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In this paper, we first integrate normalization to the Ensemble Deep Random Vector Functional Link net- 

work (edRVFL). This re-normalization step can help the network avoid divergence of the hidden features. 

Then, we propose novel variants of the edRVFL network. Weighted edRVFL (WedRVFL) uses weighting 

methods to give training samples different weights in different layers according to how the samples 

were classified confidently in the previous layer thereby increasing the ensemble’s diversity and accuracy. 

Furthermore, a pruning-based edRVFL (PedRVFL) has also been proposed. We prune some inferior neu- 

rons based on their importance for classification before generating the next hidden layer. Through this 

method, we ensure that the randomly generated inferior features will not propagate to deeper layers. 

Subsequently, the combination of weighting and pruning, called Weighting and Pruning based Ensemble 

Deep Random Vector Functional Link Network (WPedRVFL), is proposed. We compare their performances 

with other state-of-the-art classification methods on 24 tabular UCI classification datasets. The experi- 

mental results illustrate the superior performance of our proposed methods. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Deep learning has been extremely successful in recent years. 

anging from vision and video tasks to natural language process- 

ng, these deep neural networks have reached state-of-the-art re- 

ults in multiple domains [1,2] . In conventional neural networks, 

ack-propagation methods are used to train a large number of pa- 

ameters in these models [3] . Although such a training method 

akes it possible to optimize the parameters, the time-consuming 

raining process has become a severe problem in recently designed 

omplex neural networks. Also, a BP-trained neural network may 

all into a local minimum and gives a sub-optimal result [4–6] . By 

ooking at the Kaggle competitions that have no relation with vi- 

ion or sequence, we can easily find that deep learning is not al- 

ays the best solution for diverse tasks [7,8] . 

At the same time, another kind of neural network based on 

andomization is attracting significant attention because of its su- 

eriority to overcome the shortcomings of the conventional mod- 

ls [5,9,10] . It has been successfully applied to a range of tasks 

rom classification [11–13] , regression [14,15] , visual tracking [16] , 

o forecasting [17,18] . Instead of using back-propagation to train, 
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his randomization-based neural network frequently uses a closed- 

orm solution to optimize parameters in the model [19] . Unlike 

he BP-trained neural networks which need multiple iterations, the 

andomization-based neural networks only need to be trained once 

y feeding all the samples to the model together. Among these 

odels, Random Vector Functional Link Network (RVFL) [20,21] is 

 typical representative with a single hidden layer. Its universal 

pproximation ability has been proved in [22] . The weights and 

iases are randomly generated in this neural network. And its 

niqueness lies in a direct link that connects the information from 

he input layer to the output layer. It has various applications [23–

5] . However, due to different random seeds and perturbations in 

he training set, this randomized neural network can perform quite 

ifferently in each realization [26] . To increase the performance, 

tability, and robustness of this model, two improved structures 

amed Deep Random Vector Functional Link Network (dRVFL) and 

nsemble Deep Random Vector Functional Link Network (edRVFL) 

ere proposed [27] . The dRVFL network is a deep version of RVFL 

etwork, which allows the existence of multiple hidden layers, 

hile edRVFL network treats each hidden layer as a classifier to 

ompose an ensemble. 

However, with the edRVFL network goes deeper, the divergence 

f the randomized hidden features will become a serious problem. 

herefore, using normalization methods to re-normalize the hid- 

en features is extremely important for improving the performance 
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Fig. 1. The structure of RVFL network. The original features have two ways to trans- 

fer to the output layer: One is going through the hidden layer(the blue lines and the 

green lines), and the other one is transferred through the direct link(the red lines). 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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f the edRVFL network. In this paper, we employ the batch nor- 

alization scheme [28] to do the re-normalization work. To the 

est of our knowledge, this is the first time that batch normal- 

zation is introduced to the randomized neural network. After the 

e-normalization process, the mean and the variance of the hidden 

eatures will become 0 and 1. Then, we scale and shift these values 

o increase the expression capacity of the neural network. 

Besides, there are still some drawbacks to the edRVFL network. 

irstly, for every layer (or classifier) in the edRVFL network, they 

hare the same training samples. Meanwhile, these training sam- 

les have the same weights in the training process. Compared to 

nsemble methods that using differing training bags for each clas- 

ifier, these ensemble frameworks which utilize similar training 

ets usually perform worse [29,30] . Moreover, the testing accuracy 

or the last few layers may slightly go down when the network be- 

omes deeper. We believe that some inferior features can be gener- 

ted since we randomly generate the weights for the hidden neu- 

ons. And these useless features will propagate to deeper layers in- 

ucing further inferior features to decrease the overall testing ac- 

uracy. 

Thus, for solving the first problem, we introduce a weight- 

ng matrix. Each training sample will be allocated a particular 

eight when performing the closed-form solution depending on 

ts performance in the previous layer. Our approach differs from 

eighted Extreme Learning Machine [31] which gives weights to 

ach sample for addressing the problem of imbalance learning. The 

ain purpose is to ensure that different classifiers can have their 

reference for a particular portion of the training samples that 

ere not classified with high confidence in the previous layer. We 

ave also tried to apply the sample weighting method of Adaboost 

32] . However, most of the samples will be given weights near zero 

hile only a few can be allocated reasonable weights. Therefore, 

e propose a new weighting method for the edRVFL network in 

his paper, and this improved variant of the edRVFL network is 

amed Weighted Ensemble Deep Random Vector Functional Link 

etwork (WedRVFL). 

Besides, pruning algorithms are widely used to reduce the 

eavy computational cost of deep neural networks in low-resource 

ettings [33] . Different effective techniques have been proposed to 

ut off the redundant part of the neural network models [34–37] . 

n our case, we perform it by selecting some inferior features in 

he hidden layer and prune them permanently. The selection pro- 

ess can help to prevent the propagation of inferior features and 

aintain the testing accuracy for deeper layers. We named this 

mproved variant of edRVFL network as Pruning-based Ensemble 

eep Random Vector Functional Link Network (PedRVFL). Although 

here was previous work that applying pruning strategy to the 

VFL network in [38] , we would like to highlight that our work is

ifferent from theirs at the following point: They do pruning after 

raining to shrink the size of the neural network. However, we per- 

orm pruning during the generation step so that inferior features 

ill not propagate to deeper layers. Additionally, we integrate the 

dvantages of WedRVFL and PedRVFL to create a combined model 

alled Weighting and Pruning based Ensemble Deep Random Vec- 

or Functional Link Network (WPedRVFL). 

The key contributions of this paper are summarized as follows: 

• We introduce the batch normalization to the edRVFL network 

for re-normalizing the hidden features. 
• We employ the weighting scheme to allocate different weights 

to different samples in the edRVFL network. We name it We- 

dRVFL network. The weight matrix changes according to the 

samples’ predictions in the previous layers. This method can 

make sure that each hidden layer in the network has different 

biases for each sample and increase the ensemble classification 

accuracy. 
2 
• We propose pruning based edRVFL network called PedRVFL net- 

work. Instead of pruning neurons after the training process, we 

cut off the inferior neurons according to their importance for 

classification when we are training the model. This method can 

prevent the propagation of detrimental features and increase 

the classification accuracy in deeper layers. 
• The combination of weighting and pruning based edRVFL net- 

work named WPedRVFL network is also presented in the paper. 
• The empirical results show the superiority of our new methods 

over 11 state-of-the-art methods on 24 UCI benchmark datasets. 

The rest of the paper is organized as follows: Section 2 out- 

ines the basic concepts of RVFL network and illustrates the 

nsemble deep version of this structure. Section 3 introduces 

he re-normalization method for the edRVFL network. Then 

ection 4 gives details about our new proposed versions of edRVFL 

etwork. In Section 5 , the performance of our methods, as well as 

ther classification methods are compared. Finally, conclusions and 

uture research directions are presented in Section 6 . 

. Related works 

In this section, we give a brief review of the structure of the 

tandard RVFL network and ensemble deep RVFL network. 

.1. Random vector functional link network 

As shown in Fig. 1 , a basic RVFL network consists of one in-

ut layer, one hidden layer, and one output layer [20] . Unlike the 

eneral neural network, the uniqueness of RVFL network is its di- 

ect link between the input layer and the output layer. This frame- 

ork conveys both the linear features in the input layer and the 

on-linearly transformed features in the hidden layer to the out- 

ut layer. Because the parameters for the hidden layer are ran- 

omly generated and kept fixed during the training process, the 

nly thing it needs to learn is the output weights β. The solution of 

he β can be computed by solving the optimization problem given 

s follows: 

 RV F L = min 

β
|| D β − Y || 2 2 + λ|| β|| 2 2 (1) 

here D represents all the input features and output features, Y is 

he true vector we want to fit, and λ is a regularization parameter 

hat controls how much the RVFL network cares about its model 

omplexity. 

Normally, this kind of optimization problem can be solved via 

oore-Penrose pseudoinverse [39] and ridge regression [40] . For 

oore-Penrose pseudoinverse, the algorithm does not consider the 

ontribution of the part || β|| 2 , and λ is simply set to 0. So the
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Fig. 2. The structure of edRVFL network. The whole network can be treated as several independent classifiers, and each classifier l has its own output weights βl and output 

O l . The final output is obtained by applying some ensemble methods to these independent outputs. 
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Fig. 3. The range of the input features and the generation of the first hidden layer. 
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olution is given by: 

= D 

+ Y (2) 

oreover, for the ridge regression where λ is not equal to 0, the 

olution can be written as: 

rimal Space: β = ( D 

T D + λI ) −1 D 

T Y (3) 

ual Space: β = D 

T ( DD 

T + λI ) −1 Y (4) 

epending on the number of total feature dimensions, the compu- 

ational complexity for RVFL training can be reduced by using the 

rimal or dual solution [5] . 

.2. Ensemble deep random vector functional link network 

With deep learning methods become more and more popu- 

ar today, the deep version of the RVFL networks called Ensemble 

eep Random Vector Functional Link Network (edRVFL) was pro- 

osed by [27] . It is generally accepted that ensemble learning per- 

orms better than a single learner. Inspired by this idea, the author 

eparates the whole network into several independent classifiers. 

he structure of edRVFL can be found in Fig. 2 . 

For easy to understand, here we set the number of hidden neu- 

ons in each hidden layer the same to n and the total number of

he hidden layers to l. Biases will also be omitted in the formula 

or simplicity. Let X be the input features, and the output of the 

rst hidden layer can be represented as: 

 

(1) = g( XW 

(1) ) , W 

(1) ∈ R 

d×n (5) 

here d is the feature number of the input and g(·) is the non- 

inear activation function used in each hidden neuron. When l > 1 , 

his formula becomes: 

 

(l) = g([ H 

(l−1) X ] W 

(l) ) , W 

(l) ∈ R 

(n + d) ×n (6) 

This framework treats every hidden layer as a single classi- 

er. For one classifier (hidden layer), the original features (features 

n the input layer) and all the hidden features in this layer, are 

erving as the input for this classifier’s prediction. Either Moore- 

enrose pseudoinverse [39] or ridge regression [40] can be chosen 

or solving the optimization problem. After getting all the hidden 

ayers’ predictions, an ensemble method such as major voting or 

veraging is employed to reach the final output. 

. Proposed re-normalization scheme for the edRVFL network 

For the edRVFL network, the input samples are normalized so 

hat the mean equals to 0 and the variance is 1 for each feature.
3 
lso, the hidden weights of the edRVFL network are uniform ran- 

omly generated within [ −1 , 1] . Suppose the feature number of the 

raining sample is d and let the range of its i th normalized feature 

f i to be [ a i , b i ] , where a i ≤ 0 and b i ≥ 0 . Then the input of the jth

ode’s activation function in the first hidden layer can be written 

s: 

 j = 

d ∑ 

i =1 

w i j f i (7) 

here w i j is the hidden weight between the i th normalized fea- 

ure and the jth hidden node. We summarize the above operation 

n Fig. 3 . 

Based on the condition that w i j ∈ [ −1 , 1] , the range of h j can be

iven by [ 
∑ d 

i =1 a i , 
∑ d 

i =1 b i ] . And this range will keep increasing with

ore and more hidden layers been generated. Since randomization 

as the potential to generate inferior features, and this situation 

an be worse due to this large range. Therefore, re-normalization 

s crucial for avoiding divergence of the hidden features in the 

dRVFL network. 

Batch normalization is widely used in back-propagation-based 

eep neural networks to address the Internal Covariate Shift issue 

uring the training process [28] . In this work, we use it to help

he edRVFL network re-normalize its hidden features. To the best 

f our knowledge, this is the first time that batch normalization is 

ntroduced to the randomized neural network. The batch normal- 

zation generally has two steps. The first step is to make the in- 

uts’ mean and variance to 0 and 1, respectively. Suppose we have 

 inputs and let the i th input to be x i , then the mean value μ and

ariance σ 2 can be obtained by: 

= 

1 

m 

m ∑ 

i =1 

x i (8) 

2 = 

1 

m 

m ∑ 

i =1 

(x i − μ) 2 (9) 
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Fig. 4. The structure of WedRVFL network. From l ≥ 2 , it gives each training sample different importance values when calculating β. This method ensures that every hidden 

layer has its preference for a particular subset of hard-to-classify training samples. 
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And the normalization can be done by: 

 

 i = 

x i − μ√ 

σ 2 + ε
(10) 

After we have normalized the inputs, we can do scaling and 

hifting to increase the approximation ability of the network: 

 i = γ ̂ x i + α (11) 

Here γ and α are parameters that we need to set for the net- 

ork. In the back-propagation-based deep neural networks, these 

wo parameters are learned by the back-propagation which are 

imilar to the hidden weights. However, we treat γ and α as hy- 

erparameters for the edRVFL network. The validation set is used 

o help us find the best configuration of these two hyperparame- 

ers. 

. Ensemble deep random vector functional link networks 

ith weighting & pruning 

In this section, we propose two improved variants of edRVFL 

etwork called WedRVFL and PedRVFL in Section 4.1 and 

ection 4.2 . In Section 4.3 , their combination WPedRVFL is pre- 

ented. 

.1. Weighted ensemble deep random vector functional link network 

Weighting [41] is a widely used method in boosting ensemble 

earning and can make each classifier focus its preference on a par- 

icular set of samples. Therefore, we propose our own weighting 

ethods in this paper. In our Weighted Ensemble Deep Random 

ector Functional Link Network (WedRVFL), we apply weighting by 

reating each hidden layer as an independent classifier. The sam- 

les which are hard to predict will be given higher weights in the 

ext classifier. The typical structure of the WedRVFL network is 

hown in Fig. 4 . 

The generation step for the WedRVFL is exactly the same as 

he basic edRVFL using (5) (6) . Moreover, the way of calculating the 

utput weights β1 of the first hidden layer is also based on (3) and 

4) (Ridge regression is chosen here). Suppose there are m train- 

ng samples, after finishing the training for the first layer, some 

f these samples are predicted correctly while others are assigned 

rong labels in this layer’s classification. Denote these two groups 

f samples as S r and S w 

, respectively. And let the size of S r and S w 

o be n r and n w 

. Then we can have: 

 r + n w 

= m (12) 

or these samples in set S w 

, which means they are predicted 

rongly in the current layer, we should give them a higher impor- 

ance value in the next layer. On the other hand, for these samples 
4 
hich have correct classification, their importance value should be 

ecreased in the next classifier. 

In the first hidden layer, there is no weighting scheme for dif- 

erent samples. However, we still can treat this situation as that 

ll the training samples are sharing the same weight 1. From the 

econd hidden layer, we give the samples in set S r weight ω r and 

amples in set S w 

weight ω w 

. Since we know that ω r should be

ess than 1 and a positive value. The range of ω r is (0,1] ( ω r = 1

f all the samples are predicted correctly in the last layer). Recall 

hat when all the samples are sharing the same weight 1, the sum 

f these weights is equal to the size of the training set m . For nu-

erical stability, we should follow the same rule in our weighting 

cheme. Therefore, we can obtain the following equation: 

 r × ω r + n w 

× ω w 

= m (13) 

So that the weight ω w 

for set S w 

can be expressed by ω r as: 

 w 

= 

m − n r × ω r 

n w 

(14) 

It is worth mentioning that although we have two different 

eights for S r and S w 

, we only need to set one hyperparameter 

 r during the experiments. The validation set can be used to find 

he best setting for this hyperparameter. 

After getting the value of ω w 

, we can create the weight matrix 

 l , where W l ∈ R 

m ×1 and l ≥ 2 (weighting scheme starts from the 

econd hidden layer). The i th value in W l represents the weight we 

ive to the i th training sample (either ω r or ω w 

). Thus, when l ≥ 2 ,

3) and (4) will turn into new forms: 

rimal Space: βW 

l = ( D 

T W 

∗
l D + λI ) −1 D 

T W 

∗
l Y (15) 

ual Space: βW 

l = D 

T ( W 

∗
l DD 

T + λI ) −1 W 

∗
l Y (16) 

here W l 
∗ = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

W 

(1 ) 
l 

0 · · · 0 

0 W 

(2 ) 
l 

· · · 0 

. 

. 

. 
. 
. 
. 

. . . 
. 
. 
. 

0 0 · · · W 

(m ) 
l 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, which is the (m × m ) 

iagonal form of W l . 

From the above, we know that the training samples which are 

ifficult to train will be given higher importance values when cal- 

ulating the loss in the next layer. This method ensures that for 

ach training sample, whether it is hard to train or not, there will 

xist some corresponding layers that are good at predicting such 

amples. Hence, every sample may have been predicted correctly 

n some layers. Intuitively, the wrong prediction of WedRVFL can 

e less than the normal edRVFL after ensemble aggregation. This 

laim is supported by our empirical simulation results in the ex- 

erimental part. 
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Fig. 5. The structure of PedRVFL network. It chooses to cut off some inferior neurons starting from the first hidden layer. Here h 1 ,n , h 2 , 1 , and h l−1 , 2 are identified as inferior 

ones and will be removed. 
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Algorithm 1: WPedRVFL. 

Input : A set of training samples X ∈ R 

m ×d . 

1 for Every Hidden Layer l do 

2 Initialize the hidden weights. 

3 Do re-normalization and generate the hidden features 

using (11), (5) and (6). 

4 Weighting: Get the optimal output weights βW 

l 
by (15) 

and (16). When l = 1 , all the samples share the same 

weight 1. 

5 Predict the labels of the training samples. 

6 Weighting: Calculate the weight ω w 

for the wrong 

predicted samples based on the ω r we set by (14). 

7 Pruning: Obtain the importance value θ for each hidden 

nodes using (17). 

8 Pruning: Cut off a number of the inferior neurons 

according to the pruning rate p we set. 

9 end 

10 Combine all the predictions from every hidden layer using 

ensemble methods. 

Output : Hidden weights, the final prediction of the training 

samples, and the output weights βW 

l 
of every 

hidden layer. 

r

e

e

t

b

b

b

l

4

s

p

n

o

h

l

a

N

S

p

.2. Pruning based ensemble deep random vector functional link 

etwork 

The pruning method is widely used in today’s neural networks. 

t was proposed to improve the efficiency of the neural network 

odels when facing a limited computational budget. However, we 

pply the pruning method in our model for a completely differ- 

nt reason. Since the weights between hidden layers in our neural 

etwork are randomly generated and kept fixed, we believe some 

nferior features will be created and propagated to deeper layers. 

ith the layer number increasing, the accuracy of a single layer’s 

rediction will slightly go down. Hence, we decide to cut off some 

nferior hidden neurons to prevent them from participating in the 

eneration of the deeper hidden layers. The structure of PedRVFL 

s shown in Fig. 5 . 

For deciding which neurons should be cut off, [34] proposed 

 pruning method based on the sensitivity calculation. Besides, 

enalty-term methods are also widely used by researchers [42,43] . 

n recent days, some new pruning schemes targeted on deep neu- 

al networks have been investigated [36,37] . In this paper, we set 

 criterion based on the output weights which also belongs to the 

ensitivity methods. For each hidden neuron h l,n in layer l, it has k 

orresponding weights in the βl where k refers to the number of 

lasses. Let these weights be a l,n, 1 , a l,n, 2 . . . a l,n,k , and the absolute 

alue for them represent the importance for this neuron to dif- 

erent classes. Therefore, we should use the sum of these values to 

valuate how much is this hidden neuron contributed to the whole 

rediction: 

l,n = 

k ∑ 

i =1 

| a l,n,i | (17) 

epending on the pruning rate we set, hidden neurons with the 

owest values of θ are pruned. It is worth mentioning that by ap- 

lying the pruning method, our neural network will have fewer 

idden neurons. That means the complexity of the framework is 

lso reduced. However, according to the experimental results, this 

odel turns out to have better performance on multiple tasks. 

.3. Weighting and pruning based ensemble deep random vector 

unctional link network 

Weighting and Pruning based Ensemble Deep Random Vec- 

or Functional Link Network (WPedRVFL) is a combination of the 

bove two models. It has both advantages of WedRVFL and Pe- 

RVFL. The structure of this neural network is shown in Fig. 6 . 

To better illustrate the training procedure of the WPedRVFL, we 

ummarize the steps in Algorithm 1 . 
5 
It is also worth highlighting that a BP-trained network needs to 

e-train all the parameters in the previously trained hidden layers 

very time if we set different number of the hidden layers. How- 

ver, in our edRVFL based neural networks, we only need to train 

he model once with the maximum permitted hidden layer num- 

er. Since there is no need for training the hidden weights and 

iases in edRVFL based neural networks, results of different num- 

ers of hidden layers can be obtained by eliminating the last few 

ayers’ predictions in the final output. 

.4. Justification for choosing tabular datasets 

Deep neural networks show great performance in diverse areas 

uch as image classification, object detection, and natural language 

rocessing. However, the concept of the neural network is not 

ew. The shallow neural networks also reach good performance 

n UCI tabular datasets. On the contrary, most deep networks may 

ave poor results on the tabular data because of over-fitting prob- 

ems [44] . We believe the advantages of deep neural networks 

re brought by their specific structures, such as the Convolutional 

eural Network (CNN) block for image-related tasks and the Long 

hort-Term Memory (LSTM) for text-related datasets. Since our 

roposed models are randomized neural networks that do not have 
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Fig. 6. The structure of WPedRVFL network. It combines the weighting and the pruning methods to achieve better performance. 

Table 1 

Datasets used in this work. 

Dataset #Patterns #Features #Classes 

abalone 4177 9 3 

adult 48,842 15 2 

arrhythmia 452 263 13 

bank 4521 17 2 

cardio-10 2126 22 10 

cardio-3 2126 22 3 

chess-krvkp 3196 37 2 

congressional-voting 435 17 2 

contrac 1473 10 3 

glass 214 10 6 

letter 20,000 17 26 

molec-biol-splice 3190 61 3 

monks-3 554 7 2 

musk-2 6598 167 2 

oocytes_trisopterus_states_5b 912 26 2 

pendigits 10,992 17 10 

spambase 4601 58 2 

statlog-image 2310 19 7 

statlog-landsat 6435 37 6 

statlog-shuttle 58,000 10 7 

wall-following 5456 25 4 

waveform 5000 22 3 

waveform-noise 5000 41 3 

wine-quality-white 4898 12 7 

∗ We name these datasets the same as in [44] . 
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Table 2 

Hyperparameters considered for edRVFL based methods. 

Hyperparameter Considered values 

Regularization parameter λ λ belongs to 2 x , x ∈ [ −12 , 12] 

Number of hidden neurons n [20,1000] 

Maximum number of hidden 

layers l max 

10 

γ in batch normalization [0.5,2] 

α in batch normalization [–2,2] 

Weight ω r for the correctly 

predicted samples 

(0,1], 1 means there is no 

weighting in the network 

Pruning Rate p [0,1), 0 means there is no pruning 

in the network 

e

m

l

 

1

1

1

1

1

normalization proposed in this work. 
hese specific feature extraction modules, we only investigate their 

erformance on UCI tabular datasets. Therefore, we set the limita- 

ion of tabular data classification in this research. However, once 

eatures are extracted by CNN or LSTM, edRVFL can be employed 

or the classification of the extracted tabular features [45] . 

. Experiments 

.1. Datasets 

In this paper, we use 24 classification datasets from the UCI 

achine learning repository [46] to compare the performance of 

ur methods with other state-of-the-art networks. These datasets 

re from diverse application areas like physics, geology, and biol- 

gy and usually serve as the benchmarks for the classification task 

44,46] . We follow the same data pre-processing and partitions as 

sed in [44] . The details of these datasets are shown in Table 1 . 

.2. Other methods used for comparison 

For evaluating the performance of our proposed edRVFL vari- 

nts, we compare them with other 4 deep learning models, 4 

andomized neural networks, 1 random forest, and the original 
6 
dRVFL network without re-normalization in this work. These 

ethods (1–10), as well as our new proposed methods (11–14), are 

isted as follows: 

1) Self Normalizing Neural Network (SNN): Self normalizing net- 

works with SELUs activation function and ranks the best among 

the FNNs [44] . 

2) MSRAinit (MS): The deep neural network with Microsoft weight 

initialization [47] . 

3) Highway (HW): Highway networks [48] . 

4) ResNet (ResNet): Residual networks adapted to FNNs using 

residual blocks with 2 or 3 layers [49] . 

5) Stochastic configuration networks (SCN): The randomized neu- 

ral network generated incrementally by stochastic configura- 

tion [50] . 

6) Broad learning system (BLS): The RVFL based model with a 

complete paradigm shift in discriminative learning [51] . 

7) Type-2 fuzzy BL S (FBL S): The fuzzy BL S learning algorithm [52] .

8) Heterogeneous oblique random forest (obRaF(H)): The hetero- 

geneous version of the oblique random forest [53] . 

9) Hierarchical ELM (H-ELM): Hierarchical Extreme Learning Ma- 

chine for multi-layer perception [54] . 

0) edRVFL_O: The original ensemble deep random vector func- 

tional link neural network without re-normalization [27] . 

1) edRVFL_N: The new edRVFL network with re-normalization 

that proposed in this work. 

2) PedRVFL: Pruning based edRVFL with re-normalization pro- 

posed in this work. 

3) WedRVFL: Weighting based edRVFL with re-normalization pro- 

posed in this work. 

4) WPedRVFL: The combination of PedRVFL and WedRVFL with re- 
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Table 3 

Comparison of Accuracy(%) on 24 UCI Datasets. 

Dataset SNN [44] MS [47] HW [48] Resnet [49] SCN [50] BLS [51] FBLS [52] obRaF(H) [53] H-ELM [54] edRVFL_O [27] edRVFL_N 

† WedRVFL † PedRVFL † WPedRVFL † 

abalone 66.57 62.84 64.27 64.66 64.00 60.06 64.17 65.93 63.77 65.83 ±0.36 66.13 ±0.32 66.87 ±0.22 67.05 ±0.01 66.89 ±0.15 

adult 84.76 84.87 84.53 84.84 85.01 85.15 85.61 85.21 85.05 85.21 ±0.15 85.26 ±0.15 85.30 ±0.13 85.42 ±0.14 85.46 ±0.14 

arrhythmia 65.49 63.72 62.83 64.60 44.91 62.23 68.40 72.33 72.12 69.06 ±0.69 72.43 ±0.66 73.22 ±0.32 73.66 ±0.39 73.88 ±0.36 

bank 89.03 88.76 88.85 87.96 88.83 88.19 88.69 89.07 89.20 89.77 ±0.11 90.13 ±0.11 90.92 ±0.11 90.19 ±0.11 91.14 ±0.01 

cardio-10 83.99 84.18 84.56 81.73 81.26 83.47 82.15 82.37 82.39 82.37 ±0.47 83.24 ±0.42 84.56 ±0.52 84.08 ±0.26 85.30 ±0.26 

cardio-3 91.53 89.64 91.71 90.21 91.57 91.33 92.87 93.47 90.68 92.71 ±0.25 93.42 ±0.25 93.47 ±0.21 93.55 ±0.01 94.20 ±0.18 

chess-krvkp 98.37 99.00 99.00 99.12 97.77 98.75 98.68 99.15 99.00 99.08 ±0.15 99.21 ±0.17 99.36 ±0.01 99.33 ±0.01 99.47 ±0.01 

congressional-voting 61.47 60.55 58.72 59.63 60.09 59.40 57.79 61.19 61.24 61.01 ±0.28 61.98 ±0.29 61.91 ±0.23 61.93 ±0.27 62.16 ±0.25 

contrac 51.90 51.36 50.54 51.36 47.75 41.78 49.38 51.97 54.08 51.33 ±0.50 54.04 ±0.49 55.53 ±0.51 54.94 ±0.37 55.68 ±0.19 

glass 73.58 60.38 64.15 64.15 66.79 61.23 65.66 73.95 68.87 65.13 ±0.88 70.73 ±0.83 71.75 ±0.67 71.19 ±0.47 72.35 ±0.87 

letter 97.26 97.12 89.84 97.62 86.11 93.99 92.75 97.39 93.15 97.43 ±0.23 97.54 ±0.22 97.77 ±0.15 97.66 ±0.07 97.73 ±0.11 

molec-biol-splice 83.72 84.82 88.33 85.57 75.75 74.84 77.24 86.76 82.40 84.01 ±0.38 84.31 ±0.39 84.07 ±0.50 85.22 ±0.22 85.69 ±0.57 

monks-3 60.42 74.54 58.80 58.33 69.42 52.37 59.95 55.84 78.70 55.02 ±2.02 75.48 ±2.04 80.29 ±1.93 81.98 ±1.12 82.35 ±1.57 

musk-2 98.03 99.45 99.15 99.64 96.71 98.77 97.12 98.03 98.32 98.54 ±0.25 99.33 ±0.26 99.54 ±0.19 99.28 ±0.01 99.74 ±0.01 

oocytes_trisopterus_states_5b 93.42 94.30 93.42 89.47 89.91 57.46 83.33 93.75 92.06 93.91 ±0.20 93.97 ±0.20 94.19 ±0.18 95.20 ±0.23 95.21 ±0.30 

pendigits 97.06 97.14 96.71 97.08 97.05 97.45 98.44 97.14 97.41 97.49 ±0.12 97.97 ±0.13 98.05 ±0.15 97.89 ±0.11 98.20 ±0.11 

spambase 93.00 94.61 94.35 94.61 91.71 92.15 90.60 94.87 92.67 93.83 ±0.16 94.08 ±0.17 94.11 ±0.23 94.18 ±0.01 94.72 ±0.14 

statlog_image 95.49 97.57 95.84 95.84 94.97 89.90 94.73 97.38 95.28 96.82 ±0.21 97.05 ±0.17 97.56 ±0.14 97.44 ±0.18 97.40 ±0.13 

statlog_landsat 91.00 90.75 91.10 90.55 90.25 83.47 86.95 91.79 91.22 91.15 ±0.51 91.64 ±0.51 92.19 ±0.25 92.15 ±0.17 91.85 ±0.12 

statlog_shuttle 99.90 99.83 99.77 99.92 99.79 96.82 99.15 99.90 99.88 99.91 ±0.02 99.92 ±0.02 99.93 ±0.01 99.93 ±0.01 99.94 ±0.01 

wall-following 90.98 90.76 92.30 90.12 85.41 89.53 83.84 90.64 89.46 90.28 ±0.43 90.79 ±0.45 91.04 ±0.55 91.37 ±0.31 92.20 ±0.33 

waveform 84.80 83.12 83.20 83.60 84.76 83.48 80.86 86.28 86.16 85.95 ±0.11 85.97 ±0.11 86.59 ±0.01 86.83 ±0.01 86.97 ±0.12 

waveform-noise 86.08 83.28 86.96 85.84 83.70 82.44 84.66 86.76 86.08 85.68 ±0.14 86.17 ±0.11 86.92 ±0.01 86.98 ±0.15 87.13 ±0.13 

wine-quality-white 63.73 64.79 55.64 63.07 55.96 55.15 51.47 63.21 55.49 63.29 ±0.40 63.70 ±0.39 64.76 ±0.38 64.22 ±0.41 65.66 ±0.31 

Mean Accuracy 83.40 83.22 82.27 82.48 80.40 78.31 80.60 83.93 83.53 83.12 ±0.38 84.77 ±0.37 85.41 ±0.32 85.49 ±0.21 85.89 ±0.27 

Ave. Rank 8.23 8.42 8.88 9.06 11.54 11.92 10.92 6.27 8.67 7.75 5.31 3.31 3.15 1.58 

∗ Methods with † are proposed in this paper with re-normalization. 
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Table 4 

Statistical comparison between WPedRVFL and each of the other networks. 

Methods Ave. Rank p-value 

WPedRVFL 1.58 

PedRVFL 3.15 4.2e-4 

WedRVFL ∗ 3.31 1.6e-4 

edRVFL_N 

∗ 5.31 1.8e-5 

obRaF(H) [53] 6.27 1.1e-3 

edRVFL_O 

∗ [27] 7.75 1.8e-5 

SNN 

∗ [44] 8.23 7.1e-5 

MS ∗ [47] 8.42 2.6e-5 

H-ELM 

∗ [54] 8.67 1.8e-5 

HW 

∗ [48] 8.88 1.3e-4 

Resnet ∗ [49] 9.06 1.8e-5 

FBLS [52] 10.92 2.6e-5 

SCN 

∗ [50] 11.54 1.8e-5 

BLS ∗ [51] 11.92 1.8e-5 

∗ Lower rank reflects better performance. The p− value is obtained from the paired 

Wilcoxon test. Methods that are significantly worse than the best method are 

marked with “∗”. 
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.3. Hyperparameter settings 

For these FNN methods, we use the same hyperparameter set- 

ings as in [44] . For the other RVFL based randomized neural net- 

orks, We use the official codes provided by their authors and 

et the ranges of the hyperparameters as suggested in their orig- 

nal papers. Moreover, for the edRVFL based methods, the regu- 

arization parameter λ is chosen from range 2 x , where x belongs 

o [ −12 , 12] . The hidden neuron number n of these methods can

e tuned within [20,10 0 0]. The maximum number of the hidden 

ayers l max of the edRVFL based methods is set to 10. The two 

ey hyperparameters γ and α of the re-normalization are tuned 

mong [0.5,2] and [ −2 , 2] , respectively. The WedRVFL can choose 

he best weight ω r in (0,1] based on the validation accuracy. Also, 

or pruning-based methods, the pruning rate p is tuned among 

0,1). The details about these settings are summarized in Table 2 . 

During the tuning process, we do 4-fold cross-validation to find 

he best parameter settings. We separate the whole dataset into 

raining and testing sets 4 times. In each fold, 25 % of the training

ata are used as the validation set, and we select the hyperparam- 

ter configuration with the best average validation accuracy. Then, 

e use the whole training data to re-train the models before feed- 

ng the test data into them. The testing accuracy is obtained based 

n the correct predictions of the networks for the test data. At last, 

e report the mean value of the 4 testing accuracy as the final 

lassification result for the current dataset. 

In order to test the robustness of our new methods, for each 

dRVFL based network, we run the above experiment 10 times 

ith different randomized hidden features. Then, we report the 

ean value and the standard deviation of these 10 outcomes in 

able 3 . 

.4. Experimental results 

The performance of all the 14 methods on 24 UCI datasets is 

hown in Table 3 . 

We take the results of SNN, MS, HW, and Resnet directly from 

44] . The rankings of each classifier are used to compare their per- 

ormance on all the datasets. For the ranking method, the best 

lassifier based on the classification accuracy of one dataset is 

anked 1, the second is ranked 2, and so on. Then we use the av-

rage rank of all 24 datasets to show the performance of the clas- 

ifiers. The best results for each dataset, as well as the best global 

ank and accuracy, are given in bold. 

Wilcoxon signed-rank test is a non-parametric statistical hy- 

othesis test used to compare the performance of two related mea- 
8 
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Fig. 7. The testing accuracy of WPedRVFL network with different weight ω w on 4 tabular datasets. 

Table 6 

Standard deviation comparison between edRVFL based methods. 

Methods Ave. std 

PedRVFL 0.21 

WPedRVFL 0.27 

WedRVFL ∗ 0.32 

edRVFL_N 

∗ 0.37 

edRVFL_O 

∗ [27] 0.38 
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urements on multiple tasks [55] . In this paper, we employ it to do

he pairwise comparison on the selected two methods to investi- 

ate the statistical difference between them. We first compare all 

he other 11 methods’ performance with WPedRVFL. And the re- 

ults are shown in Table 4 . From the table, we can see that all

eading positions are occupied by edRVFL based methods (except 

eterogeneous oblique random forest). The top-ranked method is 

PedRVFL and followed by WedRVFL. PedRVFL takes the third 

lace, and edRVFL_N, obRaF(H), edRVFL_O are following behind. 

y performing the statistical comparison, we know that the WPe- 

RVFL significantly outperforms all the other competitors. 
9 
We also use the Wilcoxon test to do the pairwise comparison 

etween all the 14 classifiers in this paper. The results are shown 

n Table 5 . If there is no statistically significant difference between 

he methods in the corresponding row and column, the cells where 

hey intersect will be empty. If the symbol in the cell is ‘+’, that 

eans the method in the corresponding row is statistically better 

han that in the column. On the contrary, the symbol ‘-’ indicates 

hat the method in the corresponding row is statistically worse. 

Then, we pay attention to the standard deviation of these 

dRVFL based methods. We summarize their performance in 

able 6 . From it, we can learn that our new methods WedRVFL, 

edRVFL, and WPedRVFL are more robust than the basic edRVFL_O 

nd edRVFL_N. Among them, PedRVFL has the smallest std value. 

ince WPedRVFL is the combination of WedRVFL and PedRVFL, so 

e believe this is the reason why its std value is between We- 

RVFL and PedRVFL. 

From all the Tables above, we know that our new proposed 

ethods, edRVFL_N, WedRVFL, PedRVFL, and WPedRVFL, show 

reat performance on 24 UCI classification tasks. Among them, 

PedRVFL takes great advantage both in the average rank and 

ean accuracy compared to all other methods. It significantly out- 

erforms other FNNs like Resnet, HW, MS, and SNN. And it also has 
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Fig. 8. The testing accuracy of WPedRVFL network with different pruning rate p on 4 tabular datasets. 
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Table 7 

Hyperparameters considered in the controlled experiments. 

Hyperparameter Considered values 

Regularization parameter λ 1 

Number of hidden neurons n 500 

Number of hidden layers l 3 

γ in batch normalization 1 

α in batch normalization 0 

Weight ω r for the correctly 

predicted samples 

0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 or 1 (when 

testing different pruning rates) 

Pruning Rate p 0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , or 0 (when 

testing different weights) 

ω  

w

s

t

c

v

d

o

 significant statistical difference from other randomized neural 

etworks. Moreover, the standard deviation of our new methods 

re smaller than the original edRVFL networks. Therefore, WPe- 

RVFL can be considered as a highly competitive classifier on tab- 

lar classification tasks. 

.5. Effects of the key hyperparameters: Weight ω r and pruning rate 

p

In this part, we conduct more experiments to discover the ef- 

ects of the key hyperparmeters. Here we select 4 datasets: ar- 

hythmia, congressional_voting, statlog_image, and waveform-noise 

rom the previous section to show how the testing accuracy 

hanges with different settings of ω r and p. 

We use the WPedRVFL model to perform these tests. During the 

xperiments, except for ω r and p, all the other hyperparameters 

re fixed to control variables. Moreover, when we are testing the 

nfluence of weight ω r , the pruning rate p is also set to 0 (no prun-

ng) to complete the controlled experiment. On the other hand, the 

eight ω r is set to 1 (no weighting) when the pruning rate p is in-

estigated. We give the details of these configurations in Table 7 . 
10 
We first give WPedRVFL’s performance with different weights 

 r on 4 datasets in Fig. 7 . As we can see from Fig. 7 . The

eighting scheme is useful in most cases. For arrhythmia, congres- 

ional_voting, and statlog_image datasets, setting the weight ω r for 

he wrongly predicted samples generally increases the testing ac- 

uracy of the model. But which weight ω r is the most suitable one 

aries from case to case. Therefore, we need to use the validation 

ata to find the best configuration of the specific dataset. On the 

ther hand, there is an exception that the weighting scheme is 
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Table 8 

Training Time comparisons between SNN and WPedRVFL on spambase dataset (s). 

Dataset SNN WPedRVFL 

arrhythmia 4.4731 0.6504 

contrac 2.8705 0.4898 

musk_2 7.0369 0.9814 

spambase 8.6586 1.3752 

waveform 6.7168 0.8336 

∗ Experiment environment: Intel(R) Xeon(R) CPU E5-2620; nVIDIA GeForce GTX- 

1080. 

Table 9 

Performace with different network settings (%). 

Dataset 20 Best 20 Worst All After pruning 

only only the worst 20 

abalone 65.90 64.37 67.05 67.34 

bank 89.03 88.76 88.85 88.85 

glass 73.58 58.49 73.58 73.61 

monks-3 61.11 59.49 58.80 62.96 

oocytes_trisopterus_states_5b 91.23 88.60 92.54 93.34 
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armful to the classification. For the waveform-noise dataset, the 

esting accuracy keeps decreasing when we set lower and lower 

alues for ω r . 

In addition to that, we present WPedRVFL’s performance of 

hanging the pruning rate p in Fig. 8 . For all 4 tabular datasets, 

he pruning method can always help us get better accuracy. The 

our line charts show a similar pattern: At the beginning, the test- 

ng accuracy increases with the pruning rate. After reaching a peak 

alue, the accuracy drops and becomes even worse than the initial 

alue. So same as the weight ω r , we need to set different pruning

ates p for different cases using the validation set. 

.6. Training time comparison 

Another advantage of randomized neural networks is their 

raining time. Since they do not use back-propagation to train the 

idden parameters, the training time of these RVFL variants can be 

uch less than the deep learning models. 

In this section, we select two representatives from two groups 

f the classifiers. Among the back-propagation based deep neural 

etworks, we choose SNN since it has the highest accuracy on 

he benchmark datasets. Meanwhile, the most competitive classi- 

cation model WPedRVFL is selected from the randomized neural 

etworks. We present their training time (without hyperparameter 

uning) on 5 selected datasets in Table 8 . 

.7. Inferior features 

Randomization has the potential to generate inferior features, 

nd the claim can be treated as a general one. To demonstrate 

his claim, we conducted the following experiments. Here we use 

he single-hidden-layer RVFL network (without direct-link) as the 

ackbone (No re-normalization). All the hyperparameters are fixed 

uring these experiments (Number of the hidden neurons: 100, 

:1, Pruning rate: 0.2 (cutting off 20 worst hidden neurons)). We 

eport the classification accuracy on 5 datasets (1-fold) with four 

ifferent settings -20 Best (accuracy with only 20 best hidden neu- 

ons), 20 Worst (accuracy with only 20 worst hidden neurons), 

riginal (network without pruning), and Pruning (network after 

emoving the 20 worst neurons). We present the ACC (%) in the 

able 9 . 
11 
. Conclusion 

In this paper, we first introduce batch normalization to the 

dRVFL network for re-normalizing the hidden features. Then, we 

ropose a weighted version for edRVFL network. A weight ma- 

rix is used to allocate different weights to different samples. The 

eight matrix changes according to the samples’ predictions in 

he previous layers. This method can make sure that each hidden 

ayer in the network has different biases for each sample and in- 

rease the ensemble classification accuracy. Moreover, we propose 

nother new variant of edRVFL with the pruning method. Instead 

f pruning neurons after the training process, we cut off the infe- 

ior neurons according to their importance for classification when 

e are training the model. This method can prevent the propa- 

ation of detrimental features and increase the classification accu- 

acy in deeper layers. Then, the combination of these two meth- 

ds called Weighting and Pruning based Ensemble Deep Random 

ector Functional Link Network is proposed. It takes advantage of 

oth WedRVFL and PedRVFL and performs better overall. For eval- 

ating the performance of our new proposed methods, we com- 

are them, with other 10 classifiers on 24 UCI benchmark datasets. 

he experimental results show the superiority of our new methods 

n tabular classification tasks. In particular, WPedRVFL is the most 

ompetitive one among all the 14 classifiers. In addition to that, 

e investigate the effects of setting different weight and pruning 

ate values. These results illustrate how the weighting and prun- 

ng schemes can help to improve the classification results. At last, 

e compare the training time between our proposed model with a 

ack-propagation based deep neural network. In our future work, 

e will develop methods to select only a few output layers with 

he highest classification accuracy to perform the final classifica- 

ion. 
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