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Abstract: Efficient transmission of power is a pressing concern in modern power systems as it could
relieve additional investments (e.g., right of way) and may improve stability. Non-uniform loading
of transmission lines (which normally occurs due to the inefficient transmission of power) may lead
to overloading of a few lines. These lines would then be prone to voltage instability. However, this
problem would be aggravated under the network contingency condition. This paper focuses on
improving the line loadability of the transmission system by considering the benchmark voltage
stability index named rapid voltage stability index. The optimal loadability problem is considered
using the grey wolf algorithm. The proposed work is implemented on a standard IEEE 30 bus test
system using MATLAB software by addressing the problem by using line stability voltage index and
grey wolf algorithm in optimal power flow. Minimizations of cost of generation, carbon emissions,
voltage deviation, and line losses have been considered as objectives and improve the line loadability
of the transmission system. The simulation results show that the proposed method is very effective
in improving line loadability, reducing line congestion and fuel cost. Furthermore, the methodology
is tested rigorously under various contingency conditions and is shown to be very effective. The
proposed method relieves transmission line congestion and reduces fuel costs using the rapid voltage
stability index (RVSI) is tested on an IEEE 30-bus standard test system utilizing MATLAB for various
contingency lines

Keywords: fuel cost; grey wolf algorithm; line loadability; optimum power flow; voltage stability index

1. Introduction

Over the past few years, distribution generation has grown tremendously owing to
fuel costs, carbon footprints, load requirement, delivers clean power, etc. Today, electrical
system poses so many obstacles, including network connectivity, competition for loads,
ecological imperatives, and the slender extension of the lines impacting worldwide manage-
ment and efficiency. These problems pulled researchers through optimization techniques to
make use of wind and solar generations to reduce transmission loss, fuel costs, and carbon
discharges [1]. Those sources may be run either in isolated mode or grid-connected mode.
The eccentric knowledge of wind and solar connected to traditional systems has given
planners and analysts more difficulty in improving voltage stability, line flows, and sustain-
ability. Optimal power flow was among the most popular innovations for power system
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design and optimization and will achieve enhanced operational status with the adaption of
control variables to meet safe operations and physical constraints. It is appropriately tuned
to decrease the real power loss, carbon emissions, generation cost, and maintains stability.
Various optimization approaches for achieving the minimum values for particular systems
have been explained [2].

The optimum power flow (OPF), which was developed some half a century ago, re-
mains a broadly spoken topic in the power system research community. OPF’s main goal is
to reduce various objective functions with the optimal setting of the control variables given
by the data from the network. When minimizing the cost of generation, losses, emissions,
etc., it is important to satisfy the network constraints on generator capacity, line capability,
nodal voltages, and balanced power flow [3]. In many regions of the world, the devel-
opment of renewable energy sources is being pursued to achieve the goal of producing
sufficient electricity from renewable energy sources to meet the need for load requirements.
Classical OPF consideration is taken as a concern when thermal generators operate on
fossil fuels. With the growing penetration of solar and wind power into the grid, the OPF
analysis has become essential to incorporate the uncertainties of solar and wind [4]. There
are two categories of methods or approaches used for the optimization of OPF, namely de-
terministic and evolutionary approaches. Linear (LP) [5], nonlinear programming (NLP) [6],
quadratic programming (QP) [7,8] and interior point method (IM) [9] are the deterministic
methods. Because of the non-convexity of OPF concerns, those approaches have difficulty
in handling most local minima. Gradient-based approaches overcome the problem of con-
vergence, but sometimes inequality constraints are not met [6]. Evolutionary approaches
were implemented to address this due to the drawbacks of deterministic methods. Several
robust metaheuristics were evolved in recent decades. Some were impressively effective
in solving the OPF issue are hybrid firefly-bat algorithm [10], moth swarm algorithm
HAGOA [11], whale optimization algorithm [12], adaptive group search optimization [13],
ant lion optimizer [14], differential evolution algorithm [15], modified bacteria foraging
algorithm [16], backtracking search algorithm [17], particle swarm optimization [18]. The
multi-objective grey wolf algorithm [19,20] is used to optimize power flow, voltage stability,
line losses, and carbon emissions [21]. Fast under-frequency load shedding based on the
GOA algorithm and compared to adaptive, PSO, and GA for various disturbances, with
the objective function of minimizing the amount of load shed while optimizing the lowest
swing frequency at different phases of the process being considered [22]. Developed a
new model for mid-to-short-term load forecasting that can be used for different hours
and days of the month. This method was tested for electricity purchase and production
planning. This model combines the MTSTLF model with an MFFNN and the grasshopper
optimization algorithm to produce highly accurate load forecasting results (GOA) [23].
developed and updated ANN training and forecasting methodology GA and MVO reduced
the number of hidden layers, weights, and biases in ANNs. For various parameters, the
MFFNN-MVO and MFFNN-GA models were compared for accuracy [24], used optimiza-
tion techniques to maximize Savonius type wave turbine self-efficiency. The author also
compared the WOA, AIS, BA, and PSO algorithms in maximizing the overall electrical
output power from the wave turbine while constrained [25,26]. The power transfer capabil-
ity of transmission networks is determined by the DG, societal well-being (weight 1), and
network security (weight 2) weighting factors [27]. FPGA’s operational inaccuracies can
be alleviated by combining the moth flame optimization (MFO) method with an artificial
neural network (ANN) to improve forecasting accuracy for the suggested hybrid system.

The use of a few conventional and metaheuristic techniques for the optimization of the
problem has been explained in this section. In general congestion and contingency causes
the system to be voltage instability and overloading of the line subjected to the thermal load
limit. To keep the system stable and operating in secured manner contingency conditions
are also considered. When compared to the benchmark algorithms listed in Table 2, the
proposed algorithm produces the best results globally.
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A grey wolf algorithm influenced by nature, which provides improved solution and
convergence functionality to boost network functioning relative to other methods, has been
incorporated in this paper. The object of the paper is to demonstrate the proposed GWO
algorithm is suitable for the issue of a power system to remove the overloads of line and
stability problems while at the same time reducing, fuel production cost, voltage stability,
and individual objective function. The viability of the suggested work with the IEEE 30 bus
network has been proven. Minimizations of generation cost and line loss are considered
as objectives and improve the line loadability of the transmission system. The proposed
method relieves transmission line congestion and reduces fuel costs using rapid voltage
stability index (RVSI) is examined on an IEEE 30-bus system for various contingency lines.

2. Problem Formulization

This study focuses on assessing the power system’s generation reallocation for normal
and line contingency situations,

This might be written by:

MinimizeF(x,m):Subject to g(X,m) = 0, and h(X,m) < 0, Xl ≤ x ≤ Xu (1)

F(x) defines scalar quantity, highlighting costs of fuel, carbon emissions, active power
losses, and voltage deviations,

g(x) = equality constraint (that are the equations of power flow),
h(x) = inequality constraint (which refers to control parameter limits),
‘X’ refers to the state variable vector which comprises both controllable and dependent

variables (i.e., generator bus voltages, reactive power generation, shunt converter voltages,
line reactance, real power generation, series, and shunt susceptance).

‘m’ is a generator’s voltage, generators real power outputs, except for slack bus, in a
vector of independent parameters, shunt Var compensators and tap setting of transformers,
Xl and Xu are the lower and upper-value limits.

The solution process involves optimizing the objective function and meeting the
constraints. Mathematically, this objective issue can be presented as below:

2.1. Objective Function

Total generation cost function can be minimized utilizing the associated quadratic
Equation (1)

FC(PTGI) =
NTG

∑
i=1

(aiP2
TGI + biPTGI + Ci)$/hr (2)

where NTG = no of thermal generator buses; ai, bi, ci refers to the fuel cost coefficients of the
ith unit; FC = Net fuel cost function of thermal generators.

The cost of real power generation with the valve-point impact has been thought to be
more operative and accurate in cost function modeling. When the influence of multi-valve
turbines is taken into consideration, the power system’s cost of generation shows a greater
range of variation and the sinusoidal function is updated to the cost of fuel.

FVPE(PTG) =
NTG

∑
i=1

(aiP2
TGI

+ biPTGI + Ci +
∣∣∣di × sin(ei × (Pmin

TGI
− PTGI ))

∣∣∣) (3)

where di, ei: Valve-point loading effect coefficients; Pmin
TGI : Minimum power of the ith

thermal unit
This objective is comprised of the minimization of the real power losses of transmission

lines. This can be represented as

FPL = min(PLoss) = min(
ntl

∑
k=1

real(Sk
ij + Sk

ji)) (4)
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where ntl refers to the no. of transmission lines,
Sij = net complex power flow of line ith bus–jth bus
The purpose of this deviation of voltage (VD) consideration is for the achievement of

the needed voltage of transmission of a system may be stated by:

FVD = min(VD) = min

(
Nbus

∑
k=1
|Vk−Vre f

k |
)

(5)

where Vk: voltage magnitude at bus k; Vk
ref: reference voltage magnitude at bus k.

With increasing the polluting environment, it is desirable to consider the carbon
emission consideration to adjust the optimal flow of power. The net emissions ton/h of the
pollutants from the thermal units may be expressed by

Carbon emissions are measured in tons per hour (ton/h) given as:

FCE(PTGi) =
NTG

∑
i=1

[(αi + βiPTGi + γiP2
TGI)× 0.01 + ωie(µi PTGi)] (6)

where, αi, βi, γi, ωi, µi: Emission coefficients of the ith thermal generator.

2.2. Equality Constraints

PGi − PDi =
N

∑
j=1
|Vi|
∣∣Vj
∣∣∣∣Yij

∣∣ cos(θij + δj − δi) (7)

QGi −QDi =
N

∑
j=1
|Vi|
∣∣Vj
∣∣∣∣Yij

∣∣ sin(θij + δj − δi) (8)

where PGi: active power generation; QGi: reactive power generation; N: no. of. buses

2.3. Constraints Imposed by Inequality

(1) Generator bus voltage restrictions:

Vmin
Gi ≤ VGi ≤ Vmax

Gi , Gi = 1, 2, 3 . . . ngb (9)

(2) Limits of real power generation:

Pmin
Gi ≤ PGi ≤ Pmax

Gi , Gi = 1, 2, 3 . . . ngb (10)

(3) Reactive Power generated limits:

Qmin
Gi ≤ QGi ≤ Qmax

Gi , Gi = 1, 2, 3 . . . ngb (11)

ngb is the No. of generator buses
(4) Transmission line in MVA limit

Sl ≤ Smax
l , l = 1 . . . NL (12)

NL = no. of transmission lines

Rapid Voltage Stability Index (RVSI)
An electrical network’s voltage stability can be determined by using this test method.

It’s a sign of a system’s vulnerability and the potential for a voltage drop [21].

RVSIij = 4
Xij

V2
i
(

P2
j

Qj
+ Qj) (13)
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where RVSIij: RVSI applicable for the line linked with buses i and j.; Pj: real power at
receiving end bus; Qj: receiving end bus reactive power; Vi: sending bus voltage; Xij:
reactance in between buses ith and jth.

The RVSI magnitude of a highly congested line is near to unity. As a result, RVSI
values must be kept below unity to ensure system stability.

3. Proposed Grey Wolf Optimizer (GWO)

This optimizer was demonstrated in 2014 by Seyedalimirjalili and wasdesigned fully
according to the hunt for grey wolves and individual characteristics for them. The author
has acknowledged in this methodology four distinct aspects of hierarchical chains. Grey
wolves such as ‘α’ come first, followed by ‘β’, ‘δ’, and finally ‘ω’. Grey wolves are becoming
increasingly interested in remaining in a pack. The overall number of wolves in the pack
could be between 5 and 12. ‘α’ wolves are typically the gathering chiefs, in charge of
various actions such as fundamental leadership for chasing, strolling, attacking, relaxing,
waking up, and so on. They do not need to be strong wolves but must deal with alternate
wolves. In social situations, all grey wolves respect and recognize the pioneer wolf by
holding their tails downwards. The ‘β’ grey wolf is the pack’s second leader, superior to
the alternative wolves and the ‘α’ grey wolf. It could be either a female or a male. The
‘β’ wolf should supply the criticism obtained from the other wolves and assist the ‘α’ in
making choices among different workouts conducted in the gathering. This wolf should
lead the rest of the pioneer wolves. The next phase of the progressive system is ‘δ’ wolves,
who are in charge of the lowest levels of the wolf hierarchy and show consideration for
the more senior wolves. The remaining wolves are not very important; however, it has
been observed that if one ‘δ’ wolf is loosed, the entire assembly fights. These are mostly in
charge of the wolves’ gathering/minding, pack’s uprightness, and well-being [19]. A flow
chart for an objective function utilizing the Grey Wolf approach is shown in Figure 1.

Figure 1. Representation of the grey wolf algorithm’s multi-objective optimization process.
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Algorithm for Grey Wolf Optimizer

Step 1: Establish GWO settings such as search agents (Ws), design variable size (Wd),
and so on. the vectors a, A, and C, as well as the maximum no. of iterations

Ensure that the GWO’s search agents (Ws) and design variable sizes are set up (Wd).
iterations and the number of vectors a, A, and C

A = 2.a.r1 − a (14)

C = 2.r2 (15)

when component ‘a’ is linearly minimized from 2 to 0 throughout the iterations and r1, r2
are random vectors in [0,1].

Step 2: Build Grey wolves based on pack size arbitrarily. The grey wolves can be given
as mathematically

Greywolves(W) =


W11 W12 . . . W1n_1 W1n
W21 W22 . . . W2n_1 W2n

. . . . . . .
Wm_11 Wm_12 . . . W(m_1)(n_1) W(m_1)n
Wm1 Wm2 . . . W(m)(n_1) Wmn


where Wmn is the starting value of the mth pack of the nth wolves

Step 3: Estimate each hunting agent’s fitness value with the Formulas (16) and (17) below

D =

∣∣∣∣C× →
Wp(t)−

→
W(t)

∣∣∣∣ (16)

→
W(t + 1) =

→
Wp(t)−

→
A.
→
D (17)

Step 4: Determine the best hunt agent (Wα), the second-best hunt agent(Wβ) and the
third-best hunt agent (Wδ) using equations

→
Dα =

∣∣∣∣→C1 ×
→
Wα −

→
W
∣∣∣∣

→
Dβ =

∣∣∣∣→C2 ×
→
Wβ −

→
W
∣∣∣∣

→
Dδ =

∣∣∣∣→C3 ×
→
Wδ −

→
W
∣∣∣∣

→
W1 =

∣∣∣∣→Wα −
→
A1 ×

→
Dα

∣∣∣∣
→
W2 =

∣∣∣∣→Wβ −
→
A2 ×

→
Dβ

∣∣∣∣
→
W3 =

∣∣∣∣→Wδ −
→
A3 ×

→
Dδ

∣∣∣∣
Step 5: Renew the current hunting agent’s position using formula (18).

→
W(t + 1) =

→
W1 +

→
W2 +

→
W3

3
(18)

Step 6: Estimate every hunt fitness value
Step 7: Updating the Wα, Wβ, and Wδ values
Step 8: Find out what causes it to cease. In other words, if the number of iterations is

reached, print the best solution value if possible, else return to s.



Sustainability 2022, 14, 4347 7 of 19

4. Results and Discussions

The load flow for the modified IEEE-30 bus system is considered and comprises of
one slack bus, five thermal generators, the remaining are load buses and 41 interconnected
lines. 100 MVA is chosen as the base MVA. Further, the system is tuned for optimal power
flow by utilizing the grey wolf algorithm. In general, the thermal load limit restricts the
power handling capability of a line. This limit is used for violation purposes and also
severe contingencies which are causing security problems are also considered. Matlab 2015
with HP i5 Processor is used to generate the results for various objective functions and
parameters. The parameters for the existing PSO and proposed grey wolf algorithm are
shown in Table 1.

Table 1. Parameters of PSO and GWO algorithm.

Parameters PSO GWO

Population size 20 20
Number of iterations 50 50

‘a’ vector - 2
Cognitive constant c1 2 -

Social constant c2 2 -

Various objective functions, including losses, emissions, and fuel costs, are subjected
to the Grey wolf algorithm under standard settings and compared to the existing methods.
Figure 2 depicts a single-line diagram of the IEEE 30 bus system. These values are portrayed
in Table 2. It is also found that the various objective function values are reduced by
incorporating the renewable energy sources and that the proposed algorithm is giving
better results. It is considered one dollar is equal to 73.61 rupees for the calculations.

Figure 2. IEEE 30 bus system in a single line diagram.
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Table 2. The comparison of the suggested method with the optimal power flow.

Methods Generation
Fuel Cost ($/h)

Emission
(ton/h)

Power Loss
(MW)

The Influence
of Valve Point
on Fuel Cost

($/h)

Generation
Fuel Cost

(Rs/h)

The Influence
of Valve Point
on Fuel Cost

(Rs/h)

Existing MSFLA
[28] 802.287 0.2056 - - 59,056.3461 -

SFLA [28] 802.509 0.2063 - - 59,072.7022 -
MDE [29] 802.376 - - - 59,062.8974 -
IEP [30] 802.465 - - - 59,069.4487 -

RGA [31] - – 4.5740 - - -
CLPSO [32] - - 4.6282 - - -

HSA [33] - - 4.9059 - - -
PSO [34] - 0.2063 5.1204 - - -
IPSO [34] - 0.2058 5.0732 - - -

Proposed GWO 800.866 0.2041 4.229 828.2 58,951.7536 60,963.802

Figure 3 shows that in less than 50 iterations the objective functions smoothly conver-
gences to the optimum value with no sudden changes in the objective function of fuel cost
for normal conditions. The proposed GWO is shown to be effective in this way. Optimal
control variable settings, objective fuel cost, and real power generation are shown in Table 3
below. It is observed that Grey wolf optimization (GWO) has reduced the real power
generation fuel cost as compared to the prevailing methods.

Figure 3. Convergence Characteristics of fuel cost under normal condition.

Table 3. Comparison of control variables for different algorithms.

Control Variables TS [35] PSO Proposed GWO

PG1 (MW) 176.04 179.9584 176.525
PG2 (MW) 48.76 50.7739 49.6202
PG5 (MW) 21.56 15.0000 21.9922
PG8 (MW) 22.05 22.8061 21.4111

PG11 (MW) 12.44 12.4457 10
PG13 (MW) 12 12 12

V1 1.05 1.06 1.06
V2 1.0389 1.0344 1.0353
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Table 3. Cont.

Control Variables TS [35] PSO Proposed GWO

V5 1.011 0.9857 0.9893
V8 1.0198 0.9826 0.9832
V11 1.0941 1.0820 1.082
V13 1.0898 0.9737 0.9743

Total real power generation (MW) 292.85 292.9840 292.5482
Total real power generation fuel cost ($/h) 802.29 802.6383 800.8661

Total real power generation fuel cost (Rs/h) 59,056.57 59,082.205 58,951.75

5. Contingency Management

The dynamic contingency management case was considered in this study. In such
cases, two situations may occur. First of all, a line in the event of contingency can be
considered to be extremely severe or a line in case of most contingencies can be most
possibly severe. So, it can be classified as a probabilistic approach or deterministic approach.
In this section, both methods were discussed and contrasted. The contingency ranking
was given based on Rapid voltage stability severity index (RVSI) values for all lines in
the descendant order of severity and can be obtained by removing all line outages. The
maximum value of each line outage is identified and arranged these values in Table 4.
These stability index values were obtained by running the Newton-Raphson method. These
indices values can be used to signify the secure operating region of the system. A line
closer to zero with RVSI is a good line for stability. The higher the magnitude of a line’s
RVSI, the lower the stability line (i.e., closer it is to instability). From this Tables 2 and 4, it
is noted that for the line outage 2–5 the line between buses 5–7 (line number 8) with the
RVSI value of 0.5941 is the maximum value and may be called severe. Line 2–5 is chosen as
the most severe line from the deterministic approach for the analysis. In the probability
approach most severe line between 9–11 buses (line no 13) is repeated more times for all line
contingencies with a maximum value of RVSI 0.3190 for the line outage 1–3. The two-line
outages (i.e., lines 3–4 and lines 4–12 and are considered for analysis).

Line flows were compared in different cases such as normal, normal with GWO,
contingency with N-R load flow, and contingency with GWO in Table 4 for the IEEE 30 bus
system. From this table, it could be noticed that the lines 1–2, 2–6, 4–6, 5–7 are overloaded
under outage of lines 2–5. Congested lines are reduced to a significant value with the
GWO method.

Table 5 described the Line outage contrast flows under the line 2–5. Line flows were
compared in different cases such as normal, normal with GWO, contingency with N-R
power flow, and contingency with GWO in Table 6. From this table, it could be observed
that lines 1–2, 2–6, are overloaded under the outage of lines 3–4. Congested lines are
reduced to a significant value with the GWO method.

Line flows were compared in different cases such as normal, normal with GWO,
contingency with N-R power flow, and contingency with GWO in Table 7. From this
table, it can be shown that the lines 1–2, 9–10, are overloaded under outage of lines 4–12.
Congested lines are reduced to a significant value with the GWO method. The third column
data Represents in Table 7 is the limit of power flows in the individual transmission line
of the IEEE 30 Bus system. When these systems run using N-R Methos under normal
conditions the fourth column shows the values of power flows in the individual line.
column 5 of Table 7 shows the line flows in the individual transmission line by using the
GWO algorithm. columns 7 and 8 show the line flows under line outage with and with the
GWO algorithm as shown that the lines 1–2, 9–10, are overloaded under outage of lines
4–12. Congested lines are reduced to a significant value with the GWO method.
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Table 4. By using the traditional technique, severe lines for various line outages are listed in descend-
ing order of RVSI [36].

Line No

Line Outage Severity Line

Line No

Line Outage Severity Line

SEB REB RVSI Max
Value (p.u)

Line No
with RVSI

Max
SEB REB RVSI Max

Value (p.u)

Line No
with RVSI

Max

5 2 5 0.594161 8 22 15 18 0.24757 13
9 6 7 0.364993 5 8 5 7 0.277803 5
2 1 3 0.319053 13 17 12 14 0.247424 13
4 3 4 0.314822 13 37 27 29 0.247378 13

14 9 10 0.296387 12 30 15 23 0.246917 13
6 2 6 0.282263 13 33 24 25 0.246853 13

15 4 12 0.276173 13 39 29 30 0.246657 13
7 4 6 0.276936 5 23 18 19 0.246584 13

36 28 27 0.265841 13 21 16 17 0.246553 13
3 2 4 0.257307 13 20 14 15 0.246357 13

41 6 28 0.252931 13 32 23 24 0.246193 13
12 6 10 0.252195 13 25 10 20 0.245787 13
18 12 15 0.251297 13 28 10 22 0.245764 13
10 6 8 0.250634 13 31 22 24 0.245764 13
35 25 27 0.249212 13 24 19 20 0.245552 13
19 12 16 0.248224 13 29 21 23 0.245403 13
38 27 30 0.247772 13 27 10 21 0.244637 13
40 8 28 0.247637 13 26 10 17 0.243553 13
- - - - - 11 6 9 0.241524 13

Table 5. Line outage contrast flows under the line 2–5.

SEB REB Power Flow Inline
Limit (MVA)

Line Flows under
Normal Condition

Line Flows
with GWO

Line Flows under
Line Outage

Line Flows under Line
Outage with GWO

1 2 130 125.147 115.4587 132.9967 100.38
1 3 130 64.0504 64.0151 95.9061 79.0765
2 4 65 31.0057 34.8376 62.5328 56.1749
3 4 130 58.0709 59.0621 83.4757 72.0465
2 5 130 65.223 64.3444 —- —–
2 6 65 45.3089 49.0962 91.331 79.3818
4 6 90 52.6063 53.1096 99.6275 83.3106
5 7 70 14.1723 11.4026 71.761 67.8742
6 7 130 40.9623 34.072 123.0667 97.5358
6 8 32 26.9479 27.6367 27.3629 26.5946
6 9 65 11.3436 22.5704 10.3657 19.8392
6 10 32 11.9681 14.486 11.2084 13.2382
9 11 65 43.6356 36.6601 43.097 39.2178
9 10 65 47.8095 42.3696 46.285 42.8871
4 12 65 28.0796 32.8081 32.3194 34.4173
12 13 65 20.0104 12.0019 20.0144 12.0021
12 14 32 7.6908 7.409 8.1266 7.5954
12 15 32 17.475 16.9255 19.0046 17.5955
12 16 32 7.1029 7.0339 8.1706 7.4906
14 15 16 1.2331 1.29 1.588 1.4124
16 17 16 3.7012 4.1596 4.4319 4.4381
15 18 16 5.9792 5.9217 6.4918 6.1458
18 19 16 2.7471 2.7855 3.1601 2.9691
19 20 32 7.8197 8.0063 7.2553 7.778
10 20 32 10.3571 10.5182 9.8139 10.2932
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Table 5. Cont.

SEB REB Power Flow Inline
Limit (MVA)

Line Flows under
Normal Condition

Line Flows
with GWO

Line Flows under
Line Outage

Line Flows under Line
Outage with GWO

10 17 32 8.9902 9.9232 7.7891 9.4894
10 21 32 24.5399 21.0537 23.7107 20.8295
10 22 32 7.9391 7.4723 8.0694 7.6786
21 23 32 3.6638 7.4253 2.8513 7.258
15 23 16 3.931 4.5358 5.0788 4.8863
22 24 16 7.8359 7.3875 7.9421 7.5841
23 24 16 2.9046 3.4657 3.3552 3.7389
24 25 16 1.0774 0.8738 1.1028 0.4273
25 26 16 4.2823 4.2728 4.304 4.2792
25 27 16 4.7819 4.8535 4.3359 4.3078
28 27 65 18.7488 19.0694 18.5246 18.5483
27 29 16 6.4588 6.4362 6.5136 6.4526
27 30 16 7.3424 7.315 7.4091 7.3348
29 30 16 3.7661 3.7599 3.7811 3.7644
8 28 32 4.7961 5.0108 4.4977 5.1228
6 28 32 15.0795 15.9036 15.2671 15.0442

Table 6. The contrast of line flows under line outage of lines 3–4.

SEB REB Power Flow Inline
Limit (MVA)

Line Flows under
Normal Condition

Line Flows
with GWO

Line Flows under
Line Outage

Line Flows under Line
Outage with GWO

1 2 130 125.147 115.4587 203.9089 170.6582
1 3 130 64.0504 64.0151 2.6344 2.6344
2 4 65 31.0057 34.8376 62.9633 60.5802
3 4 130 58.0709 59.0621 —- —-
2 5 130 65.223 64.3444 77.8915 73.0946
2 6 65 45.3089 49.0962 71.6345 68.1407
4 6 90 52.6063 53.1096 24.6771 22.7873
5 7 70 14.1723 11.4026 9.5786 5.5252
6 7 130 40.9623 34.072 31.1187 26.7663
6 8 32 26.9479 27.6367 27.4867 26.4396
6 9 65 11.3436 22.5704 11.8525 21.3283
6 10 32 11.9681 14.486 12.8529 14.4471
9 11 65 43.6356 36.6601 43.087 39.1209
9 10 65 47.8095 42.3696 49.2146 44.9014
4 12 65 28.0796 32.8081 26.5851 29.0509
12 13 65 20.0104 12.0019 20.0154 13.4069
12 14 32 7.6908 7.409 7.4836 7.118
12 15 32 17.475 16.9255 16.6555 15.8252
12 16 32 7.1029 7.0339 6.4681 6.1998
14 15 16 1.2331 1.29 1.0241 1.0908
16 17 16 3.7012 4.1596 3.2596 3.6818
15 18 16 5.9792 5.9217 5.6681 5.4909
18 19 16 2.7471 2.7855 2.4704 2.4192
19 20 32 7.8197 8.0063 8.1475 8.4279
10 20 32 10.3571 10.5182 10.7698 10.9916
10 17 32 8.9902 9.9232 9.6481 10.6841
10 21 32 24.5399 21.0537 25.1893 21.9246
10 22 32 7.9391 7.4723 7.9373 7.6075
21 23 32 3.6638 7.4253 4.0898 7.8393
15 23 16 3.931 4.5358 3.2346 4.0189
22 24 16 7.8359 7.3875 7.8123 7.5125
23 24 16 2.9046 3.4657 2.6648 3.3656
24 25 16 1.0774 0.8738 1.1602 0.8808
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Table 6. Cont.

SEB REB Power Flow Inline
Limit (MVA)

Line Flows under
Normal Condition

Line Flows
with GWO

Line Flows under
Line Outage

Line Flows under Line
Outage with GWO

25 26 16 4.2823 4.2728 4.3042 4.2807
25 27 16 4.7819 4.8535 5.0814 4.8782
28 27 65 18.7488 19.0694 19.4318 19.1998
27 29 16 6.4588 6.4362 6.5126 6.4558
27 30 16 7.3424 7.315 7.4078 7.3388
29 30 16 3.7661 3.7599 3.7809 3.7652
8 28 32 4.7961 5.0108 4.5103 5.2175
6 28 32 15.0795 15.9036 15.9832 15.4434

Table 7. The contrast of line flows under lines 4–12 outage.

SEB REB Power Flow Inline
Limit (MVA)

Line Flows under
Normal Condition

Line Flows
with GWO

Line Flows under
Line Outage

Line Flows under Line
Outage with GWO

1 2 130 125.147 115.4587 130.7125 118.1491
1 3 130 64.0504 64.0151 64.6177 62.8055
2 4 65 31.0057 34.8376 29.6233 32.3256
3 4 130 58.0709 59.0621 58.4391 57.8071
2 5 130 65.223 64.3444 67.8305 66.7538
2 6 65 45.3089 49.0962 50.7587 53.7115
4 6 90 52.6063 53.1096 79.4628 81.2081
5 7 70 14.1723 11.4026 13.4958 10.6658
6 7 130 40.9623 34.072 38.8561 32.8465
6 8 32 26.9479 27.6367 27.8776 28.0066
6 9 65 11.3436 22.5704 24.6237 38.5999
6 10 32 11.9681 14.486 21.7286 25.2126
9 11 65 43.6356 36.6601 43.3637 38.1721
9 10 65 47.8095 42.3696 64.3463 61.0722
4 12 65 28.0796 32.8081 ——- ——
12 13 65 20.0104 12.0019 20.0171 12.0027
12 14 32 7.6908 7.409 4.3573 3.3716
12 15 32 17.475 16.9255 6.9273 4.2853
12 16 32 7.1029 7.0339 5.2023 6.2669
14 15 16 1.2331 1.29 2.3298 3.12
16 17 16 3.7012 4.1596 8.4917 10.196
15 18 16 5.9792 5.9217 2.5957 1.4578
18 19 16 2.7471 2.7855 3.2718 3.7588
19 20 32 7.8197 8.0063 12.7137 13.7218
10 20 32 10.3571 10.5182 15.7133 16.6997
10 17 32 8.9902 9.9232 19.4694 21.5096
10 21 32 24.5399 21.0537 32.8053 30.8244
10 22 32 7.9391 7.4723 7.2653 7.0159
21 23 32 3.6638 7.4253 11.1083 14.6185
15 23 16 3.931 4.5358 8.1894 11.2538
22 24 16 7.8359 7.3875 7.1643 6.9306
23 24 16 2.9046 3.4657 0.9977 3.1415
24 25 16 1.0774 0.8738 4.7918 5.8736
25 26 16 4.2823 4.2728 4.2915 4.2783
25 27 16 4.7819 4.8535 9.1922 9.8949
28 27 65 18.7488 19.0694 24.0594 24.6506
27 29 16 6.4588 6.4362 6.4757 6.4458
27 30 16 7.3424 7.315 7.363 7.3267
29 30 16 3.7661 3.7599 3.7707 3.7625
8 28 32 4.7961 5.0108 4.8248 5.332
6 28 32 15.0795 15.9036 19.4053 20.2707
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Table 8 shows over-loaded lines under various line outages. Power flows are observed
in the line during normal conditions are within the specified limits but power flows line 2–6,
line 1–2, line 5–7, line 4–6 gets congested due to the contingency of line 2–5. Power flows
in lines 2–6, line 1–2, line 5–7, line 4–6 before contingency are 125.147 MVA, 45.3089 MVA,
52.6063 MVA, 14.1723 MVA, respectively. During contingency, the respective lines are
overloaded to 132.996 MVA, 91.331 MVA, 99.62 MVA, 71.761 MVA, respectively, after using
the proposed GWO these values are reduced to 100.38 MVA, 79.3818 MVA, 83.31 MVA,
and 67.8742 MVA nearer to their limits. Similarly, this phenomenon was observed in the
remaining line outages of lines 3–4, line 4–12.

Table 8. Optimal power flows for various objective functions for various severe contingencies.

Parameters Normal Case Under Line
Outage 3–4

Under Line
Outage 2–5

Under Line
Outage 4–12

R
ea

lp
ow

er
ge

ne
ra

ti
on

(M
W

)

PG1 177.525 169.3844 173.6528 175.3286
PG2 49.6202 50.4766 50.872 48.1522
PG5 21.9922 21.6592 26.5571 21.2868
PG8 21.4111 26.3509 25.408 20.839
PG11 10 13.7187 10 12.261
PG13 12 13.4038 12 15.5942

V
ol

ta
ge

s
in

(P
.U

)

V1 1.06 1.06 1.06 1.06
V2 1.0354 1.0133 1.0309 1.0325
V5 0.9893 0.9585 0.8823 0.983
V8 0.9833 0.9459 0.9495 0.9738
V11 1.0602 1.0516 1.0571 1.0618
V13 0.9744 0.9321 0.9451 0.8947

Pe
rf

or
m

an
ce

pa
ra

m
et

er
s Total generation of real

power (MW) 292.5485 294.9936 298.4899 293.4618

Total fuel cost for real power
generation ($/h) 800.8612 812.2295 825.3745 805.1168

Total fuel cost for real power
generation (Rs/h) 58,951.39 59,788.213 60,755.82 59,264.65

Figures 4–6 depicts the convergence characteristics of fuel cost function under the
different contingency of line 2–5, line 3–4, line 4–12 using GWO approach from these
figures it is observed that in less than 50 iterations the objective functions smoothly con-
vergences to the optimum value with no sudden changes in the objective function of fuel
cost for contingency conditions. This shows the efficiency of the proposed GWO compared
with PSO.

Figure 4. Figure 2 convergence characteristics of the cost of fuel under the contingency.
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Figure 5. Fuel cost convergence characteristics under the contingency of line outage of line 3–4.

Figure 6. Fuel cost minimization convergence characteristics of under contingency of line outage of
line 4–12.

Figure 7 displays the voltage profile of the generator as well as the load bus under
normal and contingency conditions. Voltages are within limits during normal conditions
and the voltage is disturbed during contingency and voltages are improved by using the
proposed algorithm. Table 9 displays voltage magnitudes for various line outages.

Figure 7. IEEE-30 bus system voltage magnitudes during outages of varying lengths.
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Table 9. Overloaded lines owing to contingency and their limits.

Line
Outage

Congested
Lines

Power Flow
Limits in MVA

Line Flows under
Normal Condition

Line Flow during
Line Outage

Line Flow during Line
Outage with GWO

2–5

1–2 130 125.147 132.996 100.38
2–6 65 45.3089 91.331 79.3818
4–6 90 52.6063 99.627 83.31
5–7 70 14.1723 71.761 67.8742

3–4
1–2 130 125.147 203.9 170.6582
2–6 65 45.3089 71.6345 68.1407

4–12
1–2 130 125.147 130.7125 118.1491

9–10 65 47.8095 64.334 61.07

Table 10 displays the many aspects of optimal control variables, objective functions
such as losses, deviation of voltage, fuel cost with valve point influence, carbon emissions
acquired values using the suggested algorithm.

Table 10. Voltage magnitudes for various line outages.

BUS N0 Normal Condition Under Line Outage 3–4 Under Line Outage 2–5 Under Line Outage 4–12

V1 1.06 1.06 1.06 1.06
V2 1.0354 1.0133 1.0309 1.0325
V3 1.0136 1.0589 0.992 1.013
V4 1.0027 0.9594 0.9764 1.0019
V5 0.9893 0.9585 0.8823 0.983
V6 0.9955 0.958 0.9616 0.9864
V7 0.9893 0.9543 0.9237 0.9813
V8 0.9833 0.9459 0.9495 0.9738
V9 1.0093 0.9729 0.9786 0.9837
V10 0.9793 0.9406 0.9474 0.9441
V11 1.0602 1.0516 1.0571 1.0618
V12 0.9746 0.9323 0.9452 0.895
V13 0.9744 0.9321 0.9451 0.8947
V14 0.9628 0.9205 0.9327 0.8889
V15 0.9619 0.9203 0.931 0.8979
V16 0.9687 0.9276 0.9379 0.908
V17 0.9704 0.9307 0.9386 0.9274
V18 0.9549 0.9137 0.9232 0.9004
V19 0.9542 0.9134 0.9221 0.9054
V20 0.9596 0.9193 0.9275 0.9142
V21 0.9659 0.9261 0.9338 0.9247
V22 0.9682 0.9288 0.9357 0.9328
V23 0.9639 0.9239 0.9318 0.9209
V24 0.9532 0.913 0.92 0.9176
V25 0.9538 0.9138 0.9195 0.9297
V26 0.9349 0.894 0.8998 0.9103
V27 0.9634 0.9239 0.9287 0.9466
V28 0.989 0.9511 0.9549 0.9782
V29 0.9421 0.9016 0.9066 0.9249
V30 0.9299 0.8888 0.8938 0.9124

From these results, it can be observed the lines are relieved from the overburden by
utilizing the grey wolf algorithm. Therefore, most of the lines were relieved by using the
proposed algorithm. Power generations for various line outages are shown in Figure 8.
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Figure 8. Power Generations for various line outages of IEEE-30 bus system.

6. Conclusions

The need for improved efficiency while ensuring system stability at the same time
requires the development of enhanced approaches to system analysis and advanced tech-
nology advancement. Reallocation of maximum power generation is essential if system
efficiency is to be improved using existing resources. Optimization techniques aim to get
an optimal solution for the relocation of power generation. The critical contingencies that
are causing problems for system security are taken into account.

The literature survey shows that the searching strategies influenced by evolution,
including grey wolf and particle swarm algorithms, are suitable for approaching objective
function. On IEEE 30-bus test systems the fitness, efficacy of the suggested algorithms has
been tested. An essential objective of monitoring and taking the power system to the secure
region has been accomplished. The outcomes of simulations show that each methodology
has successfully achieved the goal of reducing various objective functions such as fuel cost,
real power losses, carbon footprints, and voltage deviations. The GWO algorithm has also
performed well in improving voltage stability and line load ability during overloads due to
contingency by keeping the line capacity within thermal limits.

The future work can be extended by including various FACTS devices and by using
the hybrid algorithm. The present work was considered for the constant load but can be
extended by considering the variable loads
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Nomenclature

TCSC Thyristor-controlled series converter
SB sending end bus
RB Receiving end bus
RVSI Rapid Voltage Stability index
NLSI Novel Line stability index
ASI Amalgamate severity index.
PDF Probability density function
GWO Grey Wolf Optimization
FACTS Flexible AC Transmission System.
VD Voltage deviation
VPE Valve point effect
CE Carbon emissions
Pwj Wind power generation from jth bus
Psk Power output from the kth PV plant
PL Overall real power loss
QL Overall reactive power loss,
PGi real power generated in ith bus
PDi real power demanded in ith bus
Pmin

TGI Minimum power the ith thermal unit.
Pj active power at receiving at jth bus
Qj Reactive power at receiving at jth bus
NTG no. of Generator buses
a, b, c Fuel cost coefficients
Vk Magnitude of ‘V’at bus k
X Reactance of line in ohms,
P(v) Electric power
vci Wind Speed (Cut-in)
vco Wind Speed (Cut-out)
vr Wind Speed (Rated)
Pr Rated Power
Ntl No. of lines for transmission
Z impedance of line in ohms
Xj Direct cost co-efficient of jth wind farm
yk Direct cost co-efficient of kth PV plant
Sij Apparent power flowing in line i–j
Vkref Magnitude of Reference ‘V’ at bus k
di, ei Valve-point effect co-efficient
w1, w2, w3, w4, w5 Weighting factors
αi βi, γi, ωi, µi Emission coefficient
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