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a b s t r a c t

Transmission lines (TLs) of power networks are often encountered with a number of faults. To continue
normal operation and reduce the damage due to the TL faults, it is a must to identify and classify faults
as early as possible. In this paper, the design and development of an intelligent machine learning
framework is presented to identify and classify faults in a power TL. The design of the proposed
framework is done with the goal of reducing computational load and ensuring resilience against source
noise, source impedance, fault strength, and sampling frequency variation. The design is carried out
based on the selection of the optimal model parameters using a search optimization algorithm called
GridSearchCV. The effectiveness of the proposed model is verified by testing the model on the IEC
standard microgrid model in a MATLAB environment. The results show that the proposed model
has more than ninety-nine per cent overall accuracy in the identification and classification of the
TL faults. The results are also compared with some state-of-the-art approaches such as LSTM, RNN,
DBN, DRL, and CNF to further examine the performance of the proposed framework. The comparison
demonstrates that the proposed model outperforms other existing techniques in terms of accuracy,
computational cost, and response speed.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The transportation of electricity from generating stations to
ubstations is referred to as electric power transmission. Trans-
ission lines (TLs), an important component of a power grid, are
xclusively responsible for carrying electricity from a producing
tation to substations and consumers (Godse and Bhat, 2020).
very day, new TLs are being installed to meet the intemper-
nce demand for electricity (Godse and Bhat, 2020). Nevertheless,
ransmission lines are prone to a variety of faults. The faults in TLs
re primarily categorized as open-circuit faults and short-circuit
aults (Reddy and Mohanta, 2008; Fahim et al., 2021). A short-
ircuit fault, the severe one, follows when a phase to ground
r a phase to a phase joint connection arises. When such faults
ccur, they not only disrupt power delivery but also raise the
isk of damage to home properties as well as the entire electrical
nfrastructure. As a result, to seize control over the faults, a fast
iagnosis of the faults is essential.
Over the last few years, there have been continuous research

rends in the identification and classification of TLs faults. Several
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approaches are being attempted to get over the identification and
classification of the TL faults. One of the earlier attempts was the
measurement of the symmetrical components of reactive power
for single-circuit TLs (Mahamedi and Zhu, 2013). However, this
method suffers due to the presence of a propagation delay that
affects the accuracy (Chen et al., 2016b). While the integration of
phasor measurement units provides a solution, the uncertainty
of dealing with missing data is a concern (Jiang et al., 2000).
Another technique used in TL fault diagnostics is the traveling
wave technology. This technique is only used for fault location
finding (Chen et al., 2018). The fault classification problem ne-
cessitates a different approach integration. Another concern with
this method is establishing higher-value sample rates, which is
challenging (Tang et al., 2016).

The adapted techniques, as discussed earlier, suffer mostly
because of the use of raw signals. The essential features of the
original signal are not observable using these methodologies.
Noises in the signal are common, and the features can be overly
complex at times (Dutta et al., 2014). Therefore, researchers adopt
techniques that are built on top of the special signal processing al-
gorithm, and Fourier transform (FT) comes first on the list (Taheri

et al., 2018). FT shows its proficiency, where both the time and
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requency of a signal are constant, along with a stationary sig-
al analysis (Abdollahi and Seyedtabaii, 2010). On the contrary,
oltage and current signals could be non-stationary which means
he frequency could vary. Short time Fourier transform (STFT) is
ound to overcome the limitations of FT, but it is not adaptive
or a different state of a signal, because of its fixed window
ize. Comparatively, s-transform (ST) is a good alternative, as its
indow size varies with the frequency of the signal, and it can be
sed for both finding the location (Ahmadimanesh and Shahrtash,
013), and the type of fault (Dash et al., 2007). However, fault
ocation estimation using ST is more common, and the integration
f pattern recognition algorithms is observed for the faulty phase
etection (Roy and Bhattacharya, 2015). ST is a viable solution,
ut the computation power that it requires and the processing
ime are things to be considered (Dash et al., 2015).

Wavelet transform (WT) is an eminent feature extraction tech-
ique (FET) (Livani and Evrenosoglu, 2013). In addition to pro-
iding time-domain information, it also provides frequency data
f a signal. It correspondingly reduces noises in a signal by con-
entrating it into large magnitude coefficients of wavelet where
he noises from coefficients of smaller magnitude are removed
ithout compromising the quality of the main signal (Costa et al.,
012). Furthermore, it reduces the size of the dataset by con-
erting a sequence to its energy value, therefore, making the
omputation simpler (Fahim et al., 2021). The availability of a
ide range of wavelet functions makes it challenging for re-
earchers to select the right version of mother wavelet for a given
ignal. Authors in Safavian et al. (2005) report that there are
ome basic properties that need to be considered while choosing
mother wavelet which determines the correlation and stability
f a given signal with the wavelet function. These properties are
he similarity in waveform between the wavelet function and
he signal to be analyzed, vanishing moments, and computational
omplexity. Daubechies 4 (DB4) matches those properties for
ower system transients and most of the literature presents the
mplementation of this wavelet function for TL fault analysis.
T overcomes the limitations of each of the FETs mentioned

arlier, and FIE accuracy implementing WT is promising (Jurado
nd Saenz, 2002).
FIE approaches that use machine learning (ML) algorithms

rovide a great advantage as they learn from the data and find
seful features. A variety of machine learning methods have been
sed to detect and classify transmission line faults. Two algo-
ithms, support vector machine (SVM) and decision tree (DT) are
ound to be of utmost use in the field of TL fault analysis (Mishra
nd Ray, 2018). SVM is a statistical learning theory-based algo-
ithm that works with large data and efficiently computes (Dash
t al., 2006). However, SVM is sensitive to its parameter se-
ection (Duan et al., 2003). The DT solves tree-like graphs to
ake decisions and increases the complexity in computation for
ulti-class problems (Raza et al., 2020).
Artificial neural network (ANN) is known for recognizing pat-

erns in data (Jain et al., 2009). In Fathabadi (2016), an FIE ap-
roach is proposed that utilizes an FIR filter for signal processing
nd ANN to detect and classify faults. However, it combines SVM
nd SVR models, which may increase the computation cost, and
he sample size of the signal seems to vary. The use of micro-
ontroller based approach for fault detecting and application of
NN for fault classifying is proposed in Koley et al. (2016). It uses
urrent and voltage signals sampled at 1 kHz to identify fault and
o feature extraction technique is used.
The use of combined neural net architectures, such as CNN-

STM (Wang et al., 2022), R-CNN (Zhai et al., 2021), GSV-CNN
Han et al., 2021) is found in the paradigms of TL fault analysis.
NN is powerful and reliable when the input data is image or

ideos. The TL fault data obtained numerically is required to
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reprocess an image to work with CNN for best results. In case of
LSTM, sequential data is required. Additionally, the performance
of these algorithms is dependent on the layer design. More the
layers more the computational load (Rai et al., 2021).

The above explanation clearly demonstrates that machine
learning techniques, in particular deep learning techniques, are
often used in the identification and classification of TL faults. The
challenges of most deep learning algorithms are that they require
a dataset containing a large amount of data, high computational
power, and suffer from problems with a set of rules to select the
architectural model. Transmission line fault data is often limited
to small numbers and is computed with noise in real-time. The
identification and classification of such faults are required to be
done as soon as possible to rescue the normal operation.

This paper proposes a simple machine learning architecture
that automatically selects its model parameters irrespective of
the low to the high variation of data in a dataset and guarantees
robustness against unwanted noise. The proposed method does
not compromise with the state-of-the art methods such as ANN,
CNN, and DBN in terms of accuracy and computational power.
The proposed solution is important in the context of the existing
literature because of its simplicity, low computational power, and
high accuracy.

1.1. Contributions

The innovation of this research is to introduce a simple but
self-optimized effective machine learning approach for transmis-
sion line fault diagnosis which can guarantee the high level of
performances for any given dataset with consuming and utilizing
the less computational time and hardware. The main findings of
this work are as follows:

• Design and development of a statistical machine learning
method that does not require a large quantity of data which
is less computationally complex and utilizes minimal hard-
ware.

• Integrate a wavelet-based feature extraction technique to
obtain specific features of the signals by filtering the signal
and converting to a sequence of data into a single feature.

• Develop a model parameter selection technique with pro-
posed machine learning method in order to auto-tune the
hyper parameter of the proposed ML model each time new
data is input. The proposed model combined parameter
selection technique offers the same level of performances
when dealing with the uncertainties data presented in the
power system.

The rest of the paper is organized as follows: After the intro-
ductory section, a System Modeling section is presented that was
used to generate the dataset and validate the classifier perfor-
mance. The Signal Processing, The Proposed Method, Result and
Discussion, and the Conclusion sections are presented, respec-
tively.

2. System modeling

Simulink software was used for designing and simulation
of the power system model. Combination of two–three-phase
source-based system, and line length of 100 km constitutes the
model, as shown in Fig. 1. In the initiation of the sources, posi-
tive and zero sequence resistances are considered and assigned
a value of 0.01274 �/km and 0.3863 �/km, respectively. The
system is capable of generating 220 kV phase to ground voltage
at 50 Hz frequency. We can see in Fig. 1 that T-1 and T-2
transformers are used for the step-down purpose. The system

could be designed with a wide variety of parameter settings.
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Fig. 1. The power system model designed in Simulink.
Table 1
Simulink system parameter used for simulation and data generation.
Attributes Values

Different types of fault AG, BG, CG, ABG, BCG, CAG AB, BC, CA, ABCG
Fault resistance (�) 0.1, 0.2, 0.3, 0.4, 0.5
Fault distance (km) 1 to 99
Gen-1 Gen-2 220 kV, 600 MVA, 50 Hz

Different literates utilize different configurations, so, it can be a
25 kV 50 Hz or 440 kV 60 Hz source-based system. However, the
focus is on designing a machine learning-based intelligent fault
identification and estimation system; therefore, a benchmark
topology (Chen et al., 2016a) is adopted in this research. Higher
sampling frequency can provide more detailed information about
a signal. A detailed signal contains more data points and precisely
presents the impact on the signal due to the fault event or noise
or any abrupt changes. Accordingly, the generated voltage signal
is sampled at a sampling rate of 20 kHz that gives exactly 400
samples of the respective signal for one complete cycle. Different
observation using the benchmark topology is discussed in the
result section and the generated signal is presented in Fig. 12.

The incident of fault into the system is performed using
imulink three-phase fault block utility. It can generate all the
ault types, as presented in Table 1. Some other system parame-
ers considered when designing the system and switched during
imulations are also presented in detail Table 1.

. Data processing

The real world power system data are often noisy. The design
f the FIE framework allow it to accurately classify fault types,
ven though the data are noisy. As a part of the scheme, a special
ignal processing scheme is deployed that can reduce noise from
he signal and calculate the energy of the signal.

.1. Signal processing

WT is initially used for working with voice and image data.
owever, its specialty in localizing frequency components of
ifferent range made researchers think of using it in other fields
lso. Consequently, the output provided is far better compared
o other signal processing techniques, both in terms of use-
ulness and computational efficiency. There is a basic wavelet
unction at the core of wavelet transform called the mother
avelet which stretches a signal by translating and dilating to
enerate a wavelet based representation. The equation for mother
avelet is obtained as,

(d,tr )(t) =
1

√ φ

(
t − tr

)
(1)
d d
10170
d represents the dilation factor that can stretch a signal or shrink
it, and helps to capture the abrupt changes in the signal, where tr
is the position factor that moves the wavelet through the signal.
If a signal v(t) is continuous in time, then the equation of its
Continuous Wavelet Transform (CWT) can be derived as,

CWT (d, tr ) =
1

√
d

∫
∞

−∞

v(t)φ
(
t − tr

d

)
dt (2)

The result produced by CWT generates too many coefficients
which are functions of d and tr . It calculates the coefficients
for every possible dilation that makes the analysis even harder.
In contrast to CWT, the discrete wavelet transform (DWT) uses
discrete dilation and position factors which helps in a compressed
representation of the signal and provide output in a more under-
standable manner. The DWT of a signal can be performed by using
the following equation,

DWT (v, p, q) =
1√
dp0

∞∑
j=1

v(j)φ
(
q − jdp0

dp0

)
(3)

in the above expression, d is replaced by dp0 and tr by the term
jdp0t0 where d0 > 1, t0 > 1 and j, p belongs to the set of positive
integers.

The DWT uses high and low pass filters to decompose a
given signal in terms of two different frequency ranges. The
detail coefficients contains the high-frequency components while
approximation contains the low-frequency components. Fig. 2
shows the decomposition process for this particular research. A
real world is system is more likely to have noises in the signal.
Some random noise is also introduced into the signal to verify
that the noisy signals can also be handled using the proposed FIE
approach. The figure shows the signal gets totally noise free at
the end of the decomposition.

Literatures show using Daubechies wavelets with level 3 or
4 decomposition works better with voltage and current sig-
nals (Bhowmik et al., 2009). We found that the decomposition of
level 4 gets the best result in this case. Although, level finding is
a trail and error process, sparsity plot (Bekerman and Srivastava,
2021) is now being used to determine the exact level of decompo-
sition for a particular signal. Fig. 3 presents the design process of
wavelet based feature extraction for this research. The sparsity
plot sends a signal by showing abrupt changes in the curve
after the optimal decomposition level is reached. In Fig. 3(a),
sparsity plot for noise free signal is presented. An abrupt change
in sparsity value is observed after level 2. Therefore, level 2 is the
optimal decomposition level for this signal.

For the noisy signal in Fig. 3(b), the change in sparsity value
is very insignificant till level 4. After that a huge variation is
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Fig. 2. Signal denoising and feature extraction using wavelet.
Fig. 3. Design process of wavelet based feature extraction (a) Signal Sparsity Plot (b) Signal + Noise Sparsity Plot.
bserved. Thus, level 4 is selected as the optimal decomposi-
ion level for this research. When a fault occurs, the resulting
urve of voltages and currents also varies. The useful features
re extracted from those signals, in other words, we calculate
he energy of the resulting curves to generate our dataset. Three
ifferent values of energy is obtained for three different phases
nd this combination varies for each fault type. We use the
ollowing equation to calculate the energy,

v =

n∑
j=1

|cj|2 (4)

where, Ev is the energy of a voltage signal, cj is the coefficient
vector and n is the population of the detail coefficients.

3.2. Data generation

The values of fault resistance (FR) at which the dataset is
generated are 0.1, 0.2, 0.3, 0.4, and 0.5, as can be seen from
Table 1. The line length is set in the range 1 to 99 km for
each of previously mentioned values of FR. The fault type is
10171
introduced manually into the power system designed in Simulink
environment. A MATLAB script varies the Simulink parameter
programmatically, runs the simulation, calculates energy from
the measured voltage data, and stores them into tabular data
format until it meets the dataset requirement. There are 495 data
samples for each fault type and a total of 4950 data samples for
all the classes present in that data table. A quantitative analysis
of the relation among fault resistance, distance and signal energy
is Table 2.

The table is a tiny slice of the main dataset that presents
the variation in energy with respect to fault resistance and fault
distance. The selected fault type is Phase B to the ground (BG).
However, the effect of fault is same and depending on the fault
type the energy of the corresponding phases are affected. In this
case, the energy of the faulty phase is significantly higher than
that of the other two phases. The table presents an analysis at
two instances of fault distance. They are at 1kilometer (km) and
3 km. When the distance is constant and the fault resistance
is increasing, a proportional increase in energy of phase B is
observed. However, the increasing distance shows an inverse

proportional relationship with the phase energy. The energy is
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Quantitative analysis of fault resistance and fault distance.
Sl. No. Fault

type
Fault
resistance

Fault
distance

Energy of
Phase A

Energy of
Phase B

Energy of
Phase C

01 BG 0.1 1 98227.29 179271.78 99051.32
02 BG 0.3 1 98219.84 179307.17 99054.27
03 BG 0.5 1 98212.49 179343.14 99057.24
04 BG 0.1 3 97963.69 172525.19 98593.24
05 BG 0.3 3 97957.65 172569.76 98595.56
06 BG 0.5 3 97951.76 172615.11 98597.96
Fig. 4. Variation in signal energy due to the change in fault resistance.
w
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uch lower at 3 km distance than energy at 1 km distance. In
etail analysis of these two factors is presented in the following
ub-sections.

.2.1. Fault resistance-energy relation
The graph in Fig. 4 expresses how the signal energy is affected

y the fault resistance variation. Phase B is the faulty phase in this
ase, and it can be observed from the graph. The energy levels
f phase A and phase C are close, while phase B is at a great
istance. Due to the change in fault resistance, the value of energy
ncreases for phase B and phase A. Therefore, the amplitude of
ignal energy of the faulty phase has a proportional relation to
ault resistance . However, a very small fluctuation is observed in
hase C. Additionally, the observation exhibits that the fault in a
articular phase affects the energy of the other phases as well.

.2.2. Fault distance energy relation
The magnitude of faulty phase energy is also affected by the

ocation where the fault has occurred. The dataset is generated
onsidering the total line length is 100 km, and the data samples
re taken at every 1 km distance. It can be seen that, from Fig. 5,
he signal energy of the faulty phase, in this case, phase B, changes
nversely with gradual increment of the distance between the
ault location and the fault measuring point. Each of the phases’
ignal energy reaches an identical level when the fault distance
s between 40 km to 80 km. The phase B signal energy even
ecreases more than the level phase A and phase C maintaining
hile the distance goes over 80 km. The effect of fault distance
n the signal energy is prominent, as it can make the data very
ifficult to distinguish the faulty phase. The energy fluctuation for
he other two phases is very little.
 m
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4. Proposed method

4.1. Model derivation

The proposed FIE approach that incorporates an ML algorithm
to learn from the data and predict fault type is based on a
theory called statistical learning. It takes training data as input
and maps them into an alternate dimension that is called a high-
dimensional feature space, where it can find a separator between
two classes, if we consider it a binary classification problem. The
separator is called a hyperplane. A margin denotes the distance
between the nearest data points of a particular class and a hy-
perplane. The degree of a good fit hyperplane is depended on the
expansion of the margin. The equation of the hyperplane is given
by the following equation,

h(z) = wT z + l = 0 (5)

where, w stands for a n-dimensional vector, c is sets the position
of the hyperplane, and h(z) represents the hyperplane itself,
hich is also termed the decision boundary. If the input data

s z1, z2, . . . , zN in this case, N represents the number of input
ata samples belonging to two classes cj = 1 for class-1 and
j = −1 for class-2 then h(z) ≥ 1 refers to class-1 and h(z) ≥ −1
efers otherwise.

This leads us to a general conclusion that could be derived
s,

(z)cj = cj(wT z + l) ≥ 1 (6)

If the algorithm could set the hyperplane in a way that the
argin is maximum then it is known as a optimal hyperplane,
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Fig. 5. Variation in signal energy due to the change in fault distance.
nd in that case, the mathematical representation of the geo-
etric margin becomes ∥w∥

−2. The following equations are used
to find a optimal hyperplane, and we take the help of convex
quadratic-optimization to solve for it. Minimize,

φ(w, ζ ) =
1
2
∥w∥

−2 + c
N∑
j=1

(7)

so that, h(z)cj ≥ 1−ζj, ζj ≥ 0, j = 1, 2, . . . ,N . If a training sample
j is placed on the wrong size of the margin, then ζj denotes
he distance, because it and C sets the penalty for errors. Kuhn–
Tucker conditions and Lagrange dual problem can help simplify
the above calculations; maximize,

W (α) =

N∑
j=1

αj −
1
2

N∑
j,k=0

αjαkcjckzTj zk (8)

subject to,
∑N

j=1 Cjαj = 0, C ≥ αj ≥ 0, j = 1, 2, . . . ,N . If α∗

nd w∗ are the optimal solutions of the dual problem and α∗ is
not equal to zero only, then the Karush–Kuhn–Tucker theorem
holds the equality condition in Eq. (2). The training examples are
considered as support vectors (SVs) in this scenario, and they
are considerably lower than the training data points zj. Now, the
value of the horizontal bias could be derived as,

l∗ = −
1
2

∑
S

VsCjα
∗

j (s
T
1zi + sT2zi) (9)

in the above equation, s1 and s2 are any two support vectors,
belonging to class-1 and class-2 respectively. Considering only
the samples that are associated with the SVs, the final decision
function is derived as,

h(z) =

∑
SVs

αjcjzTj z + l∗ (10)

An unlabeled data sample x is now classified as class-1, ifh(z)
≥ 0, or class-2 otherwise. The equation above can only be used
for linear problems. The proposed algorithm can also work with
the non-linear ones, utilizing a special feature called the kernel
function. The data samples are mapped into a high-dimensional
10173
feature space, but in this case, the feature vector used is also non-
linear. Considering, φ(z) = φ(z1), φ(z2), . . . , φ(z) as the feature
vector function, the equation for the decision boundary is given
as,

h(z) =

∑
SVs

αjcjφT (zj)φ(z) + l∗ (11)

The high dimensional feature space helps when working with
complex functions, however, it is also the reason of computa-
tional problems. In addition, there is a chance that it could cause
overfitting. This problem is solved by using the kernel function
that returns the dot space feature mapping of the original data
points. Now, we obtain the following equation by substituting the
kernel function K (zj, z) = φT (zj)φ(z) in Eq. (10),

h(z) =

∑
SVs

α∗

j cjK (zj, z) (12)

Now, Eq. (11) is used to classify data samples as before, with
the additional advantage of being able to handle non-linear prob-
lems. If i, j = 1, 2, . . . ,N , then K (zi, zj) forms a kernel matrix,
and it is the basic structure in kernel theory. The function for the
polynomial kernel is given as,

K (zi, zj) = (zTi zj + 1)n (13)

Additionally, the rbf kernel function is given as,

k(zi, zj) = exp
{−|zi − zj|2

2σ 2

}
(14)

where, σ represents the Gaussian function width. Equations (10)
and (11) both follows Mercer’s kernel matrix theorem necessary
for it to be used as the kernel (Lundgren et al., 2001). The poly-
nomial or rbf kernels are used when the classes are not separable
in lower dimensional feature space.

The class separation process is shown in Fig. 6, which is plotted
using the t-SNE algorithm. This algorithm is used to visualize
data points located in higher dimensional feature space. It creates
a 2D or 3D map of the higher dimensional data and projects
the output, reducing its dimension. The data points in Fig. 6a
state data analyzing starting scenario. It can be observed how
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ach class is separated in each step. The classes are completely
eparated by a hyperplane when the model is completely trained
t the final stage shown in Fig. 6d.
An ML model is said to be optimized when it provides op-

imal output using the resources that it has. In this case, the
yper-parameters are the resources that the proposed ML al-
orithm possesses that can be tuned in a manner that would
esult in fitting the data points properly. When defining the
odel, the hyper-parameters can be set; however, the prob-

em is that there exists no defined set of values for the hyper-
arameters. The values can be different for different problems.
ne way to find the values is to run the program in a loop
ntil it reaches maximum accuracy. This iterative process takes
huge amount of time and causes computational inefficiency.
ridSearchCV optimization (GSO) provides a solution to these
oncerns.

.2. GridSearchCV optimization

If we be break down the term ‘‘GridSearchCV’’, we get Grid-
earch and CV. First, all the hyper-parameters are selected based
n which GSO constructs the GridSearch space. In this research,
he kernel function, C parameter, degree and gamma are the
elected hyper-parameter for tuning the model accuracy. The
nfluence of these hyper-parameters on the proposed model and
he defined set of values are presented in Fig. 6. The GSO algo-
ithm tries each of the hyper-parameter combinations found at
he intersection of the grids, and then move forward to the next
ne.
Now, it is time to have a look at the term CV. The term CV

tands for cross-validation. The GSO algorithm performs several
ests on the dataset to check what kind of hyper-parameter com-
ination gives the best result. However, if the tests are performed
ith the same data, the result might not be efficient. CV is a
 p
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technique to spilt a dataset into k small sets of data. The variable
k is manually defined. In this case k = 5, and let us assume
the small sets of data are y1, y2, y3, y4, y5. Now, GSO selects
y2, y3, y4, y5 as the training set while y1 is selected as test set
and finds the accuracy of the model. In the next iteration, y2 is
selected as the test data and the remaining are the training data
and continues.

AverageAccuracy =

∑k
j=0 Accuracyj

k
(15)

Though k-fold CV is applied, there is a possibility that in those
ets, one class could be found in a higher proportion and in the
ther set; another could have the higher proportion. An advanced
echnique called stratified k-fold CV is used to ensure the right
lass distribution proportion in the small data sets. Fig. 8 shows
he dataset fragment preparation process. In this method, first
he main dataset is divided into 80% training data and 20% test
ata. After that, the first 20% of the 80% training data and the
irst 20% of 20% test data is selected and a dataset fragment is
ormed using which the model is trained and tested. The accuracy
f the test result is stored into the memory. It completes Fold-1
rocess. The same process is repeated for Fold-2 except in this
ase the 2nd 20% from each of the set is selected. The process
eeps executing for k number of folds. At the end of k folds
he average accuracy of the model is calculated using Eq. (15)
nd stored into the memory. After that, another combination of
yper-parameters is selected and average is accuracy of the k
olds testing is calculated. The algorithms keeps comparing the
verage accuracy to find the highest accuracy among the test
esults. This process keeps running until it reaches the end of the
ll the possible combination of hyper-parameters.
At the end of the process, the optimizer provides the hyper-
arameters for which maximum average accuracy was obtained.
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Fig. 7. Schematic representations of the model combined with GSO.
he optimization process is only necessary when a completely
ew dataset is provided to the model which helps the model op-
imize its parameters automatically. Fig. 7(a) presents the feature
xtraction and data generation process, while Fig. 7(b) and (c)
ummarizes the hyper parameter selection process.

. Results and discussion

The FIE framework is tested with the remaining data that was
ept separate earlier for performance evaluation purposes. The
esult will not be reliable if the model is tested with the same
ata it was trained with because in that case the model will
rovide maximum accuracy as the data is already known to it.
s a preventive approach, the dataset is divided into a training
et which contains 70% of the total data and a test set with 30%
ata. The model generates a classification report (CR) as an output
hen the test data is applied as an input. The CR is used to
lot the confusion matrix (CM) that summarizes the classification
esults and helps visualize the performance of the ML model. The
ize of the CM depends on the number of the output classes in a
ataset, in this case, it is 10.
The tables in Fig. 9 are the graphically enhanced version of the

M that was generated by the model. Fig. 9 a shows how well the
odel classifies each type of fault. If we consider it as a square
atrix, for illustration, then the primary diagonal represents the
umber of each fault type that the model can correctly classify.
owever, eight of the ten classes were predicted accurately, ‘‘b-g’’
10175
and ‘‘c-g" faults confuse the model. The CM shows 20 of the ‘‘b-g"
faults are labeled as ‘‘a-g", 31 as ‘‘c-g" and 15 as ‘‘b-c" fault types.
Additionally, six of the ‘‘c-g" faults are predicted as ‘‘c-a" faults.
The obtained accuracy of ‘‘b-g" and ‘‘c-g" fault class is 59.5% and
95.68% respectively, and for other classes, it is 100% . The overall
prediction accuracy is about 95.93%.

The accuracy after using the optimized algorithm is shown in
Fig. 9b . The algorithm changed the classification result drastically
from 95.93% to 99.46% and reduced the computation time to
a great extent. As can be seen from the CM in Fig. 9b, that
misclassified results decrease to a great extent. There exists no
fault prediction for "c-g" anymore and "b-g" accuracy improved
to 93.87%. Fig. 10 might help understand what is going on in
the background that is causing this drastic change in accuracy.
The choice of appropriate hyper-parameters is crucial for the
proposed model. The optimizer is automatically choosing this for
us.

If we look closely at Fig. 10(a) and (b), we see how the data
is fit into the model. In this case, the used kernel is linear so,
the model cannot properly separate two of the classes using the
decision boundary as it can be seen it Fig. 10(a). The process of
fitting the data into the hyperspace is observed though objective
function model shown in Fig. 10(b)

In the second case, the kernel used is polynomial and we can
see in Fig. 10(c) the decision boundary is shaped to support the
data points properly which leads in higher classification accuracy.
The 3D visualization presented in Fig. 10(b) support twisting
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t

Fig. 8. Dataset fragment preparation process.
Fig. 9. Confusion matrix generated by the proposed model; (a) Before optimization, and (b) After optimization.
Table 3
Performance Metrics Obtained for the Designed Model.
Performance
metrics

Formula Before
optimization

After
optimization

Overall
Accuracy

TP+TN
TP+TN+FP+FN 95.93% 99.46%

Mean Precision TP
TP+FP 0.96 0.99

Mean Recall TP
TP+FN 0.96 0.99

Mean F1_Score 2TP
2TP+FP+FN 0.95 0.99
of decision boundary. In an addition to the accuracy, different
metrics obtained from the classification report of the given model
are presented in the table in Table 3, which helps to provide a
better idea of how the system performance is affected by the
optimization algorithm.

The graphic in Fig. 11 exhibits which fault condition affects
he model prediction. The prediction result was divided into
10176
five categories, before and after applying the GSO is observed.
The model can predict double line-to-ground, line-to-line, and
all the lines-to-ground fault with 100% accuracy. Single line-to-
ground (LG) is the case in which the model generally makes the
wrong choice, in effect, only 84.31% accuracy is achieved. The
model gets to set the decision boundary in a more precise way
when the GridSearchCV Optimizer (GSO) is deployed. The model
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Fig. 10. (a) Plot of the decision boundary using linear kernel, (b) The objective function model for liner kernel, (c) Plot of decision boundary using polynomial kernel
(d) The objective function model for polynomial kernel.
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hyper-parameters have been tuned accordingly. The increase in
accuracy for the LG fault type was significant. Consequently, the
overall prediction accuracy gets a raise.

The robustness of a system depends on the consistency of its
performance under various possible system parameter variations,
and dealing with uncertainty. Accordingly, the system parameter
variations and uncertainty normally considered in the model
efficiency tests are presented below, leaving other variables such
as X/R ratio, line parameter etc. out of the scope of this study.

5.1. Effect of sampling frequency variation

Sampling frequency sets the number of data samples for one
complete cycle of voltage signal for a particular phase. The data
points count is 12,000 at 20 kHz sampling rate, while the number
is half at 10 kHz frequency. Fig. 12a, b present those signals
respectively. The graph shown in Fig. 13a expresses the effect of
sampling frequency variation on accuracy. Data samples at 2 kHz,
5 kHz, 10 kHz, 15 kHz, and 20 kHz sampling frequency are taken
for the test. The system frequency is 50 kHz constant, and the
number of data points in one cycle and for each phase varies from
40 at 2 kHz to a maximum of 400 at 20 kHz sampling rate. Rapid
10177
change in accuracy is observed from 2 kHz to 15 kHz frequency.
However, the accuracy does not seem to vary much from 15 kHz
to 20 kHz frequency. However, the overall deflection in accuracy
was 3.18% which proves the consistency in performance under
varying sampling rates.

5.2. Varying fault resistance condition

The FIE accuracy could face significant disturbances due to
changing fault resistance. The amplitude of the faulty signal is
directly affected by the variation in fault resistance, and the
images in Fig. 12c,d agree in this context. The first one is captured
at a fault resistance of 0.2 �, while the other is at 30 �. The fact
s, if the distance between two value of fault resistance taken is
oo small, then the amplitude variation is not clearly noticeable
y the human eye.
The effect in classification performance due to variation in

ault resistance is shown in Fig. 13b. The accuracy at fault re-
istance 0.1–0.5 � seems to vary by 0.03% maximum. However,
here is an abrupt change with higher values of fault resistance,
s can be seen in the figure.
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Fig. 11. Overall accuracy for LL, LLG, LL, and LLLG fault classes.
Fig. 12. Exported signals at different system conditions.
.3. Noisy signal condition

The graph in Fig. 13c presents the variation in accuracy at five
ifferent SNR levels. The SNR basically denotes the ratio of the
mplitude of a particular signal to the ratio of the amplitude of
oise. The value of SNR is small when the amplitude of the noise
s more, and vice-versa. The faulty signal in Fig. 12e is generated
10178
at 10 dB SNR and Fig. 12f at 20 dB SNR . The noise is maximum at
10 dB and classification accuracy is 97.47%, which is minimum in
this case compared to other SNR levels. The maximum accuracy,
99.28%, is achieved at 20 dB. The accuracy seems to increase
faster, from SNR 10 dB to 16 dB. After that, it seems to stabilize
around 98.94% to 99.28%.
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Fig. 13. Effect on accuracy due to the system condition changes.
Table 4
Change in Accuracy with Varying Impedance.
Selected source Impedance

variation
Obtained
accuracy

Source-1 (+) 50%
(-) 50%

99.12%
99.15%

Source-2 (+) 50%
(-) 50%

99.16%
99.19%

Source-3 (+) 50%
(-) 50%

98.99%
99.05%

5.4. Varying impedance condition

The source impedance is another parameter that affects the
ccuracy of the classifier. In a practical scenario, there is a good
hance that the source impedance will not always be constant.
herefore, an FIE scheme needs to be able to handle those changes
nd perform consistently. The power system model developed
n simulink provides the convenience to vary the impedance if
ecessary. Table 4 shows three observations, at the first case, the
mpedance of source-2 is kept constant and source-1 is increased
y 50%, and after that, it is decreased by 50%. The obtained
ccuracy depicts that the accuracy of our model is affected to
minimum extent, even though the variation in impedance is

ignificant. The same goes for source-2; only a 0.03% change in
ccuracy is observed. When both sources go through the change,
he system experiences only 0.06% deflection in accuracy.

.5. Comparative analysis

A comparison with previously developed ML-based FIE
ethod of the same background as well as state-of the art
ethods is presented in Table 5. It depicts the effectiveness of

he proposed scheme over the mentioned methods. The SVM is
sed in Ray and Mishra (2016) to classify the fault types that
enerally occur in power transmission lines. Particle swarm opti-
ization (PSO) algorithm is utilized to find most effective hyper
arameters and obtain a better performance. Its ability to han-
le noise and system parameter variation is also presented in
he table. Compared to the deep belief network (DBN) based
ethod proposed in Zhang et al. (2018), the utilization of the
roposed solution can provide better result. The implementation
f convolutional neuro fuzzy (CNF) (Eboule et al., 2022) and
eep reinforcement learning (DRL) (Teimourzadeh et al., 2021)
re proposed to solve power system fault analyzing problems.
lthough, the CNF and DRL provides better result than the pre-
iously discussed DBN based method, the proposed approach is
till superior to these. The reason for such statement is its ability
o deal with the changes in signal and system parameters. Ref.
10179
Shadi et al. (2022) shows the use of Rate of change of frequency
(ROCOF) signal to analyze disturbances in power system and
authors in Rafique et al. (2021) implements LSTM for FIE. For the
ROCOF based method, the accuracy is decent but observations
under system uncertainties are not present. The LSTM based
method deals with most of parameter variation but not all and the
proposed method still exceeds this method in terms of accuracy
and system implementation simplicity.

In recent times there are more powerful algorithms, for in-
stance, Auto tuning ANN (Ferreira et al., 2020), or self attention
cnn (Fahim et al., 2020) or the gradient similarity visualization
based CNN (Han et al., 2021) gives comparatively better results
than the earlier mentioned model. However, directly comparison
of performance of these models with the proposed one is not
logical as the paradigms for comparison are not same. These
models have been developed for solving specific sets of problems
and hence response to the problem is very specific. Although, it
is quite evident from Table 5 that the proposed models excels the
previously developed model which shares the same dimensions
of application.

5.6. Computational effectiveness analysis

One of the highlighted focus of the proposed model is its
ability to use less time and power in computation. Keeping that
in mind, an analysis is presented in Table 6 which shows the
computational effectiveness of our model in terms of training
time, response time, accuracy, memory and CPU usage over ANN,
CNN, and DBN. The most basic architecture of ANN presented
in Abdullah (2018) and CNN, found in Liu et al. (2020), is used for
this experiment and the outcomes are there in the table. Although
the ANN takes less time in training than the proposed model, in
reality more complex structure of ANN is used which will increase
the number of trainable parameters. The time complexity (TC) for
neural networks is formulated as O(nxtx(ij+ jk+ kl)) where i, j, k
are the nodes, t is the size of training sample and n is the number
of epochs. TC can also be regarded as the ratio of accuracy to the
elapsed training time (Lee and Chen, 2020). It gives us a TC value
of 1.69. The value of the time complexity will be higher when
the accuracy will be higher and training time will be smaller.
As for the proposed method, the TC value obtained is 1.74. The
experimental architecture of the DBN is a 4 layer NN (Zhang et al.,
2018) which provided 96.62% accuracy and took 30 ms (ms) to
response.

In order to use CNN for classification, the architecture im-
plemented is presented in Liu et al. (2020). The numerical data
needed to be converted into image format using imaging tech-
niques such as gramian angular field or the markov transition
field. It takes more time for the dataset to be prepared and the
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Table 5
Comparison between the proposed scheme and the methods developed prior to it.
Parameters SVM +

PSO (Ray and
Mishra, 2016)

CNF (Eboule
et al., 2022)

DRL
(Teimourzadeh
et al., 2021)

DBN (Zhang
et al., 2018)

RNN (Shadi
et al., 2022)

LSTM (Rafique
et al., 2021)

The proposed
scheme

Signal Type Current Current &
Voltage

Current &
Voltage

Voltage ROCOF Current or
voltage

Voltage

Overall Accuracy 99.21 98.41 98.04 96.70 99.2 99.45 99.46
Noise Tolerant No No No No No Yes Yes
Varying Fault Resistance
Tolerant

Yes Yes No No No Yes Yes

Varying Sampling
Frequency Tolerant

Yes No No No No No Yes

Varying Source
Impedance Tolerant

No No No No No Yes Yes
Table 6
Comparison of computation effectiveness with existing models.
Dimensions Proposed

method
ANN (Abdullah, 2018) CNN (Liu et al., 2020) DBN (Zhang et al., 2018)

Layers 2 3 6 4
Training time (s) 57.12 56.26 320.56 270.42
Response time
(ms)

1.99 43.83 36.42 30

Accuracy (%) 99.46 95.15 98.15 96.62
Memory usage
(MB)

260.19 350.27 372.24 365.2

CPU usage (%) 12 22 51 26
Time complexity
=

Accuracy
TrainingTime (Lee

and Chen, 2020)

1.74 1.69 0.31 0.36
model to be trained for classification. Some other deep learn-
ing algorithms used in this field are the faster R-CNN and LSTM.
These algorithms uses more complex architecture and results in
costly computation and dataset prepared in a specific manner
to be used. The response time of the proposed model is really
impressive which is as low as 1.99 ms, however, the determined
TC value is 0.31. To summarize, in all the dimensions, for all the
methods discuses in Table 6 the proposed method represent itself
as the computationally effective approach.

5.7. Proposed model validation on IEC microgrid system

The designed scheme is adaptable to the change of power
ystem model scale variation. A test is performed on the Inter-
ational Electrotechnical Commission (IEC) standard microgrid
ystem model to verify its adaptability. The specification of the
ystem parameters and description of the model designing is
escribed (Rahman Fahim et al., 2020). The selected mode of
peration is islanded radial mode and line 1–3 provides highest
ccuracy that is 99.34%. The classification accuracy obtained for
ther line are respectively, line 1–2 - 99.24%, line 3–4 - 99.31%,
ine 3–5 - 99.19%, line 5–6 - 99.27%. Although, the focus of this
aper is to propose an optimized framework that is computa-
ionally efficient designed for a prototype power system model,
ts performance on the IEC system is satisfactory. The confusion
atrix on Fig. 14 shows details of classification for line 1–3.

. Conclusions

An intelligent framework for identifying and estimating TL
aults is presented in this paper that puts more focus on fault
nalyzing ability enhancement with less computational complex-
ty. The design of the FIE includes several layers of proficiency
nhancement techniques that provide an excellent accuracy of
9.46% and deal with the uncertainties that could affect its per-
ormance. It can effectively train with a smaller dataset, less
omputation power while providing higher response speed and
10180
Fig. 14. Confusion matrix for line 1–3 obtained after applying the proposed
scheme on the IEC system model.

ability to handle variations in dataset. The obtained results using
the proposed ML model provides a clearer view of its behav-
ior and the ability to maintain its performance under different
challenges such as sampling frequency variation, fault resistance
changes, and source impedance variation. In all the cases, the
accuracy does not seem to fall below 96%. Additionally, a com-
parative analysis with some of the recently developed methods
is included to guarantee the competitive performance of the pro-
posed ML solution. A study about the computational effectiveness
of the proposed ML model over the recent DL based methods
is done to show the proposed method’s supremacy in terms of
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raining time, response time and computation, and time complex-
ty. Also, the scalability of the proposed model is tested under the
xperiment of IEC standard microgrid system. The results show
hat the proposed method is capable enough to effectively classify
he faults with more than 99% accuracy for microgrid system.
he outcomes mentioned above from this research depicts the
mportance of the proposed ML solution. Although this research
overs most of the disturbances an FIE generally faces, the effect
f fault angle variation and voltage–current inversion is kept out
f the scope of this paper. The system can also be studied for non-
inear load condition and effect of load variation. Furthermore, the
icrogrid system is tested for the islanded mode only. The other
ode of operation and observations using system parameter
ariation could be a scope for future research.
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