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a b s t r a c t

Despite the growing knowledge and commitment to climate change, carbon dioxide (CO2) emissions
continue to rise dramatically throughout the planet. In recent years, the consequences of climate
change have become more catastrophic and have attracted widespread attention globally. CO2 emis-
sions from the energy industry have lately been highlighted as one of the world’s most pressing
concerns for all countries. This paper examines the relationships between CO2 emissions, electrical
energy consumption, and gross domestic product (GDP) in Bangladesh from 1972 to 2019 in the
first section. In this purpose, we applied the fully modified ordinary least squares (FMOLS) approach.
The findings indicate that CO2 emissions, electrical energy consumption, and GDP have a statistically
significant long-term cointegrating relationship. Developing an accurate CO2 emissions forecasting
model is crucial for tackling it safely. This leads to the second step, which involves formulating
the multivariate time series CO2 emissions forecasting challenges considering its influential factors.
Based on multivariate time series prediction, four deep learning algorithms are analyzed in this work,
those are convolution neural network (CNN), CNN long short-term memory (CNN–LSTM), long short-
term memory (LSTM), and dense neural network (DNN). The root mean square error (RMSE), mean
absolute error (MAE) and mean absolute percentage error (MAPE) are used to analyze and compare
the performances of the predictive models. The prediction errors in MAPE of the CNN, CNN–LSTM,
LSTM, and DNN are 15.043, 5.065, 5.377, and 3.678, respectively. After evaluating those deep learning
models, a multivariate polynomial regression has also been employed to forecast CO2 emissions. It
seems to have nearly similar accuracy as the LSTM model, having a MAPE of 5.541.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

One of the most burning concerns confronting modern civi-
ization is environmental issues. The principal cause underlying
limate change is the production of greenhouse gases (GHGs),
hich mostly comprise carbon dioxide (CO2) (Mitić et al., 2017).
he effects of climate change can now be observed in every corner
f the globe. As a consequence of global warming, Bangladesh
s one of the most vulnerable countries to this climatic change
Sarkar et al., 2015), and due to the environmental concerns,
angladesh is anticipated to decline by 3.4% of its 2015 gross
omestic product (GDP) every year (Hasan and Chongbo, 2020).
bout 75% of the human-caused CO2 in the last 20 years origi-
ated from fossil fuel combustion. However, fossil fuels comprise
he dominant source of electricity, manufacturing activity, trans-
ortation, and consumption of goods and services, all of which
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are directly linked to economic growth. As a result, it is vital to
forecast CO2 emissions from the perspective of energy consump-
tion for climate policy and energy planning (Rayhan et al., 2018).
As energy consumption and GDP have a strong connection with
CO2 emissions, those must be taken into account when predicting
CO2 emissions. Many scholars have analyzed and assessed the lit-
erature on the association between CO2 emissions, environmental
factors and other energy usages.

1.1. Literature review

CO2 emission reduction is a worldwide issue that must be
ddressed for building sustainable society. The global carbon
mission leads to livable issues of many countries and regions.
etween 1970 and 2010, Bouznit and Pablo-Romero (2016)
nspected the relationship between Algerian GDP and CO2
emissions and the data show that GDP and CO2 emissions have
a substantial connection. According to Aftab et al. (2021), the
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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utoregressive distributed lag model (ARDL) and Johansen coin-
egration were used to examine the relationship between CO2
missions, energy consumption, and economic progress both in
ivariate and multivariate models for 1971–2019 in Pakistan.
hese findings indicate a positive and significant impact of a fast-
rowing economy and energy consumption on CO2 emissions.
Khobai et al. (2017) reviewed the significant correlation be-

ween GDP and energy usage in South Africa. According to their
ocument, there is a two-way causal determinant of economic
rogress and energy use. In Turkey, Gökmenoğlu and Taspinar
2016) discovered one-way statistical relationship between eco-
omic progress and energy usage. Ghosh et al. (2014) scrutinized
he interconnection between economic growth, CO2 emissions,
nd energy consumption in Bangladesh and found that energy
onsumption has a positive and significant influence on economic
rowth, but CO2 emissions have a negative and minor impact.
sing fully modified ordinary least squares (FMOLS) and Johansen
ointegration approach, Mirza and Kanwal (2017) found popu-
ation density and energy usages had a substantial influence on
nvironmental degradation in Pakistan. To check the robustness
f these literatures exhibit that Pakistan’s population density and
nergy consumption contribute to CO2 emissions. For the country

of Bangladesh, Sarkar et al. (2018) investigated the trends in
energy consumption and CO2 emissions. It has been proven that
the rising rate of CO2 emissions in Bangladesh is higher than
the increasing rate of GDP and energy consumption. Cai et al.
(2018) utilized the ARDL limit test, to determine the relationship
between renewable energy usages, economic growth, and CO2
emissions for a group of seven (G7) countries. When real GDP per
capita and CO2 emissions are employed as dependent variables,
it shows that cointegration exists in G7 countries. From 1997 to
2016, Salari et al. (2021) inspected the relationship between CO2
emissions, energy consumption, and GDP at the state level in the
United States. For both static and dynamic models, the results
show a long-run relationship between various types of energy
consumption and CO2 emissions. Wasti and Zaidi (2020) exam-
ined the affiliation between CO2 emissions, energy consumption,
GDP, and trade liberalization in their research of Kuwait. This
statistic reveals unidirectional causation between GDP and CO2
emissions and between energy usage and trade liberalization. A
study by Valadkhani et al. (2019) examined the contribution of
several main energy sources (oil, coal, natural gas, hydroelec-
tricity, and other renewables) to global CO2 emissions. In 11
Asian states from 1960 to 2014, Rahman (2017) analyzed the
correlation between CO2 emissions, energy consumption, eco-
nomic development, exports, and population density to evaluate
the long-term consequences on CO2 emissions by FMOLS and
dynamic ordinary least squares (DOLS) techniques. These five
factors appear to be cointegrated throughout time, based on the
test findings. The research by Shahbaz et al. (2013) in Indonesia,
Ang (2008) in France and Malaysia have exposed that economic
expansion affects energy consumption and CO2 emissions. Much
recent researches, such as Saint Akadiri et al. (2019), You and
Lv (2018) have used the KOF index to investigate the effect of
globalization on CO2 emissions. In addition to these, a summary
of some recent studies on CO2 emission is shown in the Table 1
below:

On the basis of these literature, CO2 emissions can be in-
fluenced by a variety of factors, and it is important to forecast
CO2 emissions. As a result, various studies have recently been
developed new models to predict CO2 emissions, and some of
them are on the way. According to Li et al. (2020), China has paid
close attention to model and forecast China’s CO2 emissions since
the Copenhagen climate summit. Various viewpoints and forecast
outcomes have emerged on China’s ability to meet its pledge to

reduce CO2 intensity. Yuan et al. (2012) prediction model showed
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that CO2 emissions would be reduced by 45% if China maintains
annual economic growth rates of 7% and 6% in the 12th and 13th
five year plans (FYP) periods, respectively. Using the logarithmic
mean divisia index (LMDI) decomposition method, Islam et al.
(2021) predicted that CO2 emissions in Bangladesh would peak at
58.97 Mtoe by 2040. Heydari et al. (2019) used a general regres-
sion neural network (GRNN) and grey wolf optimization (GWO)
to assess the trend of CO2 emissions in Iran, Canada, and Italy, and
the findings show that the suggested method is more accurate in
long-term CO2 emissions forecasting. Fang et al. (2018) utilized
an enhanced Gaussian processes regression model to forecast CO2
emissions, and he discovered that China’s overall CO2 emissions
would continue to rise, but at a slower rate, and that the US
and Japan will have a good handle on their CO2 emissions soon.
Hosseini et al. (2019) used time series and regression analysis to
forecast Iran’s CO2 emissions in 2030. According to their findings,
Iran is unlikely to keep its goal to the Paris agreement based
on the business as usual (BAU’s) assumptions. Moreover, Ofosu-
Adarkwa et al. (2020) projected CO2 emissions from the Chinese
cement sector, and their proposed system (hybrid Verhulst-GM
(1, N)) can forecast emissions with a 97% precision. According to
Ameyaw et al. (2019), the long short-term memory (LSTM) based
CO2 from combustion projection in China depicts a declining
trend up to 2030. Their analysis also stated that, if renewable
energy investments are not increased, countries’ intended na-
tionally determined contributions (INDCs) will be jeopardized. Li
(2020) utilized LSTM, support vector machines (SVM), and kernel
least squares (KLS) models to forecast CO2 emissions in China,
with the findings demonstrating that KLS was more accurate
than other current techniques. For the first time in China, Huang
et al. (2019) used LSTM to undertake grey relationship analysis,
principal component analysis for CO2 emissions forecasting.

Amarpuri et al. (2019) in India, a deep learning hybrid method
was used to predict CO2 emissions. A deep learning hybrid model
convolutional neural network-long short-term memory (CNN–
LSTM) was utilized to make the prediction. To anticipate CO2
emissions, Fatima et al. (2019) utilized simple exponential
smoothing (SES) and autoregressive integrated moving average
(ARIMA) models. They discovered that the ARIMA model is ap-
propriate since it has the lowest fractional mean absolute error
(FMAE) value.

1.2. Research gaps and contributions

Numerous studies have investigated the CO2 emissions from
a variety of perspectives, such as a causal relationship of CO2
emissions and the factors that may or may not have influences
on it. However, there are still some rooms to work on it, and
some factors which motivate to do this work, e.g. the data sam-
ples which were used before being too small, not taking into
consideration of some extremely crucial influencing factors, lack
of focus on Bangladesh. It is worth mentioning that, Bangladesh
badly needs the investigation of CO2 forecasting because, in 2019,
it has produced around 0.66 tonnes of CO2 per capita, which
was only 0.05 tons per capita in 1970, that indicates an annual
average climbing rate of 5.48% (Anon, 2022). Taking into account
all those influential factors on CO2 emission, the problem formu-
lation leads to multivariate time series forecasting methodologies,
which are difficult to execute but provide more accurate results.
Time series forecasting issues have been explicitly addressed
by machine learning and regression techniques in the litera-
ture, however, to the best of the authors’ knowledge, machine
learning or deep learning approaches have not extensively been
used to anticipate CO2 emissions considering those influential
factors. To fulfill the research gaps, this paper have evaluated
several deep learning algorithms’ efficacy, along with a multi-
variate polynomial regression. The study will have a significant
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Table 1
Summary of recent studies.
Investigator(s) Period Nation(s) Variables Methods Results

Rahman and Kashem (2017) 1972–2011 Bangladesh CO2 ,
EN,
IG

ARDL,
Granger
causality

EC → CO2(+)
IG → CO2(+)

Muhammad et al. (2020) 1990–2014 Pakistan CO2 ,
PD,
EN

FMOLS,
DOLS,

PD → CO2(+)
EC → CO2(+)

Chontanawat (2020) 1971–2015 ASEAN CO2 ,
EG,
EN

Cointegra-
tion,
Causality

EG → CO2(+)
EC → CO2(+)

Uddin et al. (2016) 1971–2006 Srilanka CO2 ,
EG,
EN

Cointegra-
tion,
Causality

EG → CO2(+)
EN → CO2(+)

Khan et al. (2019) 1971–2016 Pakistan CO2 ,
EF,
EN

ARDL EF → CO2(−)
EN → CO2(+)

Li et al. (2018) 1993–2013 US and China HS,
GCF,
CO2

Input
Output
analysis

HS → CO2(+)
GCF → CO2(+)

Bekun et al. (2020) 1971–2015 Nigeria GDP,
FDI,
EN,
CO2

ARDL GDP2
→ CO2(−)

GDP → CO2(+)
EN → CO2(+)
FDI → CO2(−)

Etokakpan et al. (2020) 1980–2014 Malaysia GDP,
GCF,
GL,
EN,
CO2

Combined
cointegra-
tion test,
ARDL

GDP → CO2(+)
GCF → CO2(+)
GL → CO2(+)
EN → CO2(+)

Adebayo (2020) 1980–2018 Mint Nations GDP,
TO,
URB,
EN,
CO2

Westerlund
Coint, PMG,
CDS, Panel
causality

GDP ̸= CO2
TO → CO2(−)
URB → CO2(+)
EN → CO2(+)

Arango Miranda et al. (2020) 1990–2016 Mexico, US, Canada GDP,
GDP2 ,
TO,
HDI,
CO2

OLS,
VECM,
Causality

For US and
Mexico
GDP2

→ CO2(-)
For Canada
GDP2

̸= CO2

Leal and Marques (2020) 1990–2014 OECD countries GDP,
GDP2 ,
TO,
CO2

FMOLS,
DOLS,
AMG,
CDS

GDP2
̸= CO2

REN → CO2(+)
OP → CO2(+)

Dogan and Inglesi-Lotz (2020) 1980–2014 European countries ENE,
GDP,
GDP2 ,
CO2

Panel OLS,
FMOLS,
FE

GDP2
̸= CO2

GDP → CO2(−)

Bekhet et al. (2017) 1980–2011 GCC countries GDP,
FD,
EN,
CO2

ARDL,
VECM

FD → CO2(−)
EN → CO2(+)
GDP → CO2(+)

Koc and Bulus (2020) 1971–2017 South Korea GDP,
GDP2 ,
EN,
REN,
CO2

ARDL GDP2
̸= CO2

GDP → CO2(+)
EN → CO2(+)
REN → CO2(−)

Note: →: Unidirectional causality, ̸=: not equal causality, GDP: real growth, TO: trade openness, EN: energy consumption, CO2: Carbon
dioxide emissions, FD: financial development, FDI: foreign direct investment, REN: renewable energy, HDI: human development index, IG:
industrial growth, PD: population density, EG: economic growth, EF: economic factor, MINT: Economies of Mexico, Indonesia, Nigeria and
Turkey, OECD: The Organisation for Economic Co-operation and Development, GCC: The Gulf Cooperation Council, (-) and (+): negative and
positive relationship.
mpact on CO2 emission policies since it is being undertaken in
the world’s eighth most populous nation along with a number of
environmental issues taken into consideration. This study has the
following contributions to the existing knowledge:

• Bangladesh suffers from a lack of environmental aware-
ness, notably in terms of CO2 emissions. This study exam-
ines the dynamics and causal linkages among the level of
CO emissions, energy consumption and GDP in Bangladesh
2
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for the period of 1972–2019 applying FMOLS cointegration
technique.

• Despite the fact that similar indicators have been studied
in the past, there have been very few studies conducted on
Bangladeshi data. More crucially, Bangladesh has received
very little attention from scholars utilizing the FMOLS ap-
proach to analyze similar variables. This research adds value
into the current literature by incorporating deep learning to
forecast CO emissions, especially in the case of Bangladesh.
2
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Fig. 1. Variable data graph.
• Forecasting CO2 emissions using deep learning models while
accounting for GDP and per capita energy use, i.e. multi-
variate time series forecasting. This is an important consid-
eration of this research owing to the higher accuracy from
practical perspective.

• Analyzing the forecasting result using a multivariate poly-
nomial regression is performed. The empirical and fore-
casted findings of this research will offer policymakers with
a better knowledge of the relationship between energy con-
sumption, CO2 emissions, and economic growth allowing
them to develop energy and climate policies to improve the
environment by reducing CO2 emissions.

The paper is organized as follows. The data and methodology
part is shown in Section 2. Section 3 explains the experimental
setup, data preprocessing, model configuration, accuracy metrics,
and the experimental results. Single-step ahead forecasting of
CO2 emissions is carried out in Section 5. Section 6 is reserved for
a discussion on the findings as well as some perspective research
directions. Finally, Section 7 outlines the conclusions and policy
implications.

2. Data and methodology

2.1. Variables

Global warming has now become a major environmental issue,
and it is mostly caused by greenhouse gas emissions, particu-
larly CO2 emissions, which have increased dramatically in recent
years. CO2 emissions are related to both energy consumption and
national economic growth. Bangladesh has employed a variety
of energies, but for this study, we will only consider electrical
energy, which we have referred to as energy consumption. So this
paper examines the relationship between CO2 emissions, GDP,
and energy consumption, where CO2 is employed as a dependent
variable. GDP and electrical consumption are used as independent
variables to derive the long-run relationship between these vari-
ables. This paper has been carried out by utilizing Bangladesh’s
yearly time series data from 1972 to 2019, and all the necessary
data for this work has been collected from the world development
indicators (WDI)1 (Anon, 0000).

1 The authors are happy to share the data set upon request.
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Fig. 1 shows the graph that indicates both the independent
and dependent variables that have been examined in this paper,
where EL_C stands for electrical energy consumption (KWh) per
capita; meanwhile, GDP and CO2 emissions are the other two
indicators. Compared to the other metrics, GDP exhibits to be
a rising exponential trend. The data of CO2 emissions ranges
from 0.047 to 0.598 tons per capita, which are fraction values,
according to the data source the values of GDP and electrical
energy consumptions are in the range of two to four digit decimal
numbers. Nonetheless, to deal appropriately with the other two
components, the unit of CO2 emissions has been changed from
metric tons per capita to kg per capita for convenience.

2.2. Unit root testing

Prior to assessing the long-run interconnection of multiple
variables via cointegration in applied time series econometrics,
stationary data must be gathered and evaluated (Yuping et al.,
2021). To establish a long-term relationship between variables,
they must be stationary at the first difference. The unit root test is
performed to determine whether a variable is stationary or not. In
this work the augmented Dickey–Fuller (ADF) and Philips-Perron
(PP) tests are used to carry out the unit root test. Table 2 shows
the outcomes of the ADF and PP tests.

From Table 2, the ADF and PP test findings have shown that
all the variables, i.e., GDP, CO2 and electrical energy consumption
are non-stationary initially. After encountering the first differ-
ence, those variables have become stationary since the related
variables’ probability (P) values are less than 5%. There are several
techniques available for estimating cointegrating relationships.
Therefore, the following sub-section explains the state-of-the-art
methodologies employed in this empirical investigation.

2.3. Johansen cointegration test

Since the variables are stationary at the first difference, the
unit root test allows us to conduct the Johansen cointegration
test. The purpose of this test is to observe the long-term relation-
ship between them. We have assumed that if no cointegration
exists between the dependent and the independent variables is
treated as the null hypothesis. In contrast, if there is cointegration
will be considered as the alternative hypothesis.
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Table 2
Stationary test.
Variables ADF test PP test

Intercept
and trend

Intercept
and trend

Intercept
and trend

Intercept
and trend

Level 1st difference Level 1st difference

CO2 emissions (kg per capita) 1 0.0029 1 0.0029
GDP per capita (current US$) 1 0.0073 1 0.0091
Electric power consumption (kWh per capita) 1 0.001 1 0.0011
Table 3
Johansen cointegration test.

Unrestricted cointegration rank test (Trace)

Hypothesized no.of CE (s) Eigenvalue Trace statistic 5% Critical value Probability

None* 0.458446 44.82479 35.0109 0.0033
At most 1 0.2869 17.22577 18.39771 0.0723
At most 2 0.043678 2.009745 3.841465 0.1563

Unrestricted cointegration rank test
(Maximum eigenvalue)

Hypothesized no.of CE (s) Eigenvalue Max-eigen statistic 5% Critical value Probability

None* 0.458446 27.59902 24.25202 0.0174
At most 1 0.2869 15.21602 17.14769 0.0935
At most 2 0.043678 2.009745 3.841465 0.1563
2.3.1. Cointegration test results
Before performing Johansen cointegration test, it is necessary

o calculate the optimum lag length. Akaike information criterion
AIC) and Bayesian information criteria are used to determine the
ptimal order of lag in the model, as described by Pesaran et al.
2001). Results of Johansen cointegration are reported in Table 3.
ence, according to the P-value, there is one cointegration among
he selected set of variables at a 5% level of significance.

From Table 3, a single cointegrating vector is observed by trace
tatistics. We may reject the null hypothesis since the trace value
4.8247 of rank zero is greater than the 5 percent critical value of
5.0109. Since the maximal eigenvalue of 27.5990 for rank zero
s higher than the 5 percent critical value of 24.2520, a similar
esult has been observed in eigenvalue statistics. The Johansen
utcome indicates a long-term connection between dependent
nd independent variables. That means long-run associations ex-
st among them and a high impact on CO2 emissions of GDP and
lectrical energy consumption per capita. To assess the impact
n CO2 emissions of explanatory variables, i.e., electric energy
onsumption per capita and GDP, the FMOLS test is applied in
he following subsection.

.4. FMOLS estimation

The FMOLS technique gives credible estimations for small
ample sizes and provides a robustness test on the results. The
MOLS technique, established and developed by Philips and
ansen (1990), is used to estimate one cointegrating relationship
hat contains a combination of I(1) (Bashier and Siam, 2014). After
stablishing a cointegrating relationship between the variables,
t is necessary to estimate the long-term dynamics among the
ariables. The FMOLS approach would be utilized in the following
tep to estimate long-term elasticities. The FMOLS assesses the
mpact of GDP and electric energy consumption on CO2 emissions
fter quantifying the long-run association among the variables in
he previous section.

The outcomes suggest that electric energy consumption has a
ositive and remarkable contribution to increase CO2 emissions.
evertheless, the coefficient observes that there is an adverse
onsequence of GDP on CO2 discharge shown in Table 4. Fol-
owing the results of the data, it appears that a decrease in GDP
ncreases CO emissions in a very slow and gradual manner.
2
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Table 4
FMOLS results.
Variables Coefficient Std. Error t-Statistic Probability

EL_C 1.526638 0.16593 9.200493 0
GDP −0.142563 0.052762 −2.70198 0.0098
C 83.97603 7.650033 10.97721 0

According to the result of FMOLS, one unit increase in elec-
tric energy consumption causes a 1.526 unit increase in CO2
emissions. Again, one unit expansion in GDP causes a 0.142 unit
decline in CO2 outflow. The P-value for GDP and the electric en-
ergy consumption is substantial at the 5% level, and both factors
are significant for CO2 emissions.

The previous subsection detailed the estimation for the coin-
tegration models of per capita CO2 emissions for Bangladesh. The
next part will elaborate the future projection of CO2 emissions
using multivariant time series, which will consider the GDP and
electric energy usage. They have a significant impact on CO2
discharge over a period which is proved by the FMOLS result.
To correctly estimate CO2 emissions, we have used deep learning
algorithms, and the analysis has been undertaken using a variety
of accuracy metrics.

2.5. Forecasting problem formulation

A time-series approach is used in this paper to forecast CO2
emissions because conventional methods have several limita-
tions (Hossain et al., 2021a). The time-series approach (X =

x1, x2, . . . , xt ) is a sequence of observations in a time frame,
where xi refers to the observation at time t and X is the total
number of observations. A challenge may have two or more
parallel input time series and an output time series that depends
on the input time series. Here, GDP and energy consumption
are input time series, whereas CO2 emissions are considered as
output. Using the first three-time steps of each parallel input
time series as input features, the models then relate this value
to the fourth time step of output time series as target variable.
As our goal is to single-step ahead forecasting we took the fourth
observation as our output feature. The input data can be of any
previous data (such as 3, 5, 10), but we have found better results
in the three input previous data. If it is multi-step forecasting then
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Fig. 2. Input–output dataset for training the network.
Fig. 3. Architecture of LSTM network.
dditional time steps beyond four will be considered. This system
orks as a sliding window approach. We have discarded some
alues for which we did not have values in the input time series
t previous time steps during the output time series. The Fig. 2
epicts a graphical representation of the problem formulation for
he time series forecasting algorithm.

. Forecasting models

.1. Long short-term memory (LSTM) neural network

The LSTM is an advanced gated memory unit that eliminates
he vanishing gradient problems that restrict the effectiveness of
basic RNN (Li et al., 2021; Zeroual et al., 2020). Owing to its
igh long-term memory function, this neural network is capable
f exploring in depth the long-term relationships and trends of
imited data samples (Hossain et al., 2020). As an interpretation
rom the completion of the sequence, an LSTM layer must be fed
three-dimensional input, so that input data must be reshaped
efore being fed into it.
Fig. 3 illustrates the basic LSTM network construction, where

he current variable vector xt , the previous output ht − 1, and
the previous cell state Ct − 1 are inputs to the LSTM cell. As
seen in Fig. 3, the input gate (i ), forget gate (f ), output gate (o ),
t t t

8051
and memory cell (C̃t ) are depicted by small boxes. They can be
computed by using the following equations (Li et al., 2021; Zhou
and Chen, 2021):

ft = σg
(
Wf .xt + Uf .ht − 1 + bf

)
(1)

it = σg (Wi.xt + Ui.ht − 1 + bi) (2)

ot = σg (Wo.xt + Uo.ht − 1 + bo) (3)

C̃t = tanh (WC .xt + UC .ht − 1 + bC ) (4)

where . denotes the matrix multiplication operation, bf , bi, bo, and
bC are four bias vectors, the weight matrices Uf , Ui, Uo, and UC
connect the previous output to the three gates and the memory
cell. The Wf , Wi, Wo, and WC are the weight matrices, the σg()
represents the gate activation function, which here is a sigmoid
function, and tanh() is the hyperbolic tangent function, as seen in
the equations above. The cell output state Ct and the layer output
ht can be determined as follows:

Ct = (ft ⊕ Ct−1) + it ⊕ C̃t (5)

h = o ⊕ tanh C (6)
t t ( t)
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i
o

Fig. 4. Architecture of CNN–LSTM network.
where ⊕ denotes the element-wise matrix/vector, multiplication
operator.

3.2. Convolution neural network (CNN)

The CNN has been widely used in a variety of fields, including
pattern classification, image processing, radiology, and model
identification (Yu et al., 2020; Yao et al., 2021). In this paper, the
one-dimensional CNN is utilized to extract characteristics of the
complex interaction between nonlinear input and output data. In-
stead of conventional matrix multiplication, the convolution layer
uses a mathematical convolution operator and cross-correlation.
The convolution operation can be described in the following
way (Hossain et al., 2021b):

c li = f1

(
n∑

i=1

xi ∗ wl
i + bj

)
(7)

In the convolution layer, c li is the ith element of lth feature, wl
i

s the ith element of the lth kernel, bj is bias, ∗ is convolution
peration and f1 denotes the activation function. xi is the ith

element of the input, e.g. GDP and energy consumption here.
Various pooling approaches are available on the CNN architecture,
however, max-pooling is the most commonly employed after
CNN layers. Using a pooling layer after convolution reduces the
data dimension by combining the output of neuron clusters.

3.3. CNN-Long short-term memory networks (CNN-LSTM)

The CNN–LSTM architecture uses CNN layers for feature ex-
traction on input data and combines them with LSTM to improve
sequence prediction (Rajagukguk et al., 2020; Guo et al., 2020).
In this paper, the 1D CNN–LSTM network has been employed to
forecast CO2 emissions. According to Fig. 4, there are fives layers
in the 1D CNN–LSTM network architecture. Firstly, the original
signals are transferred into the first 1D convolution layer for
feature extraction and feature selection. The second layer is the
1D maximum pooling layer, followed by the 1D convolution layer,
and this is followed by stacking the one LSTM layer. Finally, a fully
connected layer with the relu activation function is placed at the
end to predict.
8052
3.4. Artificial neural networks (ANN)

The ANNs are data-driven, flexible models capable of approx-
imating a vast class of nonlinear problems to any desired level
of accuracy. A wide range of ANN models have been developed
and widely used in different applications (Hossain et al., 2021b;
Guo et al., 2021). The multilayer perceptron is one of the most ex-
tensively used ANN models in time series forecasting (Panigrahi
and Behera, 2017). This paper’s model architecture comprises an
input layer, two hidden layers, and one output layer.

In a forecasting problem, the number of inputs and neurons in
the hidden layer is configurable. In contrast, the output layer con-
tains only one neuron with auxiliary components, such as weight,
bias, activation function so on. With a multilayer perceptron, the
fundamental neural network design is shown in Fig. 5. The input
layer accepts input values, while the hidden layer analyzes those
input values. The output layer collects the data from the hidden
layer and decides the final output. The training procedure will be
repeated until the difference between the neural network output
and the supervisor comes within an acceptable range (Hameed
et al., 2019). The mathematical formula for ANN can be stated as
follows (Guo et al., 2021):

An =

n∑
j=1

(
wj.Ij

)
+ b (8)

where n denotes the number of input, wi, b indicates the weight
and bias, respectively. Ij is the input, and An refers to the output
of the ANN.

4. Experimental results

The experiments are carried out in google colaboratory (Co-
lab) using python 3.0 with open source libraries like Tensorflow,
Pandas, Numpy, and Keras. The experimental setup is based on
a working environment having Intel(R) Core (TM) i5-7400 CPU
@ 2.5 GHz with 4 GB RAM under 64-bit Windows 10 Pro Op-
erating system. The entire dataset was analyzed before feed-
ing to the model. Time series forecasting of the CO2 emissions
dataset is modeled using four deep learning models mentioned
in the bellow section. The optimum results are considered from
each model’s eleven unique runs. The working and parameters
optimization of all four versions are explored in sub-sections.
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Fig. 5. Architecture of artificial neural networks.
.1. Data preprocessing

To forecast CO2 emissions, the CO2 data from the dataset
as been transformed from metric tons per capita to kg per
apita, which is previously mentioned. Electric energy consump-
ion (kWh per capita) and GDP per capita (current US$) are the
ther two variables. The dataset only comprised 48 samples in
early format, which is insufficient for a deep learning model
o be appropriately trained. The Pandas library has a resample()
unction that can resample a series or a data frame. Down-
ampling is a technique for grouping observations and making
he number of samples less than the original. In contrast, creating
oom for additional observations is known as up-sampling which
an be accomplished using the resampling technique. We have
hanged our annual datasets into monthly datasets by invoking
p-sampling and setting ’’M’’ as desired in the respective func-
ion, where M is denoted by month. The interpolation() method of
he Pandas library is used to interpolate missing values, and there
s a great range of simple and more complicated interpolation
echniques available. However, we used the linear approach to
ill the intermediate interpolated missing data, where a total of
65 data points were generated throughout the process.

• Missing values: As mentioned earlier Bangladesh-specific
data was obtained from the WDI, and there were no missing
figures.

• Scaling: The literature suggests that normalizing approaches
substantially influence the performance of a model. As the
data of raw time series ranges widely, the optimization
methods used to derive the objective functions in some
machine learning and deep learning models will not func-
tion properly unless the data is normalized. So that the
normalization technique should be selected based on the
problem and model at hand. Normalization is a technique
for scaling (also called min–max scaling) numerical data that
involves scaling each input variable separately to the range
0–1, the most precise range for floating-point data.
8053
Table 5
Data Features.
Feature CO2 El_C GDP

Count 565 565 565
min 47.78 10.65 97.38
max 598.74 510 1856
std 140.54 130.69 406.14
25% 92.53 31.68 237.7
50% 166.8 80.08 362.07

Numerical input variables are normalized using MinMax scaler
API to acceptable ranges for better performance. The data char-
acteristics are given in Table 5 after the raw annual data has been
transformed into monthly data using the up-sampling method.

4.2. Model configuration

As a consequence of over-fitting and under-fitting, the num-
ber of neuron layers in deep learning models affect predicting
accuracy. In deep learning, it is not true that adding layers would
enhance prediction accuracy (Hossain et al., 2021b). Due to over-
fitting, prediction models learn well during training but have
greater mistakes during prediction. On the other hand, a limited
number of layers might cause uncertainity related to poor fitting
owing to the inability to map input–output relationships. The
performance of a hybrid deep learning model must be improved
by combining network layers in an appropriate manner (Hossain
et al., 2021b). The configurations we have used are discussed
bellow:

1. CNN–LSTM: One 1D convolutional layer, one LSTM layer,
and a fully connected dense layer make up this model. The
root mean square loss function is used in conjunction with
the adam optimizer. The batch size is 32, with a learning
rate of 0.0001.

2. CNN: This model comprises one 1D convolutional layer
and a fully connected dense layer. In combination with
the adam optimizer, the root mean square loss function is
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Fig. 6. MAPE values of CNN, CNN–LSTM, LSTM and DNN model.
employed. A learning rate of 0.0001 is likewise employed
here, with a batch size of 32. Sixty-four filters and three
kernels are used in the first layer of the convolutional neu-
ral network. Both layers are activated by relu’s activation
function.

3. LSTM: This model is a combination of one fully intercon-
nected LSTM layer and one dense layer. The only difference
between this model and CNN is the batch size, which is 8
in this case. This model performs best with batch sizes of
8 in this work.

4. DNN: This model comprises three dense layers, having 32
neurons, 8 neurons, and one fully connected layer, respec-
tively. All hidden layers use the relu activation function
with batch size of 8, which outperforms all the models.

.3. Parameters tuning

We have taken substantial amount of tuning, a very time-
onsuming method, for all of the models because the perfor-
ance of all of them are heavily dependent on parameter ad-

ustment (Hossain et al., 2021b). Special efforts to calibrate the
arameters of the CNN–LSTM and CNN forecasting models have
aken because their structures are more complex than that of
ther deep learning models (Yao et al., 2021). All hyperparam-
ters are manually adjusted through trial and error. Our models
ave some limitations as we could not able to employ optimiza-
ion algorithms such as grid search and, random search. However,
n the CNN model, the tunning for the kernel an essential task
o design convolutional layers and is defined as an operator that
ransforms the information in the entire data set. The selection
f kernel 3 has produced the best result out of eleven unique
uns, followed by kernels 5, 6, and 7. Moreover, the best result
re obtained while utilizing 64 filters. For the best outcomes,
he number of hidden layers and neurons are also optimized
or all deep learning models. In all models, a learning rate of
.0001 provides a better level of accuracy. An early stopping
pproach has been utilized to minimize overfitting and optimize
he efficiency of the models.

.4. Forecasting evaluation metrics

The forecasting accuracy metric indicates how effectively a
odel predicts the future value. This endeavor strengthen its
rediction powers that will benefit overall planning and make
redictions far more agile in changing circumstances. Let us take
look at the most well-known forecast KPIs one by one. The
8054
data are separated into training and test sets. All models have
been trained using training sets (80% of the data set), however,
the RMSE, MAE, and MAPE values for the training and test sets
have been evaluated and compared for each model. The accuracy
metrics we have used are explained below:

1. MAPE: MAPE measures the accuracy of a forecasting sys-
tem and is determined as the average absolute percent
error for each period minus actual values divided by real
values, and it is expressed as a percentage. It can be written
as follows (Li et al., 2020):

MAPE =
1
n

n∑
t=1

[
A (t) − F (t)

A (t)

]
(9)

In Eq. (9) A(t) and F(t) indicate the actual and predicted
values, respectively. The number of samples is denoted by
the letter n. Fig. 6 illustrates the MAPE of all the deep
learning models, where DNN has the lowest MAPE value of
3.853 and 3.678 for the test and training set, respectively.
For the CNN model, the maximum error is recorded, and it
is clearly shown that the testing errors are slightly larger
than the training set errors for all models except DNN.

2. RMSE: RMSE is a common tool for analyzing the error of a
model when predicting the quantitative data. The standard
deviation of the residuals is denoted by RMSE. Residues
are a measurement of how far data points depart from the
regression line in regression analysis. It can be expressed
as follows (Zhou and Chen, 2021):

RMSE =

√1
n

n∑
i=1

(f (i) − o (i)) (10)

In Eq. (10) f (i) is the forecasted value and o(i) is the ob-
served value. The other term, n, stands for the number of
samples. Fig. 7 shows the RMSE for each model which we
have used to estimate CO2 emissions for both train and
test data. According to the results, the DNN has the lowest
RMSE value of 8.393 for the train data and 8.099 for the test
data, respectively. CNN, on the other hand, has the largest
error of any the projected model, which is 21.80 for the
training set and 21.96 for the testing set.

3. MAE: The MAE is a statistical error that evaluates the
average magnitude of error in a set of forecasts without
taking into account the direction of the projections. It is
used to find out how accurate continuous variables are.
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Fig. 7. RMSE values of CNN, CNN–LSTM, LSTM and DNN model.
Fig. 8. MAE values of CNN, CNN–LSTM, LSTM, DNN model.
n other words, over the verification sample, the MAE is the aver-
ge of the absolute values of the differences between the forecast
nd the actual observation. It can be expressed as (Heydari et al.,
019):

AE =
1
n

n∑
i=1

(y (i) − x (i)) (11)

here y(i) denotes prediction value, x(i) denotes true value and n
s the total number of data points. Fig. 8, displays the MAE of all
he developed models. The bar chart illustrates a gradual decrease
n MAE values starting with CNN and ending with the DNN, which
as the lowest error of 5.933 for the training set and 5.820 for the
est set, respectively. The training and testing errors for the CNN
odel are 17.164 and 17.469, respectively.

.5. Forecast accuracy metrics for multivariate polynomial regres-
ion

Simple polynomial regression is a form of regression that is
pplied to a single regressor, whereas multivariate polynomial
egression involves multiple regressors. The later one is used to
redict values when several variables are involved (Sinha, 2013).
e have intended to develop polynomial regression after study-

ng the CO2 emissions curve, and the result seems excellent. Two
teps are required to accomplish polynomial regression. Using
he polynomial features function from sklearn, we first transform
8055
the inputs into a polynomial. Characteristics that are generated
by exponentiating the existing features are known as polynomial
features. This model has been tested optimistically from second
to fifth order. However, it performs the best in the third order.
It is worth mentioning that the complexity of the model rises as
the degree of the polynomial increases. As a result, the order of
polynomial must be chosen very carefully. After performing the
transformation, the input features are extended into several new
terms. Moreover, the problem formulation method is different
from those deep learning models used in this study. Taking the
first time step of GDP and energy consumption as input and
the second time step of CO2 emissions as the target variable,
have made the system reliable to one step ahead forecasting. The
general equation of third-order polynomial with two variables
can be expressed as (Sinha, 2013):

p (x, y) = a3,0x3 + a2,1x2y + a1,2xy2 + a0,3y3 + a2,0x2 + a1,1xy

+ a0,2y2 + a1,0x + a0,1y + a0,0 (12)

where, a3,0, a2,1, a1,2, a0,3, a2,0, a1,1, a0,2, a1,0, a0,1, a0,0 ∈ R, as
well a3,0, a2,1, a1,2, a0,3, a2,0, a1,1, and a0,2 cannot be equal 0.

In our model, x stands for GDP, and y represents energy
consumption. Subsequently the linear regression is used to fit the
parameters after converting the data into polynomial features.
The Fig. 9 portrays the pipeline that can be used to explain the
complete procedure.
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Data are split into training and test sets according to 80% and
20% before applying linear regression. Both the training and test
sets are used to assess the accuracy of the system.

Fig. 10 shows the MAE, RMSE, and MAPE of polynomial regres-
sion. The bar chart depicts training errors of 9.58, 7.33, and 5.04
for RMSE, MAE, and MAPE, respectively. Testing data shows errors
of 11.03, 7.86, and 5.54 in the same order. The errors are pretty
similar to the LSTM model. Because of the limited amount of data
points available, there have been some overfitting problems. As
we have used the annual data to predict the following year, the
training range for the model seems to be very narrow, resulting
in slightly overfitting problems. It can be resolved by collecting
more data in the future.

4.6. Validation losses

A validation error is a vehicle for assessing the generalization
of a model that measures how well a model fits new data. Typi-
cally, the validation loss is more significant than the training loss,
but this problem has overcome with the early stopping approach
in our study. Consequently, the training and testing errors in the
models have employed considerably close in magnitude.

Fig. 11 illustrates the validation losses which have been com-
puted by the testing data set, which is used as a validation set. The
box plot enables us to observe the distributional characteristics
of validation losses of eleven unique runs. The CNN model has
the lowest performance metric, followed by the LSTM, CNN–
LSTM and DNN models. Fig. 11 demonstrates an outlier of the
CNN–LSTM model, where the DNN model, on the other hand,
outperforms the others, as the median line of this model lies at
the bottom.

4.7. Forecasting the CO2 emissions

This section shows the original and predicted CO2 emissions

esults for all of the models in Fig. 12. After training the models, i
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it is necessary to assess the performance to predict CO2 emissions.
egarding this purpose the training data set has been utilized to
easure the accuracy metrics displayed in the previous section.
The whole data set has been predicted in this section, allowing

s to compare all the models in terms of actual and predicted
raphs. According to Fig. 12(d), the CNN model shows the inferior
esult of all the models examined in this paper to predict CO2
missions. Fundamentally, CNN exhibits a wide range of hyper-
arameters and various specific architectures, which are often
omplex and provide difficulties in selecting the most appropri-
te value among many possible combinations. Aside from that,
NN is very sensitive to set its hyperparameters, which have a
ignificant effect on the efficiency and behavior of its architecture.
ig. 12(d) demonstrates the projected value is far away from the
ctual value at the starting region, indicating poor result.
It was expected that the hybrid deep learning model would

roduce the best outcomes, it has not happened in this study.
ccording to the data in the testing set, CNN–LSTM has slightly
igher dispersion from its real value in the peak region, as shown
n Fig. 12(b). To enhance the performance of the hybrid deep
earning model, it is also necessary to fine-tune the hyperpa-
ameters, such as the number of layers, neurons, and so on.
owever, the CNN–LSTM hybrid model has substantially more
omplexity (Guo et al., 2020). To get a better result from this
odel, an experimental approach has been conducted to fine-

une its parameters. The best result has provided the DNN model
nd is much more generalized in terms of effectiveness which can
e seen in Fig. 12(a).

.8. Forecasting one step ahead

For univariate time series, a single step ahead forecast is easier
han multivariate forecasting. Whenever a multivariate forecast-

ng problem is encountered, it is complicated as the output series
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Fig. 11. Validation loss for CNN–LSTM, DNN, LSTM, and CNN model.
i
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s completely dependent on one or more input time series that
lso need to be forecasted. We have performed our analysis using
ata from 1972 to 2019 and proceeded to estimate CO2 emissions
or the years 2020 and 2021. To forecast the CO2 emissions in
021, we must need the data from 2020 as input, but the actual
lectrical energy consumptions per capita data is not available on
DI. That is why we have to take assistance from other sources.
owever, the per capita electrical energy generation was 510
Wh in 2019, which we have considered as consumption per
apita (Ebn Sharif, 2020). According to the problem formulation
ection, we can only forecast CO2 emissions for the year 2020. As
a result, forecasting for 2021 in the next phase, we have included
the forecasted value of CO2 emissions for 2020 in the original data
et. As shown in Fig. 13, all the deep learning models except CNN
redict a rising trend in CO2 emissions. The DNN, LSTM, CNN,
nd CNN–LSTM predict CO2 emissions of 665, 650.53, 575, and
12.50 kg per capita, respectively, for the year 2020, which was
98 kg per capita in 2019.
Despite the fact that both GDP and energy consumption in-

reased from 2018 to 2019, according to the FMOLS results, GDP
s less significant than energy consumption. This supports the
ncreasing trend of CO2 emissions as energy consumption has a
positive impact on it. Later, the rising rate of GDP outpaces the
increasing rate of energy consumption, resulting in reduction in
the trend by 2021. For the year 2021, the models provide the
forecasted values of 645, 668, 580, and 619 kg per capita for
DNN, LSTM, CNN, and CNN–LSTM, respectively. The prediction of
polynomial regression is quite close to LSTM, which forecasts the
CO2 emissions of 654 and 665.5 kg per capita in 2020 and 2021,
respectively.

It is conceivable to expect a better outcome from these models
if we could access to the actual data in some of the situations
mentioned earlier. However, the outcomes are utterly reliable.
Incorporating more explanatory factors into the model may lead
to a more accurate estimation of CO2 emissions. From the result,
we may conclude that energy consumption is one of the vital
factors for rising emissions. Switching to clean energy and proper
formulation, implementation of environmental laws and policies
should be targeted to minimize emissions in future (Rahman and
Kashem, 2017).

5. Discussion

This long-term forecasting study has revealed the best out-
comes with the assistance of the DNN technique. Compared to the
 e
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other approaches, the DNN algorithm has shown better perfor-
mance in terms of evaluation metrics accuracy. The effectiveness
of this forecasting model has been assessed by comparing it to
other deep learning models such as CNN, LSTM, and a hybrid
model that combines CNN and LSTM as well as a multivariate
polynomial regression. The MAPE, MAE, and RMSE are used to
compare these models. The accuracy metrics of multivariate poly-
nomial regression and LSTM models are more likely to be similar.
For the years 2020 and 2021, the polynomial regression provides
the predicted output that is nearly similar to the LSTM model,
which is a very satisfactory result in a single step forward pre-
diction. During this work, the road-maps of all models have been
filled with information obtained throughout trial and error. Sev-
eral problems occurred during this procedure, particularly in data
processing and choosing the best forecasting model. This proce-
dure is repeated until the models get the desired outcomes. It
might be conceivable that the results of this analysis would have
been more accurate if we had used the hyperparameter optimiza-
tion technique. As a result, selecting the most appropriate set of
parameters will be a significant concern of practitioners for future
studies. However, the greenhouse effect is well known to have
several severe consequences, including an increase in global pests
and diseases, sea-level rise, a shift in temperature, and desertifi-
cation. Nonetheless, Bangladesh should pay greater attention to
CO2 emissions, make necessary changes to climate and energy
policies, and collaboratively address climate change problems,
regardless of whether CO2 emissions are increasing or decreasing.
Even though Bangladesh is an overpopulated and developing
nation, industrial output continues to increase in the country.
These factors need to be considered if we want to forecast CO2
emissions correctly in future. Many additional techniques, such as
DOLS, ARDL, etc., may be used to derive empirical cointegration,
long and short-run dynamics, and causal connections (Bastola and
Sapkota, 2015; Rahman, 2017). Finally, to maintain the economy
and public health over the time, Bangladesh must implement
environmental protection laws.

6. Conclusion and policy implications

In this paper, the FMOLS approach has been used to analyze
the impact of energy consumption and GDP on CO2 emissions
n Bangladesh from 1972 to 2019. The ADF and PP unit root
ests are used to check the stationarity of the variables. The
stimated outcomes reveal the evidence of cointegration and a
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Fig. 12. Forecasting CO2 emissions by (a) DNN, (b) CNN–LSTM, (c) LSTM, (d) CNN, and (e) polynomial regression model.
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ong-term connection between GDP, energy consumption, and
O2 emissions. As previously stated, energy consumption posi-
ively impacts CO2 emissions, while GDP has a negative impact
n Bangladesh. However, the nonlinear relationships between CO2
missions and their influencing factors are terribly complicated,
aking CO2 forecasting a difficult job. A large number of re-
earchers have made significant contributions to forecast CO2
missions. The accuracy of these approaches seem to be poor
ecause of the complicated nonlinear relationship between CO2
missions and other factors, which is very difficult to model.
urthermore, the majority of these techniques do not have the
apability of predicting CO2 emissions levels. They can only an-
icipate it if they have obtained all the necessary variables in
dvance. The second section of this study explores the potential
 s
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of employing the state-of-the-art of several deep learning tech-
niques for forecasting CO2 emissions in Bangladesh. In addition
to that, a simple multivariate polynomial regression has also
been conducted to forecast CO2 emissions, which comprises a
quite similar result with one of the deep learning models named
LSTM. In future, this work will be extended to develop a multi-
step prediction model of CO2 emissions that takes into account a
ider range of variables at the same time. It is expected that by
athering a large amount of data, the forecasting outcome can be
urther improved.

It is undeniable that climate change is unfolding, and deep
earning is playing an important role in this catastrophe. For-
unately, several recent research has begun in details the envi-
onmental costs of their revolutionary deep learning approaches,

ometimes even including CO2 emissions as an objective to be



M.O. Faruque, M.A.J. Rabby, M.A. Hossain et al. Energy Reports 8 (2022) 8046–8060

m
t
c
I
e

c
f
B
m
i
t
p
b
e
c
r
b
c
t
c

D

c
t

A

L
r

R

A

A

A

A

Fig. 13. Single step ahead prediction by CNN, LSTM, DNN, CNN–LSTM, polynomial regression model.
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inimized. Considering Bangladesh is a densely populated coun-
ry in the early stages of development, the study’s findings indi-
ate that energy consumption has an impact on CO2 emissions.
n this context, the immediate import and installation of energy-
fficient technologies may result in long-term CO2 reduction.
Although the focus of this study is on Bangladesh, the findings

an be used to provide a viable alternative for energy usage in the
uture, reducing CO2 emissions globally. To reduce CO2 emissions,
angladesh must implement energy conservation and environ-
ental protection policies for encouraging local and international

nvestors in an environmental friendly resources. Additionally,
he government should impose emission restrictions on enter-
rises and factories that release CO2 particularly for the coal
ased power plants which are rising in Bangladesh. The country’s
nergy policy should emphasize on research and investment in
lean energy. In this aspect, technological advancement through
esearch and development is essential despite the fact that car-
on capture and storage (CCS) technology is an effective way to
apture carbon but it is costly. Furthermore, the authors propose
hat readily available renewable resources with intelligent control
an be a viable solution for effectively reducing CO2 emissions.
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