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Geometrically nonlinear vibration analysis of eccentrically
stiffened porous functionally graded annular spherical
shell segments
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ABSTRACT
This article investigates nonlinear free vibrations of porous functionally
graded (FG) annular spherical shell segments surrounded by elastic
medium and reinforced by circumferential stiffeners. Porous FG material
contains distributed even and un-even porosities and is modeled based on
refined power–law function. The governing equations of stiffened porous
annular spherical shell segments have been derived according to thin shell
theory with the geometrical nonlinear in von Karman–Donnell sense and
the smeared stiffeners method. An analytical trend has been provided for
solving the nonlinear governing equations. Obtained results demonstrate
the significance of porosity distribution, geometric nonlinearity, foundation
factors, stiffeners and curvature radius on vibration characteristics of por-
ous FG annular spherical shell segments.
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1. Introduction

Functionally graded materials appropriately incorporate the microstructure and functions and
possess preferable mechanical properties compared to usual multi-layered composites leading to
their usage in promising fields of materials science (Azimi et al. 2017; Mirjavadi et al. 2017;
Azimi et al. 2018; Mirjavadi, Afshari, Barati, et al. 2018; Al-Maliki, Faleh, and Alasadi 2019;
Ebrahimi, Dabbagh, and Rastgoo 2019; Mirjavadi, Forsat, Hamouda, et al. 2019; Mirzaei 2019).
Commonly, a functional gradient (FG) material is constructed from metallic and ceramic constit-
uents (Abdelaziz et al. 2017; Mahmoudi et al. 2019; Wang et al. 2019; Wu et al. 2019; Trinh and
Kim 2019a, 2019b). Material imperfections in a FG material are obvious during the production
period, leading to dispersion of pores within the material texture (Wattanasakulpong et al. 2012;
Li, Wu, Chen, Cheng, et al. 2018; Ahmed, Fenjan, and Faleh 2019; Hamad, Khalaf, and Faleh
2019; Ahmed et al. 2020). Furthermore, the shapes and distributions of porosities are controllable
via the production methods. For simulating the influences of the porosities on the mechanical
characteristics of an FG material, two kinds of dispersion for porosities may be introduced,
namely, even (uniform) dispersion and un-even dispersion, and a refined power–law function can
be used for describing the material variation. According to the refined power–law function, many
researchers systematically examined the stability and vibrations of porous FG structural
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components at different scales (Wu et al. 2018; Addou et al. 2019; Liu et al. 2019; Trinh, Nguyen,
and Kim 2019). These investigations have reported that porosities play a remarkable role in ana-
lyzing the mechanical behaviors of beam and plate structures. Although there were many articles
on the mechanical behaviors of porous FG structures, no one study the nonlinear vibration
behavior of porous FG annular spherical shell segments.

The annular spherical shell is broadly applied in several engineering fields including civil,
mechanical, aerospace engineering. The annular spherical shell and annular spherical segment are
two particular shapes of the spherical shell. Due to significant practical application of such struc-
tures, some researchers studied their mechanical behaviors via different approaches. For example,
Duc, Quang, and Anh (2017) studied vibrational behavior of FG spherical shells rested on elastic
substrate. Effects of elastic boundary conditions on free vibration behavior of thin spherical shells
have been examined by Xie, Chen, and Li (2017). Based on an analytical solution, Duc et al.
(2019) examined nonlinear dynamic behaviors of annular spherical shells made of nano-compos-
ite materials. Also, Li, Wu, et al. (2019) provided a semi-analytical approach for examining linear
vibration behavior of annular spherical shells under different edge conditions. Recently, Gao et al.
(2020) examined free vibrations of functionally graded spherical shell based on Ritz solution.

Recently, several researchers have focused on the static and dynamical characteristics of eccen-
trically stiffened plates and shells since such structural components are usually fortified with
employment of stiffening elements to introduce the benefits of improved load-carrying capabil-
ities with relatively low extra weight penalties. Furthermore, eccentrically stiffened plates and
shells are main structures in engineering scheme of missile, aircraft and aerospace industries
(Ninh and Bich 2016; Su et al. 2019). Despite the evident significance in practical applications, it
is realized from the literature that studies on vibrations of annular spherical segment made por-
ous FG material and reinforced by arrays of stiffeners are comparatively scarce.

Within this article, an investigation of nonlinear vibration behaviors of stiffened annular spherical
shell segments constructed from porous FG materials has been presented. Porous FG material contains
distributed even and un-even porosities and is modeled based on refined power–law function. The
governing equations of stiffened porous annular spherical shell segments have been derived according
to thin shell theory with the geometrical nonlinear in von Karman–Donnell sense and the smeared
stiffeners method. Based on smeared stiffeners method, the force and moment resultants can be estab-
lished as functions of stiffeners geometries and spacing (Hao et al. 2014). An analytical trend has been
provided for solving the nonlinear governing equations. Obtained results demonstrate the significance
of porosity distribution, geometric nonlinearity, foundation factors, stiffeners and curvature radius on
vibration characteristics of porous FG annular spherical shell segments.

2. Material properties for porous FG annular spherical shell

Pores within the material texture may affect both elastic modulus and mass density of FGMs.
Based upon refined power–law function, one can introduce the elastic modulus (E) and mass
density (q) of FG materials as functions of porosity volume fraction (n) and gradient exponent
(p) as (Ahmed, Fenjan, and Faleh 2019):

Even porosity distribution:

EðzÞ ¼ Ec � Emð Þ z
h
þ 1
2

� �p

þ Em � n
2

Ec þ Emð Þ (1)

qðzÞ ¼ qc � qmð Þ z
h
þ 1
2

� �p

þ qm � n
2

qc þ qmð Þ (2)

Un-even porosity distribution:
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EðzÞ ¼ Ec � Emð Þ z
h
þ 1
2

� �p

þ Em � n
2

Ec þ Emð Þ
�
1 � 2jzj

h

�
(3)

qðzÞ ¼ qc � qmð Þ z
h
þ 1
2

� �p

þ qm � n
2

qc þ qmð Þ
�
1 � 2jzj

h

�
(4)

In above relations, subscripts c and m respectively denote the material properties of ceramic and
metallic ingredients.

3. Formulation for annular spherical shell segment

A porous FG annular spherical shell segment of thickness h has been depicted in Fig. 1 which
contains radial and circumferential stiffeners as shown in Fig. 2. Here, r is radius of the spherical
shell defined as a function of base radius (R) as:

r ¼ R sin/ (5)

where / is the meridional angle of the spherical shell. Also, considering the shallowness of the
spherical shell it must be stated that dr ¼ Rd/: Based on this shell assumption, the strain field
may be defined in below form (Barati and Zenkour 2019):

er
eh
crh

8<
:

9=
; ¼

e0r
e0h
c0rh

8<
:

9=
;� z

vr
vh
2vrh

8<
:

9=
; (6)

in which

e0r ¼
@u
@r

þ 1
2
ð@w
@r

Þ2 � w
R
,

e0h ¼
1
r

@v
@h

þ u

� �
þ 1
2r2

@w
@h

� �2

� w
R
,

c0rh ¼
1
r
@u
@h

þ @v
@r

� v
r
þ 1

r
@w
@r

@w
@h

,

vr ¼
@2w
@r2

, vh ¼
1
r
@w
@r

þ 1
r2
@2w

@h2
, vrh ¼

1
r
@2w
@r@h

� 1
r2
@w
@h

(7)

Figure 1. Configuration of annular spherical shells.
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Above field contains (u, v, w) displacements in (/, h, z) directions. By using the classic shell assump-
tion and FG material, stress–strain relations can be summarized as (Ahmed, Fenjan, and Faleh 2019):

rr
rh
rrh

8<
:

9=
; ¼ EðzÞ

1� v2

1 v 0
v 1 0
0 0 ð1� vÞ=2

0
@

1
A er

eh
crh

8<
:

9=
; (8)

where ri (i¼ r, h, r h) are stress field components. The stresses leads to below resultants via inte-
grating Eq. (8) over shell thickness as:

Nr ¼ A11 þ EsAs1

s1

� �
@u
@r

þ 1
2

@w
@r

� �2

� w
R

" #
þ A12

1
r

@v
@h

þ u

� �
þ 1
2r2
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� �2

� w
R

" #

� ðB11 þ C1Þ @
2w
@r2

� B21
1
r
@w
@r

þ 1
r2
@2w

@h2

� � (9)
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þ 1
2
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@r

� �2

� w
R

" #
þ A22 þ EsAs2

s2

� �
1
r

@v
@h

þ u

� �
þ 1
2r2
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R

" #

� B12
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r
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� �
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(11)
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Figure 2. Geometry of the shell with stiffeners.
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Mrh ¼ B66
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� �
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in which Es is Young’s modulus of stiffeners; s1 nd s2 are spacing of stiffeners; As1 and As2 are
cross sections of stiffeners and

A11 ¼
ðh=2
�h=2

EðzÞ
1� v2

dz,A12 ¼
ðh=2
�h=2

EðzÞv
1� v2

dz,

A66 ¼
ðh=2
�h=2

EðzÞ
2ð1þ vÞ dz,B11 ¼

ðh=2
�h=2

EðzÞ
1� v2

zdz,

B12 ¼
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EðzÞv
1� v2

zdz,B66 ¼
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2ð1þ vÞ zdz,

D11 ¼
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EðzÞv
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z2dz,

D66 ¼
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EðzÞ
2ð1þ vÞ z

2dz:

(15)

Detailed expressions of (Aij, Bij, Dij) based on even porosity distribution have been presented in
Appendix and

s1 ¼ 2pr
nr

, s2 ¼ R
nh

arcsin
r1
R

� �
� arcsin

r0
R

� �� �

Is1 ¼
b1 h1ð Þ3
12

þ As1 z1ð Þ2, Is2 ¼
b2 h2ð Þ3
12

þ As2 z2ð Þ2

C1 ¼ EsAs1z1
s1

, C2 ¼ EsAs2z2
s2

z1 ¼ 0:5ðhþ h1Þ, z2 ¼ 0:5ðhþ h2Þ

(16)

Note that h1 and h2 are height of stiffeners; b1 and b2 are width of stiffeners. Also, nr and nh are
the number of stiffeners. Now, one can express the governing equations for an annular spherical
shell surrounded by elastic medium (Li, Wu, et al. 2019) with parameters kw, kp as (Duc et al.
2017):

@Nr

@r
þ 1

r
@Nrh

@h
þ 1

r
ðNr � NhÞ ¼ I0

@2u
@t2 (17)

@Nrh

@r
þ 1

r
@Nh

@h
þ 2

r
Nrh ¼ I0

@2v
@t2 (18)

@2Mr
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@Mr
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þ 2
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þ 1
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� 1

r
@Mh
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þ ðNr þ NhÞ

R

þ Nr
@2w
@r2

� 2Nrh
1
r2
@w
@h

� 1
r
@2w
@r@h

� �
þ Nh

1
r
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þ 1
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@2w
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� �

� kwwþ kP
@2w
@r2

þ 1
r
@w
@r

þ 1
r2
@2w

@h2

� �
¼ I0

@2w
@t2

(19)

where I0 ¼
Ð h=2
�h=2 qdz: By substituting Eqs. (9)–(14) into Eqs. (17) and (19), nonlinear governing

equations in terms of displacement components are expressed as follows:
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4. Solution procedure

Here, the solution of nonlinear vibration problem of porous FG annular spherical shell has been
provided. First, it must be stated that the edges of annular spherical shell are simply-supported
based on below conditions:

w ¼ Mr ¼ Nrh ¼ 0 at r ¼ r0
w ¼ Mh ¼ Nrh ¼ 0 at h ¼ 0,w

(23)

where r0 is the inner radius and w is the open angle of annular spherical shell. In general form,
the displacements of annular spherical shell may be assumed as:

u ¼
X1
m¼1

X1
n¼1

UmnðtÞ @HmðrÞ
@r

RnðhÞ (24)

v ¼
X1
m¼1

X1
n¼1

VmnðtÞHmðrÞ @RnðhÞ
@h

(25)

w ¼
X1
m¼1

X1
n¼1

WmnðtÞHmðrÞRnðhÞ (26)

where (Umn,Vmn,Wmn) are the displacements amplitudes and the functions Hm and Rn are the
test functions which are selected as (Duc, Quang, and Anh 2017):

HmðrÞ ¼ sin
mpðr � r0Þ
r1 � r0

, RnðhÞ ¼ sin
nph
w

� �
(27)

Introducing each governing equation as Pi (u, v, w)¼0 with (i¼ 1,2,3) and placing displacement
assumptions presented as Eqs. (24)–(26) into Pi results in below equations based on Galerkin’s
method (Fenjan et al. 2019; Khalaf, Fenjan, and Faleh 2019; Kunbar et al. 2019; Al-Maliki et al.
2020; Abdulrazzaq et al. 2020a; 2020b; Fenjan, Hamad, and Faleh 2020):ðr1

r0

ðw
0
P1

@HmðrÞ
@r

RnðhÞrdrdh ¼ 0 (28)

ðr1
r0

ðw
0
P2HmðrÞ @RnðhÞ

@h
rdrdh ¼ 0 (29)

ðr1
r0

ðw
0
P3HmðrÞRnðhÞrdrdh ¼ 0 (30)

Solving above integrals results in below equations in a simplified form neglecting in-plane inertias:

K11U þ K21V þ K31W þ G1W
2 ¼ 0 (31)

K12U þ K22V þ K32W þ G2W
2 ¼ 0 (32)

K13U þ K23V þ K33W þ G3W
2 þ G4W

3 þ n1UW þ n2VW þM €W ¼ 0 (33)

in which Kij are stiffness matrix components;M is mass matrix and Gi are nonlinear stiffness matrices.
Based on Eqs. (31)–(32) one can obtain U and V as functions ofW andW2 (Muhammad et al. 2019):

U ¼ UðW,W2Þ
V ¼ VðW,W2Þ (34)

Therefore, Eq. (33), with the aid of Eq. (34) can be reduced to below equation:
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€W þ T1

M
W þ T2

M
WjWj þ T3

M
W3 ¼ 0 (35)

for which

T1 ¼ K13
K21K32 � K22K31

K11K22 � K12K21
þ K33 þ K23

K12K31 � K11K32

K11K22 � K12K21

T2 ¼ þG3 þ K13
G2K21 � G1K22

K11K22 � K12K21
þ K23

G1K12 � G2K11

K11K22 � K12K21
þ n1

K21K32 � K22K31

K11K22 � K12K21
þ n2

K12K31 � K11K32

K11K22 � K12K21

T3 ¼ þG4 þ n1
G2K21 � G1K22

K11K22 � K12K21
þ n2

G1K12 � G2K11

K11K22 � K12K21

(36)

The solving of Eq.(35) can be done based on below approximation (Mirjavadi, Forsat, Hamouda,
et al. 2019):

WðtÞ ¼ ~W cos ðxNLtÞ (37)

So that xNL is vibration frequency and ~W is vibration amplitude. The frequency has been calcu-
lated based on the procedure provided by Mirjavadi, Forsat, Hamouda, et al. (2019). Also, some
normalized parameters can be introduced in this article such as:

X ¼ xNL10
3h2

ffiffiffiffiffiffiffiffiffi
qc
Ech

2

r
,Kw ¼ kwr04

D11
,Kp ¼

kpr02

D11
(38)

5. Results and discussions

In this study, the thickness of annular spherical shell has be assumed as h¼ 0.03 m. Porous FG mater-
ial has two constituents which their properties are provided in Table 1. However, for simplicity the
Poisson ratio is considered as constant v¼ 0.3. Based on above information, this section presents
obtained results for nonlinear vibration frequencies of porous FG annular spherical shell surrounded
by elastic medium. Porosity volume, open angle and stiffeners have great influence on nonlinear vibra-
tion behavior of annular spherical shells. In the following paragraphs, the frequency of spherical shell
is validated first and then new findings from the present study have been provided and discussed. For
all figures, the geometrical parameters of stiffeners are considered to be h1¼ 0.5 h, b1¼ 0.5 h.

Table 2 presents frequency validation of spherical shells made of FG material with those of Duc,
Quang, and Anh (2017). For the validation, various values of material gradient exponent (p¼ 0, 1, 5)
have been considered. Also, it is considered that R/h¼ 100. Obtained frequencies are the same as Duc,
Quang, and Anh (2017) which highlights the correctness of presented methodology. Also, Table 3
presents frequency validation of FG spherical shells with the article of Fadaee, Atashipour, and Hosseini-
Hashemi (2013) based on different values of curvature radius (R/a) at a fixed material exponent p¼ 1.

Effect of open angle (w) on the variation of nonlinear vibration frequency of FG annular
spherical shell segment with respect to normalized amplitude ( ~W=h) has been plotted in Fig. 3.
The material gradient index is selected as p¼ 1 and shell radii are assumed to be r1¼100 h and
r0¼0.5r1. Note that the vibration frequency ignoring geometric nonlinearity can be obtained
based on ~W=h ¼ 0: This figure shows that nonlinear vibration behaviors of annular spherical
shell segment rely on the value of open angle. Actually, as the value of open angle increases the
nonlinear vibration frequency becomes larger.

Table 1. Material properties of FGM constituents.

Properties Steel Alumina (Al2O3)

E 210 (GPa) 390 (GPa)
P 7800 (kg=m3) 3960 (kg=m3)
N 0.3 0.24
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Influences of porosity volume fraction (n) on the variation of nonlinear vibration frequency of
FG annular spherical shell segment with respect to normalized amplitude have been plotted in
Fig. 4 when the material gradient exponent is set to p¼ 2, 5. The distribution type of porosities is
considered as even. Also, the shell segment has an open angle of w ¼ p: This figure indicates the
reduction of vibration frequency with the increase of porosity volume at a, prescribed value of
normalized amplitude. Such finding is related to decrease of shell structural stiffness according to
the growth of porosities amount. Another important finding is that an increase of FG material
exponent results in lower vibration frequencies for annular spherical shell segment.

Figure 5 explores the influences of porosities distribution types on nonlinear vibration behav-
ior of FG annular spherical shell at fixed values for material exponent p¼ 5 and porosities vol-
ume n¼ 0.3. One can observe that vibration frequencies based on even type of distribution are
smaller than frequencies based on un-even type of distribution. This finding is owning to the fact
that porosity based on even type of distribution have been dispersed all over the thickness of
annular spherical shell leading to smaller shell stiffness.

Figure 6 indicates the effect of normalized base radius (R/h) of annular spherical shell on the
variation of vibration frequencies with respect to normalized amplitude. Results are presented at

Table 2. Validation of vibration frequency of spherical shell for various material gradient exponent (R/r0¼3).

Duc et al. (2017) Present

p¼ 0 0.9118 0.9118
p¼ 1 1.7794 1.7794
p¼ 5 2.2130 2.2130

Table 3. Validation of vibration frequency (Hz) of FG spherical shells at curvature radius (p¼ 1).

Fadaee et al. (2013) Present

R/a¼ 2.5 1578.1 1578.3
R/a¼ 5 2221.1 2221.2
R/a¼ 10 3826.7 3826.8
R/a¼ 20 7313.6 7313.6

Figure 3. Variation of vibration frequency versus normalized deflection of annular spherical shells for various open angles
(R¼ 200 h, r1¼100 h, r0¼0.5r1, p¼ 1, n¼ 0.2, Kw¼0, Kp¼0).
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fixed values for material exponent p¼ 5 and porosities volume n¼ 0.3. Also, radii of lower and
upper bases are selected as r1¼100 h, r0¼0.5 r1 and the shell segment has an open angle of w ¼
p: As can be seen, the variation of vibration frequency with respect to vibration amplitude has
higher rates as the values of R/h is greater. So, effect of R/h on vibration behavior of annular
spherical shell segment depends on the value of normalized vibration amplitude.

In Fig. 7, influences of foundation parameters (Kw, KP) on the variation of nonlinear vibration
frequency of FG annular spherical shell segment with respect to normalized amplitude have been
plotted. This figure has been provided based on the assumption of even porosity distribution and

Figure 4. Variation of vibration frequency versus normalized deflection of annular spherical shells for various porosity volume
fractions (R¼ 200 h, r1¼100 h, r0¼0.5r1, Kw¼0, Kp¼0). (a) p¼ 2; (b) p¼ 5.

Figure 5. Variation of vibration frequency versus normalized deflection of annular spherical shells for various porosity distribu-
tion types (R¼ 200 h, r1¼100 h, r0¼0.5r1, p¼ 5, n¼ 0.3, w¼p).
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n¼ 0.3. As can be seen, an increase of the two foundation parameters results in higher frequen-
cy–amplitude curves. However, higher values for Winkler parameter (Kw) than Pasternak param-
eter (Kp) are needed to affect the vibration frequency of annular spherical shells. This is due to
the reason that Kw is corresponding to infinite number of springs leading to discontinuous inter-
action with spherical shell.

Figure 6. Variation of vibration frequency versus normalized deflection of annular spherical shells for various porosity distribu-
tion types (r1¼100 h, r0¼0.5r1, p¼ 5, n¼ 0.3, w¼p).

Figure 7. Variation of vibration frequency versus normalized deflection of annular spherical shells for various foundation factors
(r1¼100 h, r0¼0.5r1, p¼ 5, n¼ 0.3, w¼p).
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Figure 8 illustrates the effect of stiffener numbers (nr, nh) of annular spherical shell on the
variation of vibration frequencies with respect to normalized amplitude. Results are presented at
fixed values for material exponent p¼ 5 and porosities volume n¼ 0.3. Also, radii of lower and
upper bases are selected as r1¼100 h, r0¼0.5 r1 and the shell segment has an open angle of w ¼
p: The geometric parameters of stiffeners are h1¼0.5 h and b1¼0.5 h. The present figure indicates
that stiffened annular spherical shell has enhanced dynamic character since it is reinforced by a
system of stiffeners. Therefore, vibration frequencies of stiffened annular spherical shells are
higher than those without stiffeners. This issue is much important due to the fact that porous
shells have lower vibration frequencies than perfect one. Hence, their vibration properties should
be enhanced by adding some stiffeners.

6. Conclusions

In this research, nonlinear vibration frequencies of annular spherical shell segments made of por-
ous FG materials were examined. Effects of two types of porosity distributions were considered.
Also, influences of stiffeners and surrounding medium were included. An analytical trend was
proposed to solve the nonlinear governing equations of annular spherical shell. Obtained findings
are summarized as follows:

� As the value of open angle increases the nonlinear vibration frequency becomes larger.
� Another finding is the reduction of vibration frequency with the increase of porosity volume

at a prescribed value of normalized amplitude.
� Vibration frequencies based on even type of distribution are smaller than frequencies based

on un-even type of distribution.
� An increase of the two foundation parameters results in higher frequency–amplitude curves.
� Vibration frequencies of stiffened annular spherical shells are higher than those with-

out stiffeners.

Figure 8. Variation of vibration frequency versus normalized deflection of annular spherical shells for various number of stiff-
eners (r1¼100 h, r0¼0.5r1, p¼ 5, n¼ 0.3, h1¼0.5 h, b1¼0.5 h, w¼p).
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Appendix 1

A11 ¼
h Em p 1� 0:5nð Þ � 0:5n

	 
þ Ec 1þ �0:5� 0:5pð Þn	 
� �
1þ pð Þ 1� v2ð Þ

A12 ¼
vh Em p 1� 0:5nð Þ � 0:5n

	 
þ Ec 1þ �0:5� 0:5pð Þn	 
� �
1þ pð Þ 1� v2ð Þ

A66 ¼
0:3846h Em p 1� 0:5nð Þ � 0:5n

	 
þ Ec 1þ �0:5� 0:5pð Þn	 
� �
1þ p

B11 ¼ Ec � Emð Þh2p
2 1þ pð Þ 2þ pð Þ 1� v2ð Þ

B12 ¼ Ec � Emð Þvh2p
2 1þ pð Þ 2þ pð Þ 1� v2ð Þ

B66 ¼ 0:1923 Ec � Emð Þh2p
1þ pð Þ 2þ pð Þ

D11 ¼
h3 Em þ 32�p Ec � Emð Þ �1þ 2p 2þ pþ p2

	 
	 

1þ pð Þ 2þ pð Þ 3þ pð Þ � 0:5Ecn� 0:5Emnþ 32�p Ec � Emð ÞCð1þ pÞ

Cð4þ pÞ

 !

12 1� v2ð Þ

D12 ¼
h3v Em þ 32�p Ec � Emð Þ �1þ 2p 2þ pþ p2

	 
	 

1þ pð Þ 2þ pð Þ 3þ pð Þ � 0:5Ecn� 0:5Emnþ 32�p Ec � Emð ÞCð1þ pÞ

Cð4þ pÞ

 !

12 1� v2ð Þ
D66 ¼ 0:032h3 Em þ 32�p Ec � Emð Þ �1þ 2p 2þ pþ p2

	 
	 

1þ pð Þ 2þ pð Þ 3þ pð Þ � 0:5Ecn� 0:5Emnþ 32�p Ec � Emð ÞCð1þ pÞ

Cð4þ pÞ

 !

(A1)

where is C Gamma function.
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