
Energy Reports 8 (2022) 14888–14900

a

b

c

d

n
a
f
s
m
2
m
P

h
s

h
2

Contents lists available at ScienceDirect

Energy Reports

journal homepage: www.elsevier.com/locate/egyr

Research paper

Hybrid African vultures–greywolf optimizer approach for electrical
parameters extraction of solar panelmodels
Mahmoud A. Soliman a, Hany M. Hasanien b, Rania A. Turky c, S.M. Muyeen d,∗

Electrical Engineering Department, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt
Electrical Power and Machines Department, Faculty of Engineering, Ain-Shams University, Cairo 11517, Egypt
Electrical Engineering Department, Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt
Electrical Engineering Department, Faculty of Engineering, Qatar University, Doha, Qatar

a r t i c l e i n f o

Article history:
Received 24 May 2022
Received in revised form 11 October 2022
Accepted 24 October 2022
Available online 17 November 2022

Keywords:
Hybrid African vultures–grey wolf
optimizer approach
Photovoltaic modeling
PV parameters extraction
Solar energy
Three-diode model

a b s t r a c t

Three-diode model (TDM) of photovoltaic (PV) cells is a significantly precise model that addresses the
electrical and optical losses in such PVs. Due to its nonlinearity and multivariable characteristics, the
TDM is a complex and debatable PV model. This article proposes a novel hybrid African vultures–grey
wolf optimizer (AV–GWO) approach to precisely estimate the electrical parameters of such TDM. The
AVO is a novel meta-heuristic approach inspired by African vultures’ behavior in nature. In the hybrid
approach offered, the vultures’ updating position formula of the AVO is applied to update the key-group
parameters in GWO, resulting in an enhanced GWO approach. A new objective function that depends
on the current error is proposed in this study, which the AV–GWO minimizes to precisely estimate
the optimal nine parameters of such TDM. The nine electrical parameters attained through the hybrid
AV–GWO approach are compared with that obtained via other meta-heuristic methods. In that regard,
the AV–GWO approach has achieved superior and outstanding outcomes. For more realistic studies,
the offered AV–GWO is efficiently utilized to design the optimal parameters of TDM for two industrial
KC200GT and MSX-60 PV cells. In the optimization process, the hybrid AV–GWO has recorded the
lowest optimal fitness values of 8.475e−13 and 7.412e−12 for KC200GT and MSX-60, respectively.
Additionally, the AV–GWO has recorded the shortest computing time in 0.43412 (s) and 0.3142 (s)
for KC200GT and MSX-60, respectively, which reflects its rapid convergence, supremacy, and stability,
among other approaches. Those PV cells’ modeled I-V and P-V curves closely coincide with the real
data measured under various climatic conditions. The error between these results is less than 0.4%. The
high performance of the hybrid AV–GWO approach-based TDM is verified by examining its absolute
current error with that realized from other PV models. Consequently, the outcomes have depicted
that the offered AV–GWO approach is superior and can be used to generate a precise PV model of any
industrial PV cell, which is a unique addition to the PVs market.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Over recent decades, the development of sustainable and re-
ewable energy sources (RESs) has been on rapid embarkation
round the globe because of several serious factors, including
ossil energy consumption, the rise in fuel prices, political is-
ues, and considerable concerns about achieving a healthy at-
osphere (Zhang et al., 2020a; Ridha et al., 2020; Qais et al.,
019). Among various RESs, solar photovoltaic (PV) energy is the
ost popular technology widely installed worldwide. Newly, the
V sector has seen significant economic growth due to the cost
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352-4847/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
decrease in PV components and power converters, enhancing the
competitiveness and efficiency of this PV technology more than
other RESs. This indicates the numerous endeavors exerted in de-
veloping the PV industry. Based on the global PV market statistics,
142 GW of global PV installed capacity was achieved at the end of
2020, which indicates a 14% growth compared to 2019’s record. It
is predicted that 2.8 TW of global PV installations will be attained
by 2030 (PV Power Plants, 2020). The reported records denote
the massive integration of solar PV installations into power grids.
Accordingly, grid-integrated PV power plants can release several
problems. To address the efficacy of PV systems on the power
grids under different environmental situations and examine the
effect of transient grid disturbances on the PV power systems
through simulation studies, accurate modeling of such PVs is

significantly desired.
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The mathematical modeling of such PV cells is expressed via
nonlinear I-V behavior, which includes numerous unknown elec-
trical parameters owing to the insufficient data the manufacturers
supplied (Sharma et al., 2021a). In the PV modules, two types of
losses are presented, i.e., electrical and optical losses (El-Fergany,
2021; Kassis and Saad, 2010). Electrical losses are defined as: (i)
conduction losses in the wires and soldered junction that can
be simulated by a series resistance (Rs), and (ii) leakage current
inside the PV cells that is simulated by a parallel resistance (Rp).
On the other hand, optical losses inside the PV cell are caused by
diffusion in the quasi-neutral zone, recombination in the deple-
tion layer, and recombination at the grain boundaries (Ma et al.,
2021).

The PV modeling should appear all the PV losses. The ideal
PVs are represented by a photo-generated current (IPV ) which is
pertinent to the amount of solar irradiation that drops on them.
The real IPV is different owing to the electric and visual losses in
the P-N junction of such PVs, resulting in a single-diode model
(SDM) (El-Fergany, 2021). This model is characterized by its sim-
ple design and fast dynamic behavior. The SDM can represent
the diffusion and recombination losses in the quasi-neutral region
of the emitter and majority zones in the P-N junction. To attain
precise PV modeling, a two-diode model (DDM) is introduced to
address the PV losses in the quasi-neutral and space-charge of
the P-N junction and the SDM losses. Recently, the three-diode
model (TDM) appeared to address the recombination in defect
regions and grain boundaries and the losses in the SDM and DDM.
Therefore, TDM can represent all losses in three areas of the P-
N junction of such PV cells. Hence, TDM is considered a more
accurate PV modeling of such PV modules (Elazab et al., 2018)
considered in this study. The TDM of such PVs involves several
parameters like photo-generated current (IPV ), series resistance
Rs), parallel resistance (Rp), emission coefficient of three diodes
a1, a2, a3), and leakage current for three diodes (Io1, Io2, Io3) (Qais
t al., 2019). Hence, it is crucial to find those parameters to
btain a proper PV model critical in simulation assessments of
rid-integrated PV systems.
Several strategies were used to define the electrical parameter

f various PV panels accurately. In the PV literature, SDM and
DM of PV panels are extensively examined because of their
imited number of unknowns that can be estimated using an-
lytical approaches, iterative approaches, and various optimizer
lgorithms. Analytical methods are employed for extracting the
nknowns using several vital factors, which are available in the
V datasheet, including short-circuit current (ISC ), open-circuit
oltage (VOC ), and maximum power (Pm). These methods are dis-
inguished by their fast convergence and the absence of any mea-
urements. However, some derivations are applied to limit the
ndetermined parameters, including ignoring Rp (Khanna et al.,
015), primary values of such resistance (Di Piazza et al., 2017)
nd Io (Şenturk, 2018), a Lambert technique (Polo et al., 2019),
nd utilizing the least square error method (Toledo et al., 2018).
he analytical techniques require different assumptions and sev-
ral differentiations of dynamic equations, leading to unrealistic
olutions. To estimate the unknowns, the analytical and optimizer
ethods are integrated to precisely design the DDM parame-

ers (Chennoufi et al., 2021; Bradaschia et al., 2019b). Several iter-
tive techniques are utilized to fine-tune the PV parameters, like
he Gauss–Seidel method (Chatterjee et al., 2011) and Newton–
aphson (Ridha et al., 2021). These approaches are hampered by
olid nonlinearity and multi-variability, which lack precision (El-
ergany, 2021; Elazab et al., 2018). Moreover, the accuracy of
nalytical and iterative methods is limited since the primary
olutions are not always optimal. Besides, they need good initial
alues to avoid divergence.
To overcome the nonlinearity and complexity of such meth-

ds, meta-heuristic approaches based on artificial intelligence
 h

14889
ptimization algorithms are effectively utilized to precisely de-
ign the electrical parameters of the PV modules. Genetic algo-
ithm (GA) (Bastidas-Rodriguez et al., 2017), Nelder–Mead moth
lame algorithm (Zhang et al., 2020a), whale optimization al-
orithm (WOA) (Elazab et al., 2018), boosted mutation-based
arris hawks optimizer (Ridha et al., 2020), artificial ecosystem-
ased optimization (Yousri et al., 2020a), stochastic fractal search
ptimization algorithm (Rezk et al., 2021), chaotic whale opti-
ization algorithm (Oliva et al., 2017), Random learning gradient-
ased optimization (Zhou et al., 2021), Laplacian Nelder–Mead
pherical evolution (Weng et al., 2021), improved wind-driven
ptimizer (Ibrahim et al., 2020), Emended heap-based optimizer,
Rizk-Allah and El-Fergany, 2021). Other heuristic algorithms
Sharma et al., 2021b; Ramadan et al., 2021; Bradaschia et al.,
019a; Zhang et al., 2020b; Li et al., 2019; JackChin and Salam,
019; Marques Gomes et al., 2017) are utilized for identifying
he undetermined parameters of such PV models by optimizing
he fitness functions. Different fitness function-based datasheets
ave been presented and employed different optimizer algo-
ithms to address these problems, like the bacterial foraging
ethod (Awadallah and Venkatesh, 2016), differential evolution
pproaches (Gao et al., 2018; Patro and Saini, 2020), and artificial
ee colony optimizer algorithm (Oliva et al., 2014). Because of
he range selection of upper and lower parameter limits, such
s the dark saturation current that is extremely sensitive, these
pproaches are ineffective.
Nowadays, a TDM has been applied to achieve an accurate PV

odeling that addresses all the PV losses. This model involves
ine parameters that are needed to be identified to attain a
recise PV model. However, because of the multivariable and low
umber of nonlinear equations, it is hard to identify the nine pa-
ameters of this TDM using analytical approaches. The optimiza-
ion approaches play an essential role in designing the unknown
arameters by minimizing the objective function. Different op-
imizer approaches are developed to correctly create the nine
arameters of such TDM like a sunflower optimizer algorithm
SOA) (Qais et al., 2019), WOA (Elazab et al., 2018), Laplacian
elder–Mead spherical evolution (Weng et al., 2021), improved
ind-driven optimizer (Ibrahim et al., 2020), Emended heap-
ased optimizer (Rizk-Allah and El-Fergany, 2021), tree growth-
ased optimizer algorithm (Diab et al., 2020), advanced particle
warm optimizer (Yousri et al., 2020b), and manta ray opti-
ization algorithm (Houssein et al., 2021). Notably, these ap-
roaches cannot provide assurance for the achievement of the
lobal solution. Still, an effort is being made on this subject to
aise the probability of avoiding being locked into local minima
y inventing new algorithms. In this regard, there is still po-
ential for development. The Meta-heuristic approaches are the
ost promising solutions to solve different engineering prob-

ems; each has advantages and disadvantages. No one method can
olve all engineering optimization issues due to the difference in
he degree of nonlinearity, convexity, separability of the control
ariables, and modality.
As per the no-free lunch principle, one approach cannot ad-

quately get the optimal solution to these difficulties, which
mpute the researchers to employ several hybrid optimization
lgorithms to detect enhanced solutions and eventually extract
he TDM parameters. Furthermore, the search spaces of these
lgorithms are purposefully constrained to avoid stagnation in
local solution. As a result, the fundamental purpose of this

esearch is to create a simple, fast converging, and stable hybrid
lgorithm that can be used for a wide range of search spaces.
Many hybrid algorithms are presented to precisely identify the

lectrical parameters of TDM-based PV modules like improved
lime mould optimizer and Lambert W-function (El-Fergany, 2021

ybrid marine predators-slime mould algorithm (Yousri et al.,
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021), hybrid adaptive teaching optimization and differential
volution (Li et al., 2020), and analytical approaches and op-
imizer algorithms are combined to estimate the PV parame-
ers (Qais et al., 2019) correctly.

This study introduces a novel hybrid African vultures-grey
olf optimizer (AV–GWO) approach to extract the nine param-
ters of such TDM. The AVO algorithm represents a new nature
eta-heuristic approach, presented in 2021 by Abdollahzadeh
t al. (2021). It was inspired by the natural activity of African
ultures (Abdollahzadeh et al., 2021). The AVO is a robust nature
ptimizer algorithm with various features, including a minimum
umber of variables to design, a simple method, low computation
urden, quick convergence speed, flexibility, and a gradient-free
ature. Hence, the AVO can be appointed to solve various dif-
iculties in power systems effectively. The AVO approach was
valuated on 36 standard benchmark functions, and it was em-
loyed to find optimal solutions for eleven engineering problems,
hich indicates the significant superiority of such AVO. In the
ybrid approach, the vultures’ updating position formula of the
VO is applied to update the key-group parameters in GWO,
esulting in an enhanced GWO approach.

This article proposes a novel hybrid AV–GWO approach to
recisely estimate the electrical parameters of such TDM. A new
bjective function that depends on the current error is presented
n this study, which is minimized by the hybrid AV–GWO to
recisely estimate the optimal nine parameters of such TDM.
he nine electrical parameters attained through the hybrid AV–
WO approach are compared with that obtained via other meta-
euristic methods. In that regard, the AV–GWO approach has
chieved superior and outstanding outcomes. For more realistic
tudies, the offered AV–GWO is efficiently utilized to design the
ptimal parameters of TDM for two industrial KC200GT and MSX-
0 PV cells. In the optimization process, the hybrid AV–GWO
as recorded the lowest optimal fitness values of 8.475e−13
nd 7.412e−12 for KC200GT and MSX-60, respectively. Addition-
lly, the AV–GWO has recorded the shortest computing time in
.33412 (s), which reflects its rapid convergence, supremacy, and
tability among other approaches. Those PV cells’ modeled I-V
nd P-V curves closely coincide with the real data measured un-
er various climatic conditions. The error between these results
s less than 0.4%. The high performance of the hybrid AV–GWO
pproach-based TDM is verified by examining its absolute current
rror with that realized from other PV models. Consequently, the
utcomes have depicted that the offered AV–GWO approach is
uperior and can be used to generate a precise PV model of any
ndustrial PV cell, which is a unique addition to the PVs market.

The following statements illustrate the main novelty of this
aper:

- Introducing the hybrid African vultures–grey wolf optimizer
(AV–GWO) approach.

- A new objective function that depends on the current error
is proposed in this study.

- AV–GWO, AVO, GWO, WOA, and other meta-heuristic algo-
rithms are applied to find the optimal nine parameters of
TDM for two distinct marketable PV cells.

- Comparing the statistical analyses of 30 separate runs of
all algorithms, where the offered AV–GWO algorithm has
achieved the shortest computing time and lowest optimal
fitness value of the marketable PV cells.

- The modeled I-V and P-V curves of the distinct PV cells
are compared with the real measured data under various
climatic conditions using the hybrid AV–GWO algorithm.

- The absolute current error of the hybrid AV-GWO-based
TDM is compared with that realized using other approaches-
based PV models.
 t
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Fig. 1. TDM of PV panel.

The remainder of this article is prepared as follows; Section 2
describes the TDM of the PV module. In Section 3, the problem
formulation is proposed. The AVO technology is presented in
Section 4. The GWO overview is illustrated in Section 5. Sec-
tion 6 describes the detailed hybrid AV–GWO approach. Section 7
depicts the simulation analyses and discussion. Section 8 draws
conclusions and recommendations for further work.

2. Three-diode model of PV module

Various equivalent circuits are employed to represent the non-
linear I-V relationship of SDM, DDM, and TDM of such PV panels.
Fig. 1 indicates the equivalent electrical circuit of the TDM of PV
modules, which includes a photo-current source, three parallel
diodes, and series and parallel resistors (Qais et al., 2019). The
mathematical I-V behavior of TDM of PV modules is described
using the following equation (Ramadan et al., 2021; Qais et al.,
2019):

I = IPV − IO1

{
exp

[
V + IRs

a1 Vt

]
− 1

}
− IO2

{
exp

[
V + IRs

a2 Vt

]
− 1

}
− IO3

{
exp

[
V + IRs

a3 Vt

]
− 1

}
−

V + IRs

Rp

(1)

where Vt = NsKT/q, Ns depicts the number of series connected
cells, K indicates the Boltzmann constant, T is panel surface
temperature, and q represents the electron charge.

In the PV datasheet, there are many noticeable points of the
I-V relationship, including ISC , VOC, and Pm. Various formulas are
et to demonstrate the characteristics of PV panels at several
emperatures and solar irradiances, as follows (De Soto et al.,
006; Sera et al., 2007):

PV =
(
IPV ,n + KI∆T

) G
Gn

(2)

IO = IOn

(
T
Tn

)3

e{
qEg
aK

[
1
Tn

−
1
T

]
} (3)

Eg = Eg,n(1 − 0.0002677)∆T (4)

Rp = RP,n
G
Gn

(5)

where the variable subscript by n is the variable obtained un-
der standard test conditions (STC). KI indicates the short circuit
current–temperature coefficient, ∆T stands for temperature dif-
erence, G is actual irradiance, and Eg denotes band gap charac-
eristic. Eg,n is considered to be 1.211 eV (Elazab et al., 2018; Qais
t al., 2019). Huge efforts are exerted to identify the unknowns of
he PV panel. Here, the nine parameters of the TDM that needed
o determine are (I , I , I , I , R , R , a , a , and a ).
PV O1 O2 O3 s p 1 2 3
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. Problem formulation

In this paper, various optimizer algorithms are employed to
etermine the TDM’s parameters of the PV module, which re-
uire a definition of a fitness function. A new fitness function is
resented here to design the TDM precisely. The current error, de-
ined as the change between the estimated and measured model
urrents, is utilized as the fitness function in the optimization
pproach. The offered fitness function is the sum of three terms,
hich are the absolute current error, the squared current error,
nd the current error to the power of four, and can e represented
s follows:

=

N∑
k=1

|fk (V , I, φ)| +

N∑
k=1

f 2k (V , I, φ)

+

N∑
k=1

f 4k (V , I, φ)

(6)

where N refers to the measured data samples, φ is a vector that
epresents the design variables of the TDM parameters, and pre-
isely needed to be computed. The fk (V , I, φ) is mathematically
ormulated using (7):

k (V , I, φ) = IPV − IO1

{
exp

[
V + IRs

a1 Vt

]
− 1

}
− IO2

{
exp

[
V + IRs

a2 Vt

]
− 1

}
− IO3

{
exp

[
V + IRs

a3 Vt

]
− 1

}
−

V + IRs

Rp
− Imeasured (7)

here φ =
{
IPV , IO1, IO2, IO3, Rs, Rp, a1, a2, a3

}
.

Imeasured refers to the measured current from the PV module.
hen, the hybrid AV–GWO approach is applied to minimize the
bjective function, ε, and extract the TDM parameters. The prin-
iple AV–GWO code is created using MATLAB environment (Re-
ease, 2016b).

. African vultures–grey wolf optimizer overview

Meta-heuristic optimization algorithms play a vital role in var-
ous applications’ optimization and engineering problems. Such
pproaches are motivated by foraging creatures and animals in
ature. The AVO algorithm simulates the behavior and foraging
f vultures in nature in terms of obtaining food and feeding
ultiple vultures in Africa (Abdollahzadeh et al., 2021). The AVO

s a new nature meta-heuristic approach, modeled in 2021 by Ab-
ollahzadeh et al. (2021). In Africa, various types of vultures live,
nd each has some lifestyle behaviors in fighting and finding food.
ultures are constantly traveling great distances in quest of food.
n this travel, vultures move in a rotational flight to find food.
ultures become aggressive when they are starving. The AVO
pproach was evaluated on 36 standard benchmark functions and
as employed to find optimal solutions for eleven engineering
roblems (Abdollahzadeh et al., 2021).

.1. African vultures optimization process

Vultures are classified into two groups in nature, and each has
different insufficiency in finding food. The vultures have been
earching for food, prompting them to flee the hungry trap. At
irst, it was considered that the worst solution is the weakest, and
ultures tend to avoid the worst. AVO considers two of the best
olutions to be the strongest and best vultures, while others try to
14891
get close to them. The AVO algorithm is formulated in four steps,
as follows.

Phase 1: Choosing the best vulture from any group
The populations are initially randomized in the search space.

The fitness values of these agents are computed, where the best
agent in the first group is picked as the first-best solution, and
the best agent in the second group is chosen as the second-best
solution. The rest solutions are moved to the first and second
groups by utilizing (8). The whole population is recalculated in
each iteration (Abdollahzadeh et al., 2021).

R (i) =

{
Best vulture1 if pi = L1

Best vulture2 if pi = L2
(8)

where L1 and L2 represent the probability parameter (pi) that
is utilized to select the first-best vulture and the second-best
vulture, respectively. Besides, these parameters determine the
probability of moving other agents to one of the best solutions
and their values between [0, 1]. This process is performed using
the Roulette wheel mechanism, as in the following formula.

pi =
Fi∑n
i=1 Fi

(9)

where F stands for the vultures’ starvation rate.

Phase 2: The vultures’ starvation rate
African vultures are constantly looking for food and have

tremendous energy when overstuffed, making them fly far away
searching for food. When vultures are starving, they lack the
energy to fly and search for food. Besides, they become more
aggressive. This behavior can be mathematically simulated using
(10) (Abdollahzadeh et al., 2021).

t = h ×

(
sinw

(
π

2
×

iteri
itermax−i

)
+

(
cosw

π

2
×

iteri
itermax−i

)
− 1

)
(10)

F = (2 × rand1 + 1) × z ×

(
1 −

iteri
itermax−i

)
+ t (11)

where F stands for the vultures are overstuffed, iter denotes the
current iteration, itermax denotes the number of iterations, and
z stands for randomizing number [−1, 1] that changes in each
iteration. h denotes randomizing number [−2, 2]. rand1 denotes
a random value [0, 1]. If the z value falls under zero, the vultures
will be hungry, and when this value increases to zero, the vultures
are overstuffed.

Eq. (10) has been employed to escape from local optimal
points. In the AVO algorithm, the exploitation step is carried out
at the algorithm’s final iterations, and the exploration phase is
also done in some final iterations of such an AVO. The main goal
of this strategy is to modify (10) to vary the exploration and
exploitation phases to raise the possibility of eventually joining
the exploratory phase throughout the AVO optimization process.
In (10), w is a fixed parameter affecting the algorithm processes.
When the value of |F | is > 1, vultures look for food in various
locations, and the AVO algorithm begins the exploration phase. If
|F | is < 1, the AVO algorithm reaches the exploitation phase, and
vultures are looking for food near the solutions.

Phase 3: Exploration
The AVO algorithm’s exploration phase is explained in this

step. Vultures have the visual ability to find sick animals. Vultures
spend a long time examining their surroundings and flying vast
distances in quest of food. Vultures in the AVO can check numer-
ous random regions by using two techniques, and a parameter P1
is utilized to choose one of them. This parameter is set before
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he search procedure, and its value ranges [0, 1]. Each vulture
earches for satiation in the surroundings at random.

(i + 1) =

{
Eq. (13) if P1 ≥ randP1

Eq. (14) if P1 < randP1
(12)

(i + 1) = R (i) − D (i) × F (13)

(i) = |X × R (i) − P (i)| (14)

here R (i) denotes one of the best vultures selected and Pi is
the vulture position vector. X is a vector coefficient that refers to
the vultures’ unpredictable movement to defend food from other
vultures, which varies with each iteration and can be achieved
using X = 2 × rand. P(i+1) denotes the vulture location in the
next iteration.

P (i + 1) = R (i) − F + rand2 × ((ub − lb) × rand3 + lb) (15)

where rand2 is a random value between [0, 1]. ub and lb are the
upper and lower limits of the variables. rand3 is utilized to raise
the coefficient of a random nature. This enhances the variety and
number of searches in various search space areas.

Phase 4: Exploitation
This stage examines the efficiency of the AVO algorithm. If

the value of |F | is < 1, the AVO begins the exploitation phase,
divided into two phases with distinct tactics. P2 and P3 indicate
the parameters utilized to choose the strategies available in the
first phase and the second phase, respectively, and their values
between [0, 1].

In the AVO, the exploitation phase occurs when the value |

F | is between [1, 0.5], in which the rotating flight and siege-
fight techniques are performed. P2 is valued before the searching
peration to determine whether each strategy is selected. In this
hase, randP2, which denotes a random number between [0,1], is
roduced. If randP2 ≥ P2, the Siege-fight strategy is performed.
hile, if randP2 < P2, the rotating flight strategy is implemented

s follows.

(i + 1) =

{
Eq. (17) if P2 ≥ randP2

Eq. (20) if P2 < randP2
(16)

Food Competitively: When |F | ≥ 0.5, the vultures are over-
stuffed and are high-powered. When many vultures get together
in one food, it can lead to significant conflicts over food acqui-
sition. At some times, vultures do not share food with others.
The weaker vultures try to eat from the healthy ones by gath-
ering around them. This can cause minor conflicts. The following
equations model this step.

P (i + 1) = D (i) × (F × rand4) − d (t) (17)

(t) = R (i) − P (i) (18)

here F denotes the satiation rate of vultures, rand4 refers to
random number between [0, 1], which is utilized to raise the

andom coefficient.
Vultures flying in a circle: Vultures are used to fly in a rotational

light. Spiral motion has been used to express this flight, which is
stablished between all vultures and one of the two best vultures.
his stage can be mathematically illustrated as follows:

1 = R (i) ×

(
rand5 × P (i)

2π

)
× cos (P (i)) (19)

2 = R (i) ×

(
rand6 × P (i)

2π

)
× sin (P (i)) (20)

P (i + 1) = R (i) − (S1 + S2) (21)

rom the previous Eqs., R (i) denotes the location vector of one of
he two best vultures in the existing iteration, which is realized
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using (8), rand5 and rand6 are random numbers between [0, 1].
The vultures location is updated using (21).

Second Phase: Exploitation
In the 2nd phase of exploitation, The actions of the two vul-

tures attract many kinds of vultures to the feeding source and
the aggressive life to obtain food. If lF l < 0.5, this phase is
accomplished. In this phase, randP3 is generated. If randP3 ≥ P3,
the plan is to gather a variety of vultures around the food supply.
The aggressive fight strategy is performed if the generated value
is < P3.

P (i + 1) =

{
Eq. (25) if P3 ≥ randP3

Eq. (26) if P3 < randP3
(22)

Vultures’ gathering over the food source: The vultures’ movement
toward the food source is checked. When several vultures are
hungry, they may get together in one food source. This movement
can be formulated as follows:

A1 = Best Vulture1 (i) −
Best Vulture1 (i) × P (i)
Best Vulture1 (i) × P (i)2

× F (23)

A2 = Best Vulture2 (i) −
Best Vulture2 (i) × P (i)
Best Vulture2 (i) × P (i)2

× F (24)

where Best vulture1 (i) and Best vulture2 (i) are the best vultures of
the first and second groups, respectively, in the current iteration.

P (i + 1) =
A1 + A2

2
(25)

inally, the gathering of vultures is performed using (25). P(i+1)
enotes the vector of the vulture’s location in the next iteration.
ggressive Competition for Food: When |F | < 0.5, the head vultures
re frail and hungry, and they lack the strength to deal with other
ultures. The other vultures become aggressive in their search for
ood. Besides, they travel in different ways toward the vultures’
eads. This motion is modeled as follows:

(i + 1) = R (i) − |d (t)| × F × Levy (d) (26)

here d(t) denotes the distance of the vulture to one of the best
ultures of the two groups, which is obtained using (18). Levy
light (LF ) styles are employed to raise the efficiency of the AVO
nd can be obtained using the following equation:

F (x) = 0.01×
u × σ

|v|
1
β

σ =

⎛⎝ τ (1 + β) × sin
(

πβ

2

)
τ

(
1 + β2

)
× β × 2

(
β−1
2

)
⎞⎠ 1

β

(27)

where d denotes the problem dimensions, u and v stand for
a random number varying between [0, 1], σ > 0 denotes the
standard deviation, and β is a fixed number of 1.5.

The computational complexity of the AVO approach is based
on the initialization process, fitness assessment, and updating of
vultures. The computational intricacy in the updating process is
determined by looking for the optimal position. The AVO ap-
proach begins with a random population of solutions, which is
enhanced till the process is terminated. The pseudo-code and the
flowchart of the AVO approach are depicted in Figs. 2 and 3,
respectively.

5. Grey wolf optimizer overview

GWO is a meta-heuristic-based swarm intelligence approach
motivated by the grey wolf hunting procedure in nature. The
GWO was introduced by Mirjalili et al. in 2014. Grey wolves
tend to congregate in groups. On average, each group has 5–
12 members, which is divided into four dominating individuals;
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Fig. 2. Pseudo-code of the AVO approach.

alpha (α), beta (β), delta (δ), and omega (ω) wolves (Mirjalili et al.,
2014).

In each group, the pack’s leaders and most dominating are
α wolves. They make the decisions about hunting, sleeping, and
when to wake up. Besides, α wolves follow other wolves in
the pack to achieve democratic behavior. The α wolf is not the
most powerful member of the group, but they are effective in
controlling and arranging the group. The second most dominant
members in the group are β wolves. They assist α wolves in
making choices and other pack operations. When the α wolves
die or get too old, the β wolves are the best choices. The primary
function of β wolves is to counsel the α wolves and control the
group. The ω wolves are the group’s lowest level, where they are
the last wolves that are allowed to eat. In certain circumstances,
the ω wolves serve as the pack’s babysitters. The δ wolves are in
charge of sending data to α and β wolves. They also control ω
wolves. This category includes scouts, elders, hunters, sentinels,
and caregivers. The critical stages of grey wolf hunting are as
follows (Mirjalili et al., 2014):-

1- Following, pursuing, and approaching the target.
2- Encircling and pestering the prey until it comes to a halt.
3- Launch an attack on the prey.

The GWO algorithm is mathematically simulated as follows:-

a. Social Hierarchy
The wolves’ social hierarchy is simulated by assuming the α

wolf to be the first fittest solution. The second and the third fittest
solution are β and δ wolves, respectively. The only remaining
option is regarded as the ω wolves. The optimization process, in
general, is guided by α, β , and δ wolves. These wolves are tracked

by ω wolves.

14893
Fig. 3. Flowchart of the AVO-Approach.

. Encircling the Prey
During the hunt, the grey wolves surround the victim. This

rocess is mathematically simulated as follows:

= |C.XP (t) − X (t)| (28)

X (t + 1) = XP (t) − A.D (29)

where D indicates the dimension of a problem, A and C denote
coefficient vectors, t refers to the current iteration, X (t) and
XP (t) point out the position vector of the grey wolf and the prey,
respectively. The A and C vectors are determined as follows:

A = 2a.r1 − a (30)

C = 2.r2 (31)
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During iterations, the components of vector a have linearly
decreased from 2 to 0. r1 and r2 are random vectors between
0, 1].

. Hunting
The grey wolf hunting strategy is modeled by assuming the α

best candidate solution), β , and δ wolves have enough knowl-
dge about the prey’s position. So, the top three best solutions
roduced so far are preserved and used to persuade additional
earch agents (including ω) to update their positions accord-
ing to the best search agents’ location. This hunting process is
mathematically simulated as follows:

Dα = |C1.Xα − X | ,Dβ =
⏐⏐C2.Xβ − X

⏐⏐Dδ = |C3.Xδ − X | (32)

1 = Xα − A1.Dα, X2 = Xβ − A2.Dβ , X3 = Xδ − A3.Dδ (33)

(t + 1) =
X1 + X2 + X3

3
(34)

d. Attacking the Prey
The grey wolf closes its hunt by attacking the prey after it

stops moving. The attacking process is mathematically simulated
by decreasing the value of vector a from 2 to 0 during the itera-
tions. It has been noticed that |A| < 1 forces the wolves to assault
the prey. The attacking methodology indicates the exploitation of
the GWO algorithm.

e. Searching for the prey
The grey wolves typically go out in search of prey, according to

the position of α, β , and δ wolves. The wolves begin by splitting
from each other, searching for the prey, and then converging
to assault the prey. It is noticed that |A| >1 causes the wolves
to seek out more fit prey. This divergence strategy depicts the
GWO algorithm’s exploration. The GWO flowchart is depicted in
Fig. 4. The GWO approach begins with a random population of
grey wolves and works its way up to the best candidate solution
(Xα). The GWO was successfully applied to solving various opti-
mization issues, as mentioned in El-Fergany and Hasanien (2015)
and Soliman et al. (2018). The GWO has some merits, including
simple to perform, a free-derivative algorithm, fewer operators to
fine-tune, and it can save information about the search space via
iterations and saves the best-obtained solution.

6. Hybrid african vultures–grey wolf optimizer overview

At present, the hybridization of two or more algorithms has
become famous for detecting enhanced solutions to optimization
problems. Several sets of well-known optimization approaches
have been integrated into hybrid algorithms to become more
effective in dealing with practical challenges.

When GWO explores an individual with a good fitness value,
poor global search ability happens, making it possible to fall into
the local optima. AVO algorithm updates the vultures’ location
with a given probability independent of the search path and in
random directions. Therefore, moving from one region to another
in AVO is more straightforward. As a result, AVO is a beneficial
technique for GWO enhancement. This signifies that AVO is em-
ployed to update the location’s current search agent and get a
new set. Fig. 5 indicates the flowchart of the integrated AV–GWO
approach.

As previously indicated, one of the most current integrations
of optimization algorithms is the AVO with the GWO, where the
AVO is applied to update the key-group parameters in GWO, as
illustrated in the flow chart. The novel hybrid AV–GWO approach
provides efficient solutions to optimization challenges.

In that regard, to modify the locations, convergence precisions,
and speeds of the grey wolf agent (α), the position-updated
formula of the AVO is applied to strike a balance between re-
searching, exploiting, and expanding the convergence attitude
of the GWO approach. Consider the GWO algorithm’s remaining
procedure as it is.
14894
Fig. 4. Flowchart of The GWO approach.

. Simulation analyses and discussion

This section exhibits the optimization and simulation out-
omes for the TDM of PV cells using the hybrid AV–GWO ap-
roach. These approaches are presented to design the nine elec-
rical parameters of the TDM of two practical PV panels, i.e.,
yocera KC200GT (Kyocera, 2018) and Solarex MSX-60 (Solarex,
018) PV panels. These panels utilized different cell types (Multi-
rystalline or Polycrystalline). These famous PV cells are utilized
o validate the performance of the offered TDM. Table 1 depicts
he behaviors of famous PV panels recorded under the STC. The
rimary purpose of these commercial PV panels is to validate the
fficacy of the hybrid AV–GWO approach-based TDM compared
o other approaches-based TDM.

.1. Optimization results

The optimization outcomes are achieved by minimizing the
itness function (ε) in (6) using the proposed hybrid AV–GWO
pproach and other optimization methods. Notably, the optimiza-
ion process, simulation, and numerical data for all approaches
re designed using MATLAB 2016b (Release, 2016b) and per-

formed using a laptop running Windows 10 Enterprise 64-bit
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Fig. 5. Flowchart of the offered hybrid AV–GWO approach.

Table 1
Datasheet of two marketable PV panels.
Company Kyocera (2018) Solarex (2018)
Model KC200GT MSX-60
Cell Type Multi-crystal Polycrystalline
Pm [W] 200 60
Vm [V] 26.3 17.1
Im [A] 7.61 3.5
Voc [V] 32.9 21.1
Isc [A] 8.21 3.8
Ns [cell] 54 36
Ki [A/◦C] 0.00318 0.00065
KV [V/◦C] −0.123 –0.08

and outfitted with Inter(R) Core(TM) i7-4510 CPU @2.00 GHz
2.60 GHz processor and installed 16 GB RAM. The proper setting
of the hybrid AV–GWO approach is depicted in Table 2. These
settings are chosen based on the tradeoff between algorithm
precision and intricacy. They are adjusted using the trial-and-
error approach, a general method for adapting the algorithm
parameters. In the optimization process, the hybrid AV–GWO
was terminated after a high number of separate runs, around
thirty runs of the offered approach for the practical PV modules.
The provided hybrid AV–GWO has achieved the optimal solution
faster than other approaches and attained the lowest fitness
values that recorded 8.475e−13 and 7.412e−12 for KC200GT
and MSX-60, respectively. Fig. 6 shows the best fitness value
convergence curves using these marketable PV panels, indicating
a very fast convergence speed. The optimal nine parameters of
the TDM for both PV panels are mentioned in Table 3.

To confirm the soundness of the achieved designed variables,
a fair comparison is done using the hybrid AV–GWO approach,
the SOA, the simulated annealing (SA), WOA, GWO, and AVO
for the two mentioned PV panels and indicated in Tables 4–5.
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Table 2
Characteristics of the hybrid AV–GWO approach.
No. of iterations 500
No. of search agents 30
No. of variables 9
L1 0.7
L2 0.3
w 3
P1 0.6
P2 0.4
P3 0.6
No. of grey wolves 9

Table 3
Optimal nine parameters using AVO approach.
Parameter KC200GT MSX-60

IPV [A] 8.2541 3.5712
Rp [�] 334.185 282.156
Rs [�] 0.3698 0.17194
a1 1.3158 1.4162
a2 1.1985 1.0126
a3 1.5625 1.3185
IO1 [A] 2.745e−08 2.941e−08
IO2 [A] 4.925e−10 3.419e−10
IO3 [A] 4.573e−10 4.097e−10

Fig. 6. Fitness function convergence for two marketable PV panels.

Notably, for the two PV panels, the optimum parameters obtained
using the hybrid AV–GWO are comparable to those obtained
using other algorithms. They are within the allowable limit of PV
modeling precision. As a result, the hybrid AV–GWO approach-
TDM is a very competitive technology to those established PV
models.

7.2. Computational and statistical analysis

Table 6 displays the calculation times for the meta-heuristic
approaches utilized in this study, in which the hybrid AV–GWO
takes the shortest time. Moreover, Tables 7–8 indicate the statisti-
cal analysis, such as average and standard deviation, to evaluate
the optimal values for the two marketable PV panels using dif-
ferent optimization algorithms. Obviously, the novel hybrid AV–
GWO has achieved the lowest standard deviation, median, and
variance values compared to other approaches, which refers to
the superior performance and good design of the novel hybrid
AV–GWO approach.
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Table 4
Comparison of optimal TDM parameters for KC200GT.
Parameter SOA SA WOA GWO AVO AV–GWO

IPV [A] 8.21213 8.25 8.231 8.129 8.419 8.2541
Rp [�] 606.1219 327.597 341.387 351.264 361.821 334.185
Rs [�] 0.23796 0.378 0.3421 0.3491 0.3581 0.3698
a1 1.2481 1.199 1.32 1.208 1.307 1.3158
a2 1.991 1.2 1.236 1.172 1.137 1.1985
a3 1.8421 1.48 1.0216 1.4272 1.5061 1.5625
IO1 [A] 4.30e−08 1.78e−08 2.692e−08 2.578e−8 2.642e−08 2.745e−08
IO2 [A] 2.22e−10 3.76e−10 4.678e−10 4.472e−10 4.814e−10 4.925e−10
IO3 [A] 1.35e−6 4.62e−10 4.927e−10 4.973e−10 4.649e−10 4.573e−10
Fitness value 7.391e−11 8.469e−11 5.1497e−11 6.149e−11 7.249e−12 8.475e−13
Table 5
Comparison of optimal TDM parameters for MSX-60.
Parameter SOA SA WOA GWO AVO AV–GWO

IPV [A] 3.80111 3.792 3.756 3.642 3.491 3.5712
Rp [�] 578.3468 298.59 277.37 280.41 281.974 282.156
Rs [�] 0.20598 0.211 0.195 0.1851 0.6972 0.17194
a1 1.282 1.29 1.30 1.362 1.3901 1.4162
a2 1.8043 1.22 1.23 1.1812 1.0841 1.0126
a3 1.4364 1.28 1.13 1.174 1.3024 1.3185
IO1 [A] 4.98e−8 1.98e−8 2.19e−8 2.842e−08 2.904e−08 2.941e−08
IO2 [A] 7.24e−10 4.76e−10 3.68e−10 3.541e−10 3.414e−10 3.419e−10
IO3 [A] 1.42e−7 2.62e−10 3.97e−10 4.017e−10 4.076e−10 4.097e−10
Fitness value 8.167e−11 3.149e−10 4.195e−11 6.149e−10 3.974e−11 7.412e−12
Table 6
Computing time of applied optimization methods in seconds.
PV cell SOA SA WOA GWO AVO AV–GWO

KC200GT 0.5621 (s) 0.5314 (s) 0.4836 (s) 0.4694 (s) 0.4410 (s) 0.4341 (s)
MSX-60 0.4621 (s) 0.4376 (s) 0.3697 (s) 0.3416 (s) 0.3301 (s) 0.3142 (s)
Table 7
Statistical analysis of fitness function for thirty separate runs for modeling of KC200GT.
Statistical analysis SOA SA WOA GWO AVO AV–GWO

Minimum 7.391e−11 8.469e−11 5.1497e−11 6.149e−11 7.249e−12 8.475e−13
Average 4.348e−10 4.927e−10 3.761e−10 3.173e−10 3.491e−11 4.268e−12
Standard 5.972e−10 6.491e−10 4.649e−10 4.975e−10 4.691e−11 5.475e−12
Table 8
Statistical analysis of fitness function for thirty separate runs for modeling of MSX-60.
Statistical analysis SOA SA WOA GWO AVO AV–GWO

Minimum 8.167e−11 3.149e−10 4.195e−11 6.149e−10 3.974e−11 7.412e−12
Average 4.192e−10 1.279e−9 2.178e−10 3.495e−9 1.373e−10 4.973e−11
Standard 6.184e−10 2.135e−9 3.197e−10 4.719e−9 2.349e−10 6.794e−11
P
w
v

e
h
s
c

7.3. Simulation outcomes under different environmental conditions

PV modules are susceptible to various environmental parame-
ers, the most important of which are solar radiations and am-
ient temperature that affect the output current of PVs. The
umerical results of the TDMs for the two commercial PV pan-
ls are compared with the measured data under various tem-
eratures and solar irradiations to validate the efficacy of the
V-GWO-based TDM. The estimated TDM for the KC200GT PV
anel is examined under different temperatures and constant G
1000 W/m2. Fig. 7(a)&(b) compares the I-V and P-V behav-

iors using the hybrid AV–GWO algorithm-based TDM with their
experimental data for the KC200GT PV panel under several tem-
peratures. It can be noted that the numerical results are matched
with the experimental results using the hybrid AV-GWO-based
TDM, which refers to the superiority of the offered approach for
the PV panel. In addition, it is illustrated that the open circuit
14896
voltage and power fall as the temperature rises, whereas the short
circuit current marginally rises. Moreover, the estimated TDM
is examined under various irradiations and constant T = 25 ◦C
for the KC200GT PV panel. Fig. 8(a)&(b) illustrates the I-V and
-V relationships of the hybrid AV-GWO-based TDM compared
ith their experimental data for the KC200GT PV module under
arious irradiations and constant T = 25 ◦C.
It is noted that there are no differences in the numerical and

xperimental results, which refers to the validity of the novel
ybrid AV–GWO approach-TDM. Additionally, it is indicated that
hort circuit current drops when solar radiation falls, yet, open
ircuit voltage decreases somewhat as solar radiation lowers.
Fig. 9(a)&(b) indicates the I-V and P-V behaviors for the

MSX-60 PV panel under various temperatures and constant G
= 1000 W/m2 using the AV–GWO algorithm-based TDM PV
module. Notably, the numerical and measured results are close

to this PV panel. So, the TDM can be utilized to determine the
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Fig. 7. Numerical outcomes and measured data of the KC200GT PV panel at
several T, G = 1000 W/m2 . (a) I-V curves. (b) P-V curves.

lectrical parameters of any PV panel and reasonably confirm the
oundness of the AV–GWO approach.
Notably, all the measured values for actual PV panels are

btained on the outside surface of a Campus building roof. A
eal KC200GT PV panel (Kyocera, 2018) used in the experimental
est is mentioned in Fig. 10(a). The PV panels are housed in an
pen-glassed container with flowing cold or hot to adjust the
V panels’ ambient temperature, as depicted in Fig. 10(b). The
xperiment was carried out on 20 August 2021 at the Faculty
f Engineering, Ain Shams University, Cairo, Egypt. The I & V
alues for both actual PV modules are measured with an am-
eter and a voltmeter under various climatic circumstances. A
ariable resistor with a nominal value of 39 � is employed to

record the I & V values at short-circuit, open-circuit, and varied
load situations. The solar irradiation is measured using a silicon
cell Pyranometer SP-110-SS with 5 W/m2 per mV element of
alibration and ±5% uncertainty in calibration. Moreover, a high
robe infrared electronic thermometer temperature device with
setting of ±1 ◦C, whose range is [−32, 550 ◦C], is used to record
he temperature.
14897
Fig. 8. Numerical outcomes and measured data of the KC200GT PV panel at
various G and T = 25 ◦C. (a) I-V curves. (b) P-V curves.

For additional confirmation of the offered model, the ACE of
the hybrid AV–GWO algorithm-based TDM related to the mea-
sured results is paralleled with other PV models, such as the
WOA-based TDM (Elazab et al., 2018) and the iteration method-
based TDM (Villalva et al., 2009) for the KC200GT and MSX-60
PV panels, which are indicated in Fig. 11(a)&(b). It can be noted
here that the ACE of the hybrid AV-GWO-based TDM is signif-
icantly smaller than that of other PV models, which refers to
the superiority of the proposed TDM, especially at the enclosure
of all PV panel practical applications. The excellent efficiency
and preciseness of the AV-GWO-based TDM refer to the suitable
design of the hybrid AV–GWO approach.

8. Conclusion

A novel hybrid AV–GWO algorithm and a new fitness function
to accurately identify the TDM PV parameters are proposed in this
paper. The principle goal here is to achieve a precise model for
any practical PV modules, which is critical in the simulation anal-
yses of grid-integrated PV power plants. The PV cell is described

by a nonlinear I-V characteristic, which includes nine parameters
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Fig. 9. Numerical and measured outcomes of the MSX-60 PV panel at various
T, G = 1000 W/m2 . (a) I-V curves. (b) P-V curves.

ue to the insufficiency of information supplied in the datasheet
f such PV cells. In the optimization process, the hybrid AV–
WO minimizes the fitness function designed by the sum of the
bsolute current error, the squared current error, and the current
rror to the power of four. Hence, the nine TDM parameters
f the PV panel can be extracted. Different comparisons were
ade to confirm the soundness of the proposed TDM using the
ybrid AV–GWO technology. The AV–GWO approach was used to
etermine the parameters for two practical PV panels precisely. It
s worth noting that the optimal nine parameters retrieved using
he hybrid AV–GWO methodology are close to those obtained
sing other optimization methods. The AV–GWO has yielded
ower optimum fitness values of 8.475e−13 and 7.412e−12 for
C200GT and MSX-60 PV panels. In addition, the AV–GWO has
ecorded the shortest computing time in 0.43412 (s) and 0.3142
s) for KC200GT and MSX-60 PV panels, respectively. Moreover,
he simulation evaluations of the hybrid AV-GWO-based TDM
gree with the measured results under various environmental
ircumstances, and the error between these results is less than
.4%. Furthermore, the hybrid AV–GWO approach has achieved
fast convergence speed and the best statistical optimization
utcomes, which has proved the robustness of the AV–GWO in
14898
Fig. 10. Experimental set-up. (a) Practical KC200GT PV panel in the laboratory.
(b) PV temperature regulation.

designing the optimum TDM parameters compared to the other
approaches. For these actual PV modules, the ACE of the AV-
GWO-based TDM related to the measured data has revealed a
lower value over other PV models, which indicates the high
performance of the offered approach in creating an accurate
TDM-based PV module. The hybrid AV–GWO approach can realize
the electrical parameters of any marketable PV panel.

For future work, the hybrid AV–GWO algorithm will be applied
to design the controllers’ parameters utilized in different energy
conversion systems.
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Fig. 11. ACE of PV panel. (a) KC200GT. (b) MSX-60.
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