e

sy

m
b

o
l

’+
’

in
d

ic
a

te
s

th
a

t
th

e

m

e
th

o
d

in

th

e

ro

w

is

st

a
ti

st
ic

a
ll

y

b

e
tt

e
r

th
a

n

th
e

m

e
th

o
d

in

th

e

co

lu
m

n
.

O
n

th

e

o

th
e

r
h

a
n

d
,

th
e

sy

m
b

o
l

’-
’

m
e

a
n

s
th

e

m

e
th

o
d

in

th

e

ro

w

is

st

a
ti

st
ic

a
ll

y

w

o
rs

e

th

a
n

th

a
t

in

th

e

co

lu
m

n
.
∗

M
e

th
o

d
s

w
it

h

†
a

re

p

ro
p

o
se

d

in

th

is

p

a
p

e
r.

.3. Hyperparameter settings

For these FNN methods, we use the same hyperparameter set-

ings as in [44] . For the other RVFL based randomized neural net-

orks, We use the official codes provided by their authors and

et the ranges of the hyperparameters as suggested in their orig-

nal papers. Moreover, for the edRVFL based methods, the regu-

arization parameter λ is chosen from range 2 x , where x belongs

o [−12 , 12] . The hidden neuron number n of these methods can

e tuned within [20,10 0 0]. The maximum number of the hidden

ayers l max of the edRVFL based methods is set to 10. The two

ey hyperparameters γ and α of the re-normalization are tuned

mong [0.5,2] and [−2 , 2] , respectively. The WedRVFL can choose

he best weight ω r in (0,1] based on the validation accuracy. Also,

or pruning-based methods, the pruning rate p is tuned among

0,1). The details about these settings are summarized in Table 2 .

During the tuning process, we do 4-fold cross-validation to find

he best parameter settings. We separate the whole dataset into

raining and testing sets 4 times. In each fold, 25 % of the training

ata are used as the validation set, and we select the hyperparam-

ter configuration with the best average validation accuracy. Then,

e use the whole training data to re-train the models before feed-

ng the test data into them. The testing accuracy is obtained based

n the correct predictions of the networks for the test data. At last,

e report the mean value of the 4 testing accuracy as the final

lassification result for the current dataset.

In order to test the robustness of our new methods, for each

dRVFL based network, we run the above experiment 10 times

ith different randomized hidden features. Then, we report the

ean value and the standard deviation of these 10 outcomes in

able 3 .

.4. Experimental results

The performance of all the 14 methods on 24 UCI datasets is

hown in Table 3 .

We take the results of SNN, MS, HW, and Resnet directly from

44] . The rankings of each classifier are used to compare their per-

ormance on all the datasets. For the ranking method, the best

lassifier based on the classification accuracy of one dataset is

anked 1, the second is ranked 2, and so on. Then we use the av-

rage rank of all 24 datasets to show the performance of the clas-

ifiers. The best results for each dataset, as well as the best global

ank and accuracy, are given in bold.

Wilcoxon signed-rank test is a non-parametric statistical hy-

othesis test used to compare the performance of two related mea-
8

Q. Shi, M. Hu, P.N. Suganthan et al. Pattern Recognition 132 (2022) 108879

Fig. 7. The testing accuracy of WPedRVFL network with different weight ω w on 4 tabular datasets.

Table 6

Standard deviation comparison between edRVFL based methods.

Methods Ave. std

PedRVFL 0.21

WPedRVFL 0.27

WedRVFL ∗ 0.32

edRVFL_N

∗ 0.37

edRVFL_O

∗ [27] 0.38

s

t

g

t

s

l

h

W

p

B

d

b

i

t

t

m

t

t

e

T

P

a

S

w

d

m

g

W

m

p

urements on multiple tasks [55] . In this paper, we employ it to do

he pairwise comparison on the selected two methods to investi-

ate the statistical difference between them. We first compare all

he other 11 methods’ performance with WPedRVFL. And the re-

ults are shown in Table 4 . From the table, we can see that all

eading positions are occupied by edRVFL based methods (except

eterogeneous oblique random forest). The top-ranked method is

PedRVFL and followed by WedRVFL. PedRVFL takes the third

lace, and edRVFL_N, obRaF(H), edRVFL_O are following behind.

y performing the statistical comparison, we know that the WPe-

RVFL significantly outperforms all the other competitors.
9
We also use the Wilcoxon test to do the pairwise comparison

etween all the 14 classifiers in this paper. The results are shown

n Table 5 . If there is no statistically significant difference between

he methods in the corresponding row and column, the cells where

hey intersect will be empty. If the symbol in the cell is ‘+’, that

eans the method in the corresponding row is statistically better

han that in the column. On the contrary, the symbol ‘-’ indicates

hat the method in the corresponding row is statistically worse.

Then, we pay attention to the standard deviation of these

dRVFL based methods. We summarize their performance in

able 6 . From it, we can learn that our new methods WedRVFL,

edRVFL, and WPedRVFL are more robust than the basic edRVFL_O

nd edRVFL_N. Among them, PedRVFL has the smallest std value.

ince WPedRVFL is the combination of WedRVFL and PedRVFL, so

e believe this is the reason why its std value is between We-

RVFL and PedRVFL.

From all the Tables above, we know that our new proposed

ethods, edRVFL_N, WedRVFL, PedRVFL, and WPedRVFL, show

reat performance on 24 UCI classification tasks. Among them,

PedRVFL takes great advantage both in the average rank and

ean accuracy compared to all other methods. It significantly out-

erforms other FNNs like Resnet, HW, MS, and SNN. And it also has

Q. Shi, M. Hu, P.N. Suganthan et al. Pattern Recognition 132 (2022) 108879

Fig. 8. The testing accuracy of WPedRVFL network with different pruning rate p on 4 tabular datasets.

a

n

a

d

u

5

f

r

f

c

e

a

i

i

w

v

Table 7

Hyperparameters considered in the controlled experiments.

Hyperparameter Considered values

Regularization parameter λ 1

Number of hidden neurons n 500

Number of hidden layers l 3

γ in batch normalization 1

α in batch normalization 0

Weight ω r for the correctly

predicted samples

0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 or 1 (when

testing different pruning rates)

Pruning Rate p 0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , or 0 (when

testing different weights)

ω

w

s

t

c

v

d

o

 significant statistical difference from other randomized neural

etworks. Moreover, the standard deviation of our new methods

re smaller than the original edRVFL networks. Therefore, WPe-

RVFL can be considered as a highly competitive classifier on tab-

lar classification tasks.

.5. Effects of the key hyperparameters: Weight ω r and pruning rate

p

In this part, we conduct more experiments to discover the ef-

ects of the key hyperparmeters. Here we select 4 datasets: ar-

hythmia, congressional_voting, statlog_image, and waveform-noise

rom the previous section to show how the testing accuracy

hanges with different settings of ω r and p.

We use the WPedRVFL model to perform these tests. During the

xperiments, except for ω r and p, all the other hyperparameters

re fixed to control variables. Moreover, when we are testing the

nfluence of weight ω r , the pruning rate p is also set to 0 (no prun-

ng) to complete the controlled experiment. On the other hand, the

eight ω r is set to 1 (no weighting) when the pruning rate p is in-

estigated. We give the details of these configurations in Table 7 .
10
We first give WPedRVFL’s performance with different weights

 r on 4 datasets in Fig. 7 . As we can see from Fig. 7 . The

eighting scheme is useful in most cases. For arrhythmia, congres-

ional_voting, and statlog_image datasets, setting the weight ω r for

he wrongly predicted samples generally increases the testing ac-

uracy of the model. But which weight ω r is the most suitable one

aries from case to case. Therefore, we need to use the validation

ata to find the best configuration of the specific dataset. On the

ther hand, there is an exception that the weighting scheme is

Q. Shi, M. Hu, P.N. Suganthan et al. Pattern Recognition 132 (2022) 108879

Table 8

Training Time comparisons between SNN and WPedRVFL on spambase dataset (s).

Dataset SNN WPedRVFL

arrhythmia 4.4731 0.6504

contrac 2.8705 0.4898

musk_2 7.0369 0.9814

spambase 8.6586 1.3752

waveform 6.7168 0.8336

∗ Experiment environment: Intel(R) Xeon(R) CPU E5-2620; nVIDIA GeForce GTX-

1080.

Table 9

Performace with different network settings (%).

Dataset 20 Best 20 Worst All After pruning

only only the worst 20

abalone 65.90 64.37 67.05 67.34

bank 89.03 88.76 88.85 88.85

glass 73.58 58.49 73.58 73.61

monks-3 61.11 59.49 58.80 62.96

oocytes_trisopterus_states_5b 91.23 88.60 92.54 93.34

h

t

v

c

t

f

i

v

v

r

5

t

h

m

o

n

t

fi

n

t

5

a

t

t

b

d

λ
r

d

r

O

r

T

6

e

p

t

w

t

l

c

a

o

r

w

g

r

o

V

b

u

p

T

o

c

w

r

i

w

b

w

t

t

D

c

i

R

armful to the classification. For the waveform-noise dataset, the

esting accuracy keeps decreasing when we set lower and lower

alues for ω r .

In addition to that, we present WPedRVFL’s performance of

hanging the pruning rate p in Fig. 8 . For all 4 tabular datasets,

he pruning method can always help us get better accuracy. The

our line charts show a similar pattern: At the beginning, the test-

ng accuracy increases with the pruning rate. After reaching a peak

alue, the accuracy drops and becomes even worse than the initial

alue. So same as the weight ω r , we need to set different pruning

ates p for different cases using the validation set.

.6. Training time comparison

Another advantage of randomized neural networks is their

raining time. Since they do not use back-propagation to train the

idden parameters, the training time of these RVFL variants can be

uch less than the deep learning models.

In this section, we select two representatives from two groups

f the classifiers. Among the back-propagation based deep neural

etworks, we choose SNN since it has the highest accuracy on

he benchmark datasets. Meanwhile, the most competitive classi-

cation model WPedRVFL is selected from the randomized neural

etworks. We present their training time (without hyperparameter

uning) on 5 selected datasets in Table 8 .

.7. Inferior features

Randomization has the potential to generate inferior features,

nd the claim can be treated as a general one. To demonstrate

his claim, we conducted the following experiments. Here we use

he single-hidden-layer RVFL network (without direct-link) as the

ackbone (No re-normalization). All the hyperparameters are fixed

uring these experiments (Number of the hidden neurons: 100,

:1, Pruning rate: 0.2 (cutting off 20 worst hidden neurons)). We

eport the classification accuracy on 5 datasets (1-fold) with four

ifferent settings -20 Best (accuracy with only 20 best hidden neu-

ons), 20 Worst (accuracy with only 20 worst hidden neurons),

riginal (network without pruning), and Pruning (network after

emoving the 20 worst neurons). We present the ACC (%) in the

able 9 .
11
. Conclusion

In this paper, we first introduce batch normalization to the

dRVFL network for re-normalizing the hidden features. Then, we

ropose a weighted version for edRVFL network. A weight ma-

rix is used to allocate different weights to different samples. The

eight matrix changes according to the samples’ predictions in

he previous layers. This method can make sure that each hidden

ayer in the network has different biases for each sample and in-

rease the ensemble classification accuracy. Moreover, we propose

nother new variant of edRVFL with the pruning method. Instead

f pruning neurons after the training process, we cut off the infe-

ior neurons according to their importance for classification when

e are training the model. This method can prevent the propa-

ation of detrimental features and increase the classification accu-

acy in deeper layers. Then, the combination of these two meth-

ds called Weighting and Pruning based Ensemble Deep Random

ector Functional Link Network is proposed. It takes advantage of

oth WedRVFL and PedRVFL and performs better overall. For eval-

ating the performance of our new proposed methods, we com-

are them, with other 10 classifiers on 24 UCI benchmark datasets.

he experimental results show the superiority of our new methods

n tabular classification tasks. In particular, WPedRVFL is the most

ompetitive one among all the 14 classifiers. In addition to that,

e investigate the effects of setting different weight and pruning

ate values. These results illustrate how the weighting and prun-

ng schemes can help to improve the classification results. At last,

e compare the training time between our proposed model with a

ack-propagation based deep neural network. In our future work,

e will develop methods to select only a few output layers with

he highest classification accuracy to perform the final classifica-

ion.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

eferences

[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
436–4 4 4 .

[2] J. Schmidhuber, Deep learning in neural networks: an overview, Neural net-
works 61 (2015) 85–117 .

[3] D.C. Plaut, G.E. Hinton, Learning sets of filters using back-propagation, Com-

puter Speech & Language 2 (1) (1987) 35–61 .
[4] Y. Bengio, Deep learning of representations: Looking forward, in: International

Conference on Statistical Language and Speech Processing, Springer, 2013,
pp. 1–37 .

[5] P.N. Suganthan, On non-iterative learning algorithms with closed-form solu-
tion, Appl Soft Comput 70 (2018) 1078–1082 .

[6] P.N. Suganthan, R. Katuwal, On the origins of randomization-based feedforward
neural networks, Appl Soft Comput (2021) 107239 .

[7] M. Olson, A. Wyner, R. Berk, Modern neural networks generalize on small

data sets, in: Advances in Neural Information Processing Systems, 2018,
pp. 3619–3628 .

[8] I. Shavitt, E. Segal, Regularization learning networks: deep learning for tab-
ular datasets, in: Advances in Neural Information Processing Systems, 2018,

pp. 1379–1389 .
[9] W.F. Schmidt, M.A. Kraaijveld, R.P. Duin, et al., Feed forward neural networks

with random weights, in: International Conference on Pattern Recognition,

IEEE Computer Society Press, 1992 . 1–1
[10] B. Widrow, A. Greenblatt, Y. Kim, D. Park, The no-prop algorithm: a new

learning algorithm for multilayer neural networks, Neural Networks 37 (2013)
182–188 .

[11] R. Giryes, G. Sapiro, A.M. Bronstein, Deep neural networks with random gaus-
sian weights: auniversal classification strategy? IEEE Trans. Signal Process. 64

(13) (2016) 34 4 4–3457 .

[12] J.J.d.M.S. Junior, A.R. Backes, O.M. Bruno, Randomized neural network based
descriptors for shape classification, Neurocomputing 312 (2018) 201–209 .

http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0001
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0002
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0003
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0004
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0005
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0006
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0007
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0008
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0009
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0009
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0010
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0011
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0012

Q. Shi, M. Hu, P.N. Suganthan et al. Pattern Recognition 132 (2022) 108879

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Q

r

N

l

M
2

r
a

d

P

P

f
c

M
d

n

g

o

b
i

2
2

2

e

E

“
r

l
e

c
i

h

a
2

R
2

g
c

[13] L. Zhang, P.N. Suganthan, A comprehensive evaluation of random vector func-
tional link networks, Inf Sci (Ny) 367 (2016) 1094–1105 .

[14] Y.-L. He, C.-H. Wei, H. Long, R.A.R. Ashfaq, J.Z. Huang, Random weight net-
work-based fuzzy nonlinear regression for trapezoidal fuzzy number data, Appl

Soft Comput 70 (2018) 959–979 .
[15] N. Vukovi ́c, M. Petrovi ́c, Z. Miljkovi ́c, A comprehensive experimental evalua-

tion of orthogonal polynomial expanded random vector functional link neural
networks for regression, Appl Soft Comput 70 (2018) 1083–1096 .

[16] L. Zhang, P.N. Suganthan, Visual tracking with convolutional random vector

functional link network, IEEE Trans Cybern 47 (10) (2016) 3243–3253 .
[17] Y. Ren, P.N. Suganthan, N. Srikanth, G. Amaratunga, Random vector functional

link network for short-term electricity load demand forecasting, Inf Sci (Ny)
367 (2016) 1078–1093 .

[18] J. Wang, J. Wang, Forecasting stochastic neural network based on financial em-
pirical mode decomposition, Neural Networks 90 (2017) 8–20 .

[19] H.A. Te Braake, G. Van Straten, Random activation weight neural net (RAWN)

for fast non-iterative training, Eng Appl Artif Intell 8 (1) (1995) 71–80 .
20] Y.-H. Pao, Y. Takefuji, Functional-link net computing: theory, system architec-

ture, and functionalities, Computer (Long Beach Calif) 25 (5) (1992) 76–79 .
[21] B. Igelnik, Y.-H. Pao, Stochastic choice of basis functions in adaptive function

approximation and the functional-link net, IEEE Trans. Neural Networks 6 (6)
(1995) 1320–1329 .

22] D. Needell, A .A . Nelson, R. Saab, P. Salanevich, Random vector functional

link networks for function approximation on manifolds, arXiv preprint
arXiv:2007.15776 (2020) .

23] B.B. Hazarika, D. Gupta, Modelling and forecasting of covid-19 spread using
wavelet-coupled random vector functional link networks, Appl Soft Comput

96 (2020) 106626 .
24] C. Diao, D. Kleyko, J.M. Rabaey, B.A. Olshausen, Generalized learning vector

quantization for classification in randomized neural networks and hyperdi-

mensional computing, in: 2021 International Joint Conference on Neural Net-
works (IJCNN), IEEE, 2021, pp. 1–9 .

25] Y. Peng, Q. Li, W. Kong, F. Qin, J. Zhang, A. Cichocki, A joint optimization frame-
work to semi-supervised rvfl and elm networks for efficient data classification,

Appl Soft Comput 97 (2020) 106756 .
26] M. Li, D. Wang, Insights into randomized algorithms for neural networks: prac-

tical issues and common pitfalls, Inf Sci (Ny) 382 (2017) 170–178 .

27] Q. Shi, R. Katuwal, P.N. Suganthan, M. Tanveer, Random vector functional link
neural network based ensemble deep learning, Pattern Recognit 117 (2021)

107978 .
28] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training

by reducing internal covariate shift, arXiv preprint arXiv:1502.03167 (2015) .
29] A. Liaw, M. Wiener, et al., Classification and regression by randomforest, R

news 2 (3) (2002) 18–22 .

30] J.J. Rodriguez, L.I. Kuncheva, C.J. Alonso, Rotation forest: a new classifier en-
semble method, IEEE Trans Pattern Anal Mach Intell 28 (10) (2006) 1619–1630 .

[31] W. Zong, G.-B. Huang, Y. Chen, Weighted extreme learning machine for imbal-
ance learning, Neurocomputing 101 (2013) 229–242 .

32] Y. Freund, R.E. Schapire, et al., Experiments with a new boosting algorithm, in:
ICML, volume 96, Citeseer, 1996, pp. 148–156 .

33] Z. Liu, M. Sun, T. Zhou, G. Huang, T. Darrell, Rethinking the value of network
pruning, arXiv preprint arXiv:1810.05270 (2018) .

34] Y. LeCun, J.S. Denker, S.A. Solla, R.E. Howard, L.D. Jackel, Optimal brain damage,

in: NIPs, volume 2, Citeseer, 1989, pp. 598–605 .
35] B. Hassibi, D.G. Stork, Second order derivatives for network pruning: Optimal

brain surgeon, Morgan Kaufmann, 1993 .
36] S. Han, J. Pool, J. Tran, W.J. Dally, Learning both weights and connections for

efficient neural networks, arXiv preprint arXiv:1506.02626 (2015) .
37] P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, Pruning convolutional neu-

ral networks for resource efficient inference, arXiv preprint arXiv:1611.06440

(2016) .
38] P.A . Henriquez, G.A . Ruz, A non-iterative method for pruning hidden neu-

rons in neural networks with random weights, Appl Soft Comput 70 (2018)
1109–1121 .

39] J.C.A. Barata, M.S. Hussein, The moore–penrose pseudoinverse: a tutorial re-
view of the theory, Braz. J. Phys. 42 (1–2) (2012) 146–165 .

40] A.E. Hoerl, R.W. Kennard, Ridge regression: biased estimation for nonorthogo-

nal problems, Technometrics 12 (1) (1970) 55–67 .
[41] A. Onan, S. Koruko ̆glu, H. Bulut, A multiobjective weighted voting ensemble

classifier based on differential evolution algorithm for text sentiment classifi-
cation, Expert Syst Appl 62 (2016) 1–16 .

42] Y. Chauvin, A back-propagation algorithm with optimal use of hidden units, in:
NIPS, volume 1, 1988, pp. 519–526 .

43] C. Ji, R.R. Snapp, D. Psaltis, Generalizing smoothness constraints from discrete

samples, Neural Comput 2 (2) (1990) 188–197 .
12
44] G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, Self-normalizing neu-
ral networks, in: Advances in Neural Information Processing Systems, 2017,

pp. 971–980 .
45] W.X. Cheng, P.N. Suganthan, R. Katuwal, Time series classification using diver-

sified ensemble deep random vector functional link and resnet features, Appl
Soft Comput (2021) 107826 .

46] A. Asuncion, D. Newman, Uci machine learning repository, 2007.
[47] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing hu-

man-level performance on imagenet classification, in: The IEEE International

Conference on Computer Vision (ICCV), 2015 .
48] R.K. Srivastava, K. Greff, J. Schmidhuber, Training very deep networks, in:

C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Garnett (Eds.), Advances
in Neural Information Processing Systems 28, Curran Associates, Inc., 2015,

pp. 2377–2385 .
49] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,

in: Proceedings of the IEEE conference on computer vision and pattern recog-

nition, 2016, pp. 770–778 .
50] D. Wang, M. Li, Stochastic configuration networks: fundamentals and algo-

rithms, IEEE Trans Cybern 47 (10) (2017) 3466–3479 .
[51] C.P. Chen, Z. Liu, Broad learning system: an effective and efficient incremen-

tal learning system without the need for deep architecture, IEEE Trans Neural
Netw Learn Syst 29 (1) (2017) 10–24 .

52] H. Han, Z. Liu, H. Liu, J. Qiao, C.P. Chen, Type-2 fuzzy broad learning system,

IEEE Trans Cybern (2021) .
53] R. Katuwal, P.N. Suganthan, L. Zhang, Heterogeneous oblique random forest,

Pattern Recognit 99 (2020) 107078 .
54] J. Tang, C. Deng, G.-B. Huang, Extreme learning machine for multilayer percep-

tron, IEEE Trans Neural Netw Learn Syst 27 (4) (2015) 809–821 .
55] H.B. Mann, D.R. Whitney, On a test of whether one of two random variables

is stochastically larger than the other, The annals of mathematical statistics 18

(1) (1947) 50–60 .

iushi Shi received his B.Eng. degree from Hohai University, China in 2019. Cur-

ently, he is a Ph.D. student in the School of Electrical and Electronic Engineering in
anyang Technological University, Singapore. His research interest includes machine

earning, computer vision and neural networks.

inghui Hu received his B.Eng. degree from Dalian Maritime University, China in
018 and his MSc degree from Nanyang Technological University, Singapore. Cur-

ently, he is a PhD student at the School of Electrical and Electronic Engineering
t Nanyang Technological University, Singapore. His research interests include ran-

omized neural networks, deep learning, and computer vision.

onnuthurai Nagaratnam Suganthan (or P N Suganthan) received the B.A degree,

ostgraduate Certificate and M.A degree in Electrical and Information Engineering

rom the University of Cambridge, UK in 1990, 1992 and 1994, respectively. He re-
eived an honorary doctorate (i.e. Doctor Honoris Causa) in 2020 from University of

aribor, Slovenia. After completing his PhD research in 1995, he served as a pre-
octoral Research Assistant in the Dept of Electrical Engineering, University of Syd-

ey in 1995-96 and a lecturer in the Dept of Computer Science and Electrical En-
ineering, University of Queensland in 1996-99. He was an Editorial Board Member

f the Evolutionary Computation Journal, MIT Press (2013–2018), IEEE Trans on Cy-

ernetics (2012 - 2018), IEEE Trans on Evolutionary Computation (2005 -2021). He
s an associate editor of Engineering Applications of Artificial Intelligence (Elsevier,

022 -). Applied Soft Computing (Elsevier, 2018-), Neurocomputing (Elsevier,
018-), Information Sciences (Elsevier, 2009 -), Pattern Recognition (Elsevier,

001 -) and IEEE Trans on SMC: Systems (2020 -) Journals. He is a founding co-
ditor-in-chief of Swarm and Evolutionary Computation (2010 -), an SCI Indexed

lsevier Journal. His co-authored SaDE paper (published in April 2009) won the

IEEE Trans. on Evolutionary Computation outstanding paper award” in 2012. His
esearch interests include randomization-based learning methods, swarm and evo-

utionary algorithms, pattern recognition, deep learning and applications of swarm,
volutionary & machine learning algorithms. He was selected as one of the highly

ited researchers by Thomson Reuters Science Citations yearly from 2015 to 2022
n computer science. He served as the General Chair of the IEEE SSCI 2013. He

as been a member of the IEEE (S’90, M’92, SM’00, Fellow 2015) since 1991 and

n elected AdCom member of the IEEE Computational Intelligence Society (CIS) in
014–2016. He is an IEEE CIS distinguished lecturer (DLP) in 2018–2021.

akesh Katuwal received his B. Eng. degree from Kathmandu University, Nepal in
014. He recently completed Ph.D. in the School of Electrical and Electronic En-

ineering in Nanyang Technological University, Singapore. His research interest in-
ludes various ensemble learning methods, deep learning, and computer vision.

http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0013
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0014
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0015
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0016
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0017
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0018
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0019
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0020
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0021
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0022
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0023
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0024
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0025
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0026
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0027
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0028
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0029
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0030
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0031
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0032
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0033
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0034
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0035
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0036
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0037
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0038
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0039
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0040
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0041
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0042
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0043
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0044
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0045
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0047
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0048
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0049
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0050
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0051
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0052
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0053
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0054
http://refhub.elsevier.com/S0031-3203(22)00360-0/sbref0055

	Weighting and pruning based ensemble deep random vector functional link network for tabular data classification
	1 Introduction
	2 Related works
	2.1 Random vector functional link network
	2.2 Ensemble deep random vector functional link network

	3 Proposed re-normalization scheme for the edRVFL network
	4 Ensemble deep random vector functional link networks with weighting pruning
	4.1 Weighted ensemble deep random vector functional link network
	4.2 Pruning based ensemble deep random vector functional link network
	4.3 Weighting and pruning based ensemble deep random vector functional link network
	4.4 Justification for choosing tabular datasets

	5 Experiments
	5.1 Datasets
	5.2 Other methods used for comparison
	5.3 Hyperparameter settings
	5.4 Experimental results
	5.5 Effects of the key hyperparameters: Weight and pruning rate
	5.6 Training time comparison
	5.7 Inferior features

	6 Conclusion
	Declaration of Competing Interest
	References

