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a b s t r a c t

The rapid expansion of installed wind energy capacity and the continuous development of wind turbine
technology has drawn attention to operation and maintenance issues. In order to keep wind power
a competitive energy source, the development of high-reliability and low-maintenance wind turbine
systems is imminent, the rise of fault diagnosis provides a guarantee for their satisfactory operation
and maintenance. A large number of statistical studies have pointed out that converter fault is the main
cause of wind turbine system failure shutdown. Up to now, wind power converters’ fault diagnosis
has obtained fruitful results, and those are constantly reported in power system literature. This paper
presents a state-of-the-art review on wind power converters’ fault diagnosis for both short-circuit
faults and open-circuit faults of power switch, including model-based, signal-based and data-driven
methods. It provides a wide range, involving component fault modes, the robustness and reliability
issues, algorithm investigation of fault diagnosis, quantitative analysis and qualitative analysis metrics
for assessing the advantages of the developed techniques, and challenges in fault diagnosis design.
Main purposes of this paper are: (1) Investigating the current research status of fault diagnosis on
wind power converters to update the relevant research literature; (2) Discussing the robustness and
reliability issues that must be considered in real engineering and safety critical systems; (3) Providing
effective performance indices involves both quantitative and qualitative analysis, so that readers can
understand the novelty of the proposed method.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

1.1. Background

Growing energy demand and increasingly severe environmen-
al pollution have promoted the need to develop sustainable
olutions, and renewable energy has been identified as a suitable
lternative to traditional fossil fuel energy generation (Qadir et al.,
021). Fig. 1 shows the worldwide renewable energy share of
lobal electricity production in 2018 (REN21, 2019). Wind en-
rgy has become a superior energy resource due to greenhouse
as emissions, short construction period, and flexible investment
onstruction scale. It can be seen from Fig. 1 that worldwide wind
ower accounts for 5.5% of global electricity production (specifi-
ally highlighting in red) and 21% of global renewable energy gen-
ration (calculated by 5.50%/26.20%), second only to hydropower.
he superiority of wind energy makes the global cumulative in-
talled wind power capacity increase year by year (Raghavendran
t al., 2020; Ren et al., 2021), the worldwide installed cumulative
apacity of wind power from 1996 to 2020 is shown in Fig. 2.
Wind turbine systems are usually installed in remote areas,

rassland, coastal island, or offshore in very harsh environmental
onditions, as shown in Fig. 3. Extreme conditions (e.g., humidity,
xtreme temperatures, snow, salt spray, lightning) and high loads
ake wind turbines more prone to failures. Therefore, reliability
5342
nd maintenance costs have become two crucial issues for large-
cale wind turbine systems development. High-reliability wind
urbine system design can facilitate its good operation and im-
rove the utilization rate of wind energy, so as to increase the
enetration and competitiveness of wind power generation (Liu
t al., 2020a; Jia et al., 2021). On the other hand, maintenance
ost severely limits the large-scale deployment of wind turbine
ystems (Raza and Ulansky, 2019), it may reach as high as 15% of
he life-cycle cost for an onshore system and 30% for an offshore
ystem (Guo et al., 2020). Consequently, it is urgent to study
fficient methods to improve operating reliability and reduce
aintenance costs of wind turbine system (Liu et al., 2015c;
hang et al., 2021).
The components such as blades, generator, control system,

ower converter, gearbox, and sensors in wind turbine systems
re easily damaged, their faults can lead to low-reliability and
igh-maintenance costs of wind turbine systems (Yang and Chai,
016). Fig. 4(a) and (b) respectively show the annual fault rate
nd downtime percentage of wind turbine system main com-
onents that have been reported in some literatures (Yang and
hai, 2016; Bakdi et al., 2019; Reder et al., 2016; Stenberg and
olttinen, 2010). Obviously, the wind power converter not only
as a high annual fault rate but also has a long downtime, so its
ault is quite severe. Fig. 4(c) is a breakdown of non-recurring
ost from the United Kingdom government (Johnston et al., 2020),
t provides an allocation of the total non-recurring cost to in-
ividual elements and can be used to assess costs of different
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Abbreviations

FDs Fault Diagnosis
DFIG Doubly-Fed Induction Generator
PMSG Permanent Magnet Synchronous Generator
2L-BTB 2-Level Back-to-Back
3L-NPC BTB 3-Level Neutral-Point-Clamped Back-to-Back
MMC Modular Multilevel Converter
PCB Printed Circuit Boards
IGBT Insulated Gate Bipolar Transistor
SC Short-Circuit
OC Open-Circuit
NPC Neutral-Point-Clamped
MLD Mixed Logic Dynamic
RMS Root Mean Square
MSDP Multistate Data Processing
SSFA Subsection Fluctuation Analysis
FFT Fast Fourier Transform
DFT Discrete Fourier Transform
STFT Short Time Fourier Transform
WT Wavelet Transform
WPD Wavelet Packet Decomposition
DWT Discrete Wavelet Transform
FA Feature Analysis
JD Judgment
TFA Trend Feature Analysis
EMD Empirical Mode Decomposition
EEMD Ensemble Empirical Mode Decomposition
VMD Variational Mode Decomposition
IMFs Intrinsic Mode Functions
NE Norm Entropy
PCA Principal Component Analysis
RPCA Relative Principal Component Analysis
ICA Independent Component Analysis
ANN Artificial Neural Network
BPNN Back Propagation Neural Network
SOM Self-Organizing Mapping
SVM Support Vector Machine
LSSVM Least Square Support Vector Machine
HMM Hidden Markov Model
RVM Relevance Vector Machine
mRVM Multiclass Relevance Vector Machine
BN Bayes Networks
FLS Fuzzy Logic System
EPSO Evolutionary Particle Swarm Optimization
DCQGA Double Chain Quantum Genetic Algorithm
CSO Cuckoo Search Optimization
SAE Stacked Auto-Encoder
GAP Global Average Pooling
CNN Convolutional Neural Network
CSA Crow Search Algorithm
LSTM Long Short-Term Memory
DBN Deep Belief Networks
MKSTM Mixed Kernel Support Tensor Machine

components of offshore wind farm. It can be seen from Fig. 4(c),
the turbine accounts for 33% of the total non-recurring cost and
the converter in its second level breakdown accounts for 8%
of the total non-recurring cost (specifically highlighting in red),
5343
so the replacement cost of wind power converter is expensive.
When a power converter fails, it may cause damage to gen-
erator and other important components, resulting in abnormal
operation of the wind power system, and seriously threatening
power grid (Smet et al., 2011). Consequently, whether the power
converter can operate stably is essential to obtain a wind turbine
system with high-reliability and low-maintenance costs.

As the occurrence of wind power converter faults is stochastic
and independent, fault diagnosis (FDs) is regarded as an applica-
ble means to detect and isolate faults rapidly. The development
of wind power converters FDs has high engineering values, which
are described as below:

(1) FDs is capable of providing a dependable theoretical basis
for the optimal design of converter topology and configuration.
The converters structures are optimized to maintain the per-
formance of wind turbine systems at the desired level despite
the existence of faults. For instance, FDs-based converter fault-
tolerant control can enhance the endurance under fault status
for wind turbine systems (Elsanabary et al., 2021; Shahbazi et al.,
2018).

(2) FDs can provide operators with valuable guidance to adopt
effective regulate solutions rapidly in the early-stage of con-
verter faults to prevent greater disasters, thereby reducing the
unnecessary shutdown of wind turbine systems, and minimizing
economic losses caused by converter faults (Mahdhi et al., 2020).

(3) FDs is able to rapidly detect and identify converters faults,
and the obtained fault information can be used to optimize the
maintenance process. This is significant for making decisions
earlier, lessening risks, and reducing maintenance and manage-
ment costs more effectively (Haghnazari et al., 2015; Kumar and
Elangovan, 2020).

1.2. A survey of relevant reviews made previously

A comprehensive search of relevant reviews made previously
on fault diagnosis of wind power converters have been con-
ducted. There are many surveys on the condition monitoring and
fault diagnosis of wind turbines (Artigao et al., 2018; Zhang and
Lu, 2019; Qiao et al., 2015; Qiao and Member, 2015a), but they
focus on the investigation of the whole wind turbine system,
very little space is given to wind power converters. Moreover,
the investigation on the fault diagnosis of wind power converters
is not comprehensive, more attention is paid to fault modes and
signals, but less attention to fault diagnosis methods. A compre-
hensive review on signals and signal processing methods used
for condition monitoring and fault diagnosis of wind turbines is
presented in survey (Qiao and Member, 2015b).

Many surveys on fault diagnosis methods for converter have
been published, and several reviews are compared in Table 1.

Surveys (Gao et al., 2015a,b; Wan et al., 2019) provide
overviews on model-based, signal-based, knowledge-based and
hybrid fault diagnosis methods, focusing on the introduction of
various methods, but the qualitative and quantitative analysis
of various methods is insufficient. The survey (Lu and Sharma,
2009) reviews the fault diagnosis methods of insulated gate
bipolar transistor (IGBT) of three-phase power inverter with T-
type topology or traditional two-level topology, mainly including
park’s vector method, normalized current method, slope method,
spectrum analysis method, wavelet transform, neural network,
fuzzy logic, etc. However, the reliability and robustness issues
are not pointed out, and they cannot be directly applied to the
fault diagnosis of modular multilevel converter (MMC) due to
only faulty arms can be detected instead of faulty cells. Fault
diagnosis methods of signal processing-based, mechanism-based
and artificial intelligence-based for switching devices are evalu-
ated and summarized (Liu et al., 2016; Wang et al., 2019), but
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Fig. 1. Worldwide renewable energy share of global electricity production in 2018 (REN21, 2019).
Fig. 2. Worldwide installed cumulative capacity of wind power from 1996 to
2020 (Raghavendran et al., 2020; Ren et al., 2021).

only the applicability to MMC is verified. An overview of fault
diagnosis methods for DC–DC converters is proposed (Kumar and
Elangovan, 2020).

The above investigated surveys on converter fault diagnosis
ethods focus on the whole industrial process and system. How-
ver, the complexity and uncertainty of wind power systems
ake the methods in these reviews drawable but not directly

ransferable to wind power converters. Additionally, the oper-
ting conditions and system transients of wind power systems
nd conventional industrial systems are quite different. The sur-
ey (Gao and Liu, 2021) reviews some fault diagnosis methods
or wind power converters, including model-based, signal-based
nd knowledge-based methods, but lacks metrics to evaluate the
dvantages of the methods. The survey (Yang and Chai, 2016)
ummarizes several fault diagnosis methods for onshore wind
ower converters, but it does not talk a lot diagnosis methods,
nd only a few indicators are used to measure the novelty of the
ethods.

.3. Motivations

Numerous fault diagnosis methods for wind power con-
erters have been published in recent decades, they are dif-
erent in terms of accuracy, rapidity, robustness, model com-
lexity/computational cost, additional hardware requirements,
pplicable objects, technology application maturity, tuning ef-
ort, data required, degree of model dependence, nonlinear
ignal processing, and multi-fault diagnosis. However, a com-
rehensive summary is lacking to evaluate the advantages
f various methods using so many quantitative analysis and
ualitative analysis metrics.
5344
This paper presents a comprehensive review on fault diagnosis
of wind power converter, including model-based, signal-based
and data-driven methods. It focuses on the following contents:
component fault modes, the robustness and reliability issues,
fault diagnosis algorithm investigation, quantitative analysis and
qualitative analysis metrics, and challenges in fault diagnosis
design. The motivations of this paper can be summarized as
follows:

(1) Investigating the current research status of fault diagno-
sis on wind power converters to update the relevant research
literature.

(2) Discussing the robustness and reliability issues of wind
power converter fault diagnosis models and tools, this point is
fundamental when the reliability and robustness features of the
proposed solutions have to be verified and validated with respect
to real engineering and safety critical systems.

(3) Providing effective performance indices to assess the ad-
vantages of the developed techniques, including quantitative
analysis and qualitative analysis.

(4) Pointing out several challenges in fault diagnosis design.
The rest organization of this paper is as below: Section 2

details typical faults of a wind power converter and its fault
diagnosis framework including effective metrics, and discusses
robustness and reliability issues. Section 3 provides a compre-
hensive and critical review of model-based methods. The per-
formance of signal-based methods is summarized in detail in
Section 4. Section 5 presents the advantages and drawbacks of
data-driven methods. Section 6 conducts a detailed qualitative
and quantitative analysis of the fault diagnosis methods for wind
power converters, and points out several technical challenges.
Section 7 concludes with several remarks.

2. Typical faults and fault diagnosis framework of a wind
power converter

2.1. Typical faults of a wind power converter

Typical topologies of wind power converters include diode
rectifier-based converter topology, 2-level back-to-back (2L-BTB)
converter topology, 3-level neutral-point-clamped back-to-back
converter (3L-NPC BTB) topology and modular multilevel
converter (MMC) topology. 2L-BTB converters are applied to
doubly-fed induction generator (DFIG) systems and permanent
magnet synchronous generator (PMSG) systems with the power
of 1–3MW. 3L-NPC BTB converters are applied to PMSG sys-
tems with the power of 5–8MW. MMC are used for high-power
systems (Yang and Chai, 2016).

Statistical researches show that the main components prone
to fault in wind power converters include: power semiconductor
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Fig. 3. Wind farm distribution and wind turbine system main components.
evices (e.g., IGBT), printed circuit boards (PCB), and capaci-
ors (Yang and Chai, 2016). As Fig. 5 shows, the fault of power
emiconductor devices is one of the main responsible for con-
erter fault. In addition, power semiconductor devices faults are
ffected by PCB faults, which means that the most common faults
n converters can lead to power switch faults (Lu and Sharma,
008; Lee and Choi, 2014). Typical faults of power semiconductor
evices can be divided into Short-Circuit (SC) faults and Open-
ircuit (OC) faults (Song and Wang, 2012). Fault mechanisms
f power semiconductor devices have been studied in litera-
ures (Shao et al., 2020; Ma et al., 2020; Shao et al., 2021; Lee
t al., 2015), as Fig. 6 shows.
The main causes of power semiconductor devices faults in

ind power converters are as follows:
(1) The instantaneous current or instantaneous voltage of

ower converters is too large when the wind turbine is started
r suffers from strong gust.
(2) After a long-term operation of wind power converters, heat

issipation performance degradation, and fatigue accumulation of
ower semiconductors may lead to devices damage.
(3) Dust, corrosive gas, and moisture in wind farms may result

n power semiconductor devices abnormal operation or even
ause catastrophic faults.
Both SC faults and OC faults of power semiconductor devices

ould lead to irreversible and irreparable damage for wind power
onverters (Lu and Sharma, 2009).

.1.1. Short-Circuit (SC) faults
SC faults are usually virulent and not easy to deal with, they

ause abnormal overcurrent that can result in serious damage to
5345
the converter and other components in a short period of time.
It is necessary to shut down the driver safely and immediately.
Consequently, most of the existing FDs methods for SC faults
are based on hardware circuits to minimize the time between
the faults occurrence and proper response. Generally, converters
are equipped with special SC hardware protection circuit, and
SC faults detection has become a standard function of electrical
drive (Lu and Sharma, 2009). The use of fast fuses or circuit
breakers is SC fault protection schemes, in this case, the SC fault
becomes an OC fault (Pei and Kang, 2012).

2.1.2. Open-Circuit (OC) faults
Different from the SC fault, the OC fault responds slowly and

does not lead to serious damages to the whole system in a
short time. Nevertheless, it does degrade the overall converter
performance (Lu and Sharma, 2009). When an OC fault occurs,
high harmonic distortion appears in currents, and the currents
in faulty phase and healthy phase are offset, causing generator
torque to oscillate and grid power factor to decrease. On the other
hand, the OC fault can result in secondary faults at other compo-
nents. An OC fault can damage other switches (due to overcurrent
stress) and generator (duo to large active and reactive power
fluctuations in stator) and may debase the capacitors service life.
The fault effect on energy/power loss due to OC faults occurrence
has been discussed in detail in Liang et al. (2020).

The OC fault of power semiconductor devices is one of the
common faults in converters. It should be noted that the OC fault
is potentially undetectable for a long period since it usually does
not cause significant changes in currents and voltages. This results
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Fig. 4. Annual fault rate, downtime percentage and replacement costs of wind power system main components (Yang and Chai, 2016; Bakdi et al., 2019; Reder
t al., 2016; Stenberg and Holttinen, 2010; Johnston et al., 2020). (AWE—European Project AWESOME (Reder et al., 2016); VTT—Valtion Teknillinen Tutkimuskeskus,
technical research centre in Finland (Stenberg and Holttinen, 2010)).
n high maintenance costs and even causes the total system to
hut down. Consequently, the FDs of OC faults is necessary for
onverters.

.2. The robustness and reliability issues of wind power converter
Ds

Wind power converters topology and configuration continue
o evolve due to the constant emergence of complex high-power
5346
machinery. Besides, wind power converters suffer from numer-
ous stresses and operating condition variations. Therefore, the
robustness and reliability issues of wind power converter FDs
models and tools should be considered. In particular, this point is
fundamental when the reliability and robustness features of the
proposed solutions have to be verified and validated with respect
to real engineering and safety critical systems.

The robustness issues of wind power converter FDs models
and tools should be considered are as follows:
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Table 1
Comparison of several reviews made previously on converter fault diagnosis.
Ref. Journal Fault

type
Reviewed
method

Applicable
system

Converter type Reliability and
robustness issues

Qualitative
analysis

Quantitative
analysis

Gao et al.
(2015a)
(Gao et al.,
2015b)

IEEE
Transactions
On Industrial
Electronics

– Model-based;
signal-based;
knowledge-
based;
hybrid/active
methods;

Industrial
systems

– – – –

Wan et al.
(2019)

International
Conference on
Intelligent
Green Building
and Smart Grid
(IGBSG)

– Model-based;
signal-based;
knowledge-
based; fusion
methods;

Industrial
systems

Power
electronics

– – –

Lu and
Sharma
(2009)

IEEE
Transactions
On Industry
Applications

OC and
SC

Signal-based;
data-driven;

Industrial
systems

Three-phase
power inverters
(T-type
topology;
traditional
two-level
topology)

– Resistivity;
implementation
effort; tuning
effort; threshold
dependence on
detection variable;

Detection time

Wang et al.
(2019)

IET Circuits,
Devices &
Systems

OC and
SC

Mechanism-
based;
signal-based;
artificial
intelligence-
based;

Industrial
systems

MMC – MMC
configuration;
submodule
structure; sensed
parameters;
hardware
platform; multi
faults detection
ability;

Submodule
number; sensor
number;
diagnosis time;

Liu et al.
(2016)

Electric Power
Components
and Systems

OC and
SC

Model-based;
signal-based;
data-driven;

Industrial
systems

MMC – Detected fault
types

Number of
sensors

Kumar and
Elangovan
(2020)

IET Power
Electronics

OC and
SC

Model-based;
signal-based;
data-driven;

Industrial
systems

DC–DC
converter

– Easy
implementation
and economical;
additional
hardware;
diagnosis speed;
cost;

Multiple faults;
diagnostic
time;

Gao and Liu
(2021)

Processes OC Model-based;
signal-based;
knowledge-
based;

Wind power
converter

– – – –

Yang and
Chai (2016)

Renewable and
Sustainable
Energy Reviews

OC and
SC

Model-based;
pattern-based;

Industrial
converter;
wind power
converter

Diode
rectifier-based
converter;
2L-BTB
converter;
3L-NPC-BTB
converter;
MMC;

Load and torque
vary

Model complexity;
additional
hardware;
applicable
converter types
and WT type;

Detection time;
the number of
faults;

This paper – OC and
SC

Model-based;
signal-based;
data-driven;

Wind power
converter

Diode
rectifier-based
converter;
2L-BTB
converter;
3L-NPC-BTB
converter;
MMC;

Robustness
issues: wind
variations, load
changes, the
noise and bias in
measured
signals;
Reliability issues:
high accuracy,
the
model–reality
mismatch;

Multiple fault
diagnosis;
additional
hardware; model
complex-
ity/computational
cost; threshold;
diagnosis speed;
degree of model
dependence;
amount of data
required; tuning
effort; applicable
system; converter
type; applicable
objects;
technology
application
maturity;
nonlinear signal
processing;

Number of
faults;
diagnosis time;
accuracy;
precision;
recall;
F1-score; false
detection rate;
missed
detection rate;
robustness;
5347
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Fig. 5. Fault rate distribution of wind power converters (Yang and Chai, 2016).

(1) Robustness to wind variations
The rapid variation of the wind speed and direction lead to

sudden changes of torque in high-dynamic wind turbine sys-
tems. The robustness to wind variations of FDs for wind power
converters is required.

(2) Robustness to load changes
The load changes may cause false alarms of wind power con-

verter FDs. The fault diagnostic methods for converters need to
be highly robustness to system transients resulting from the load
changes.

(3) Robustness to the noise and bias in measured signals
Most fault diagnostic methods require sensors to measure

currents and voltages. But the signals measured by sensors con-
tain noise and bias, which greatly affect the accuracy of wind
power converter FDs. A superior FDs method must consider the
robustness to noise and bias in signal.

The reliability issues of wind power converter FDs models and
tools should be considered are as follows:

(1) High accuracy
Wind power converters adopt double-closed-loop control in

both generator-side converter and grid-side converter, which
forces the operating states tracking references. In this case, the
changes of current and voltage signals caused by early-stage weak
faults will be significantly attenuated, resulting in the weakening
of fault characteristics. The reliability of wind power converter
FDs requires high accuracy at any time.

(2) The model–reality mismatch
At present, the effectiveness and reliability of most proposed

wind power converters FDs are verified in simulation platform
and experimental setup. However, the wind turbine systems in
actual wind farms are different from the simulation and experi-
mental equipment in terms of configuration and power capacity;
besides, the actual power grid voltage shocks and on-site real-
time operating conditions are very different from the labora-
tory environment. The reliability of wind power converter FDs
methods requires to solve the model–reality mismatch.

2.3. The FDs framework of a wind power converter

The FDs framework of a wind power converter is shown in
Fig. 7. Fault diagnosis methods include three categories: model-
based methods, signal-based methods, and data-driven meth-
ods (Gao et al., 2015a,b). The model-based method first needs to
establish an accurate mathematical or analytical model for a wind
power converter system using the physical knowledge about the
structures and dynamics of the system, and then obtain fault
results by analyzing residual between the estimated value and
measured value. The signal-based method first needs to study the
behavior of wind power converter system when different com-
ponents fail, then generates diagnostic variables and thresholds
based on the measured signals, and finally identifies the fault
state of the converter through symptom analysis. The data-driven
method uses numerous historical operation data to obtain system
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states, it first adopts mathematical technology to the measured
signal for data processing and feature extraction, then artificial
intelligence algorithm is applied for fault pattern training and
recognition.

As Fig. 7 shows, the model-based method makes full use of
the system information, so the diagnostic results are reliable.
However, this method significantly relies on the precision of
systemmodel. The signal-based method is simple and straightfor-
ward due to it does not need a precise converter system model,
but it requires prior-knowledge of the system. The data-driven
method can be easily conducted without precise model of a wind
power converter system and prior-knowledge of the system, but
it requires a large amount of historical data to train and learn the
classifier, so the computation is expensive and time-consuming.

More effective performance indices are exploited in this paper
to assess the advantages of the developed techniques for wind
power converter FDs besides the robustness and reliability met-
rics mentioned in Section 2.2. The effective performance metrics
for qualitative analysis exploited in this paper are as follows:

(1) Multiple/single fault diagnosis.
(2) Additional hardware requirement.
(3) Model complexity/computational cost.
(4) Threshold: fixed, adaptive.
(5) Diagnosis speed: online, offline.
(6) Degree of model dependence.
(7) Amount of data required.
(8) Tuning effort.
(9) Applicable system: DFIG, PMSG.
(10) Converter type: diode rectifier-based converter, 2L-BTB

converter, 3L-NPC-BTB converter, MMC.
(11) Applicable objects: generator-side converter, grid-side

converter, back-to-back converter.
(12) Technology application maturity: verified by simulation

platform, experimental setup, engineering project.
The effective performance metrics for quantitative analysis

exploited in this paper are as follows:
(1) Number of faults.
(2) Diagnosis time: diagnosis time is related to algorithm

complexity, a wind power converter fault diagnostic method that
quickly detects faults and generates fault alarms is necessary to
ensure the rapidity of fault tolerance.

(3) Accuracy: the high accuracy demonstrates the effective-
ness of the method.

(4) Precision, recall, F1-score: three metrics from confusion
matrix, they are used to assess the multi-classification.

(5) False detection rate: load changes and transients can cause
false detection.

(6) Missed detection rate: inappropriate thresholds can lead to
missed detection.

(7) Robustness: due for example to uncertainty and distur-
bance effects in wind turbine systems, such as wind variations
(wind speed and direction), generator rotation speed changes,
load changes (power grid faults, transient voltage drops, torque,
speed), noise and bias in measured signals.

Each category fault diagnosis method of wind power converter
has several schemes, as shown in Fig. 8. For a better organi-
zation, each category fault diagnosis method will be presented
and analyzed in detail in Sections 3, 4, and 5, respectively. The
quantitative and qualitative comparison of the performance of
various methods will be conducted in Section 6.

3. Model-based method for fault diagnosis of wind power
converter

Model-based methods can be further divided into state esti-
mation, parameter estimation, joint state and parameter estima-
tion approaches (Wan et al., 2019; Lu, 2012).
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Fig. 6. Fault types and fault mechanisms of power semiconductor devices (Shao et al., 2020; Ma et al., 2020; Shao et al., 2021; Lee et al., 2015).
Fig. 7. FDs framework of a wind power converter.
.1. State estimation approach

.1.1. Observer-based method
Observers are widely used in model-based methods for con-

erter FDs. The role of the observer is to estimate the system state
ased on available measurements. The state observer is a dynamic
ystem that outputs residual to diagnostic system. The residual is
he difference between estimated outputs and measured outputs.
n a healthy state, the residual is null; when a fault occurs, the
esidual is different from zero.

A nonlinear current observer was adopted to generate resid-
als to detect and isolate inverter switch faults (Espinoza-Trejo
t al., 2013), this method was independent of load and inverter
requency and did not require additional sensors. However, it
equired at least one fundamental period to isolate the faulty
witch; besides, it had a heavy computational burden and needed
recise system parameters. Jlassi et al. (2015) employed a Lu-
nberger observer to estimate three-phase generator and grid
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currents inorder to obtain current residual for the diagnosis of
faulty leg, the robustness against false alarms was independently
guaranteed for rotor-side converter and grid-side converter under
varying operating conditions. Ref. Jlassi et al. (2016) constructed a
normalized current factor based on Luenberger observer to detect
inverter OC faults, and obtained a lower detection time, but it
suffered from model uncertainty.

A mixed logic dynamic (MLD) model was established to es-
timate current (Ge et al., 2017), and the rapid FDs of inverter
was obtained. This method was not affected by the influence
of system load and closed-loop control algorithm, thus, it had
high robustness and accuracy. But it had no capability for online
FDs. Ref. Yong et al. (2020) obtained an online FDs by estimating
the phase current with a modified current observer. The current-
observer based methods only needs measurements from existing
sensors without any additional sensors.

Ref. Shahbazi et al. (2016) proposed a voltage observer based
on time and voltage criteria, the wind power converter faults
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Fig. 8. FDs classification of wind power converter.
ere detected by the comparison of observations and measure-
ents of pole voltage. A sub-module voltage-based voltage ob-
erver was presented (Zhang et al., 2020a), and rapid fault detect
nd locate of a MMC were obtained; besides, the method was
ndependent of system parameters. An inverter fault diagnostic
ethod based on voltage residual observer was proposed (Ren
t al., 2018), it showed good rapidity without extra circuits, and
t had strong robustness to operating conditions.

Some advanced observer techniques for converter FDs have
een proposed. A nonlinear proportional-integral observer based
Ds scheme was proposed for inverter (Wang et al., 2020;
spinoza-Trejo et al., 2012), it obtained fast fault detection and
solation and was independent of load torque and operating
onditions. Shao et al. (2013) proposed a sliding mode observer-
ased method for OC faults diagnosis in a MMC, and the perfor-
ance of the observer was improved in Shao et al. (2016). These

wo methods successfully avoided the effects caused by sampling
rrors and parameter variation, thus could be easily implemented
n the controller, but they heavily depended on the accuracy of
he converter switching model and may fail if multiple faults
ccur in different sub-modules. Mtepele et al. (2019) utilized
liding-mode integral observer to diagnose multilevel converters
C faults. A Lyapunov theory-based sliding mode observer was
esigned to detect OC faults in MMC sub-module (Song et al.,
020), it can detect both the faulty arm and the fault modes.
high-gain observer was used to detect converter switch faults
uickly and reliably (Espinoza Trejo et al., 2019).

.1.2. Kalman filter method
In Deng et al. (2015), a Kalman filter-based method was pro-

osed to detect the OC fault in a MMC sub-module. The Kalman
5350
filter was used to observe the circulating current, and a large
residual between the observed circulating current and the actual
value was observed in fault cases. However, this method was
quite complex and time-consuming. Naseri et al. (2020) used
Kalman filters to obtain effective real-time fault diagnosis for OC
faults in inverter.

3.2. Parameter estimation approach

Parameter estimation-based fault diagnostic method first es-
timate the fault-related parameters, and then obtain fault states
by analyzing the estimated parameters. The least square method
was applied to identify inverter faults (Alavi et al., 2011), this
method can isolate the incipient and abrupt faults online. A
weighted least square-based three-phase converter fault identifi-
cation method was proposed (Zhang and Zhang, 2015), the diag-
nostic results with high accuracy were obtained in both balanced
and unbalanced conditions.

3.3. Joint state and parameter estimation approach

This approach can simultaneously estimate the unknown
states and parameters online. It can provide FDs function and
incorporate with a controller in the fault-tolerant control sys-
tem (Lu, 2012).

3.3.1. Extended observer
In the extended observer-based method, the unknown param-

eters are considered as additional states in order to represent
system faults, and all extended states, including unknown param-

eters, are estimated by constructing a state observer. An extended
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tate observer was adopted to track arm current of a MMC (Hu
t al., 2016b), this method had advantages of no extra sensors,
ewer observation states, and no limitation in the modulation
ethod. Hu et al. (2016a) designed a circulating current equation-
ased extended state observer, and switch faults were located
ffectively.

.3.2. Adaptive observer
The adaptive observer method designs a simple observer di-

ectly for the original system assuming that all parameters are
nown without destroying the system structure, and tries to
ind suitable adaptive laws to estimate unknown parameters in
rder to make the observer converge. This method does not
eed complex observer algorithms and thus can be easily im-
lemented. An adaptive voltage distortion observer was used to
mprove the diagnostic performance of inverter OC faults (Jung
t al., 2013), but its practical implementation was hindered due
o the high dependence of parameter estimation. A nonlinear
daptive observer-based FDs for MMC in wind turbine system
as proposed to obtain online detection and location for SC faults
nd OC faults (Liu et al., 2015b), it reduced the false and missed
etection.
The model-based method is effective in early-stage weak fault

iagnosis. However, the effectiveness significantly depends on the
ccuracy of system model and parameters.

. Signal-based method for fault diagnosis of wind power con-
erter

It is important to select an appropriate signal for converter
Ds, which can directly affect FDs results. The fault occurrence in
he converter can potentially affect the output characteristics, es-
ecially the current and voltage distortions. Converter anomalies
an be detected by analyzing current or voltage signals.

.1. Current-based methods

Current-based methods are favored for converter FDs since no
xtra sensors are needed and they are independent of converter
arameters.

.1.1. Average current method
The amplitude of half-period phase current is zero in corre-

ponding arm when an OC fault occurs in converter one power
witch; the amplitude of whole-period phase current is zero
hen OC faults occur in two switches on one arm simulta-
eously. Consequently, the average phase current in a period
aries after converter switches open. FDs of switch OC faults
as obtained by analyzing the average current space vector in
ne period (Mendes and Cardoso, 1999). However, there existed
ome issues, such as load dependence, false alarms, and com-
lex tuning. The average of three-phase current was directly
sed for converter FDs (Rothenhagen and Fuchs, 2005). Average
urrent park’s vector method was used to detect faults in three-
evel neutral-point-clamped (NPC) converter (Abadi et al., 2012),
he faults of the upper and lower IGBT pairs in one leg were
dentified.

Since large instantaneous average current, the direct current
verage methods have less robustness, and the actual system di-
gnosis results may be unreliable. The introduction of normalized
verage current method reduces false alarms to a certain extent, it
akes normalized average currents as fault features. Mendes et al.
2014) used modulus and angle of the normalized average current
o detect three-level NPC inverter faults, it had strong robust-
ess to transient conditions caused by load and speed changes.
iming at the problem that the rotor current may be very low
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around the synchronous speed in doubly-fed induction generator
(DFIG) systems, a diagnosis method based on normalized average
current was presented (Sae-Kok et al., 2010), it reduced false
alarm rate. An improved method considering the low-frequency
characteristics of the rotor current was proposed (Duan et al.,
2011), but the detection threshold was set by experience.

In order to improve the diagnostic performance, some mod-
ified normalized average current methods have been proposed.
Ref. Estima and Cardoso (2011) proposed a normalized current
average absolute errors-based method, and then proved the in-
dependence to operating conditions, but the method was in-
applicable when encountering stochastic wind. Ref. Qiu et al.
(2016) presented a wind speed-based normalized current trajec-
tory method for the FDs of wind power converter OC faults to
overcome the uncertainty of stochastic wind speed. The average
absolute value of normalized stator currents was used for the
real-time FDs of wind power converter in PMSG system, this
method can detect single and multiple OC faults, and it had
immunity against false alarm when generator rotation speed
changes suddenly (Mahdhi et al., 2020).

The average absolute of normalized three-phase current sum
was used for switch FDs (Freire et al., 2014), although calcu-
lation cost was low, diagnosis result was affected by the fixed
detection threshold. Ref. Zhao and Cheng (2017) proposed a real-
time FDs based on absolute normalized current and adaptive
threshold for converter OC faults in DFIG-based wind turbine
systems, this method can detect multiple OC faults, but it was
prone to false alarms when the load changes suddenly. Ref. Zhao
and Cheng (2018) used the average of normalized phase current
and adaptive threshold to improve the robustness to sudden load
changes.

4.1.2. Reference current error method
The defined function residual based on three-phase current

signals were used to detect inverter OC faults (Wu and Zhao,
2016). The average of three-phase reference current error was
used to calculate diagnostic variables (Estima and Cardoso, 2013),
and a fast converter FDs was obtained by comparing with the
defined threshold. Although the calculation cost was low, the
threshold was challenging to determine, especially when load
changed. Ref. Jlassi and Cardoso (2017) proposed a current resid-
ual based method, and converter faults were diagnosed by com-
paring with adaptive threshold.

4.1.3. Slope of current vector trajectory method
Ref. Freire et al. (2010) proposed a method based on phase

angle slope of current park’s vector to diagnose wind power
converter faults, but it only can identify a single OC fault and
was not reliable enough for multi-fault identification. A modified
slope method was proposed to obtain multiple OC fault diagno-
sis (Trabelsi et al., 2010), but the detection was slow. The phase
angle slope of average current park’s vector was used to detect
faults (Huang et al., 2015), but it presented a problem of load
dependence. The phase derivative absolute of absolute current
park’s vector was applied as detection variable to diagnose con-
verter multiple OC faults in a PMSG-based wind turbine system
(Freire et al., 2013), this method had strong robustness to load
and speed transients, but multiple thresholds were required to
guarantee algorithm performance.

4.1.4. Current vector shape method
Undesirable current path distorts the output phase currents

when converter has an OC fault. In Kwon et al. (2020), OC faults in
NPC inverter were diagnosed by analyzing the specific trajectory
of current, and rapid detection and location were obtained. Cur-
rent pattern radius was used to detect OC faults in grid-connected
inverter with fast detection and low calculation cost (Choi et al.,
2012).



J. Liang, K. Zhang, A. Al-Durra et al. Energy Reports 8 (2022) 5341–5369

4

d
w

m
t
e
s
o
d
t
c
I
h
s
f
d

s
c
a
m

4

v
t

4

s
t
w

4

i
s
t
a
o
T
s
w
m
f
c
s

4

m
t
l

4

m
m
w
t
c

e

.1.5. Normalized Root Mean Square (RMS) current method
Ref. Das and Kim (2015) used normalized RMS currents to

etect switch OC faults in wind power converters, this method
as simple enough to be implemented in the grid-side controller.
In addition, many advanced current-based converter FDs

ethods have been proposed. Zero current duration was used
o detect converter OC faults in the wind turbine system (Lee
t al., 2015), but the algorithm parameters had a great relation-
hip with the component performance, system configuration, and
perating conditions. An instantaneous amplitude-based fault
iagnosis method for back-to-back converters in PMSG wind
urbine system was proposed, it had multiple OC faults diagnosis
apacity and was robust to speed variations (Xu et al., 2021).
n order to obtain high reliability and low cost and volume in
arsh environments, the diagnostic variables based on recon-
tructed three-phase currents were presented for inverter OC
aults FDs (Yan et al., 2018). The reconstructed currents had less
istortion and less harmonic components.
Current-based methods above adopt signals existing in control

ystem and do not require extra sensors or increase diagnostic
osts. However, these methods have load dependence and false
larms issues due to current characteristics. Furthermore, these
ethods are susceptible to closed-loop control algorithms.

.2. Voltage-based methods

When a fault occurs in different converter switches, converter
oltages present different characteristics. Therefore, it is possible
o diagnose converter switch faults by analyzing voltage signals.

.2.1. Voltage measurement method
In Chen et al. (2019), the switched bridge voltage and corre-

ponding duration were measured to detect inverter OC faults,
his method had a short detection time, but required extra circuit,
hich increased the implementation cost.

.2.2. Error voltage-based method
Chen et al. (2021) utilized selective calculation method for

nstant voltage deviation to diagnose three-level rectifiers open-
witch faults. Ref. Karimi et al. (2008) used a voltage criterion and
ime criterion to process the pole voltage error in order to di-
gnose converter faults. Although fast detection was achieved, it
nly detected the faulty arm and could not locate the fault switch.
he average residual of pole voltages was used for inverter open
witch FDs (Choi and Lee, 2012), it attenuated error influence but
as not suitable for minimal load level. The measured and esti-
ated pole voltages were directly compared to detect converter

aults (Shahbazi et al., 2018), it was suitable for fault-tolerant
ontrol system due to its independence from wind conditions,
ystem parameters, and load variations.

.2.3. Output voltage Root Mean Square (RMS) method
Ref. Tan et al. (2018) proposed a RMS voltage-based FDs

ethod for wind power converter OC faults, this method had
he advantage of no threshold, but it only achieved single fault
ocation.

.2.4. Switching function model method
A fast and low-cost FDs method based on switch function

odel for inverter was proposed (An et al., 2011), this method
easured the collector voltage of lower arm with simple hard-
are to achieve fault detection and location. However, it required
he power supply of system to be greater than the detection
ircuit, which limited its application.
The DC-Link voltage can also be used for converter FDs (Sen
t al., 2016). Ref. Jung et al. (2019) used grid voltage phase angle

5352
and DC-link voltage to diagnose faults. The time–frequency anal-
ysis of DC-link voltage was used to obtain wind power converter
fault states (Ismail et al., 2019).

Voltage-based methods can achieve rapid fault detection and
have high robustness to loads and noise. Nevertheless, the mea-
surement of diagnostic voltage may require additional sensors
or detection circuits. As a result, the implementation cost and
complexity of the system increase.

The signal-based methods are simple and straightforward and
have significant real-time performance. Still, they are suscepti-
ble to the threshold and have high dependence on the prior-
knowledge of the system. Furthermore, the diagnostic results are
easily affected by noise and operating conditions.

5. Data-driven method for fault diagnosis of wind power con-
verter

Data-driven method uses mathematical based data mining
techniques or statistical methods to diagnose converter faults,
its typical procedure includes data processing and feature ex-
traction, pattern training and recognition (Wang et al., 2019).
For example, principal component energy-Artificial Neural Net-
work (ANN) (Zhang, 2020), detection parameter-ANN (Ko et al.,
2012), histogram-ANN (Sedghi et al., 2011), Correlation Fea-
tures (mean and covariation)-ANN (Tan et al., 2020), Multistate
Data Processing (MSDP)-Subsection Fluctuation Analysis (SSFA)-
ANN (Huang et al., 2018b), Fast Fourier Transform (FFT) spectrum
analysis (Xia and Ning, 2019), Discrete Fourier Transform (DFT)-
Back Propagation Neural Network (BPNN) (Jiang et al., 2012),
Wavelet Transform (WT)-Feature Analysis (FA)-Judgment (JD)-
BPNN (Zhang et al., 2019), WT-Deep Belief Networks (DBN) (Liu
et al., 2017a), Discrete Wavelet Transform (DWT)-ANN (Dhumale
and Lokhande, 2016; Parimalasundar and Vanitha, 2015; Rekha
et al., 2017), DWT-BPNN (Geng et al., 2020), DWT-Fuzzy Logic
System (FLS) (Potamianos et al., 2014), Empirical Mode Decom-
position (EMD)-ANN (Khan et al., 2020), EMD-Support Vector
Machine (SVM) (Liang et al., 2020; Miao et al., 2017), Variational
Mode Decomposition (VMD)-SVM (Yuan et al., 2016), VMD-Trend
Feature Analysis (TFA)-DBN (Zhang et al., 2020b), Principal Com-
ponent Analysis (PCA)-SVM (Wang et al., 2013), PCA-Hidden
Markov Model (HMM) (Kouadri et al., 2020), FFT-PCA-multiclass
Relevance Vector Machine (mRVM) (Wang et al., 2015), FFT-
PCA-Bayes networks (BN) (Cai et al., 2017), FFT-Relative PCA
(RPCA)-SVM (Wang et al., 2016), Wavelet Packet Decomposition
(WPD)-PCA-ANN (Li et al., 2016), DWT-PCA-RVM-Evolutionary
Particle Swarm Optimization (EPSO) (Gomathy and Selvaperu-
mal, 2016), Independent Component Analysis (ICA)-ANN (Hu
et al., 2020), DBN-Least Square SVM (LSSVM) (Shi et al., 2019),
Sparse Representation (SR)-Deep Convolutional Neural Network
(DCNN) (Du et al., 2021). The techniques used in the above-
mentioned data-driven methods are described in detail as fol-
lows.

5.1. Data processing and feature extraction

Appropriate fault features can improve the accuracy of FDs. As
a fact, the fault diagnostic accuracy significantly depends on the
signal processing and feature extraction algorithm.

5.1.1. Statistical analysis
These methods are quite mature. The appropriate statistical

features of converter time-domain signals in health and fault
state such as histogram (Sedghi et al., 2011), mean (Tan et al.,
2020), standard deviation (Gao et al., 2019), root mean square
(Chen and Bazzi, 2017), skewness (Baghli et al., 2019), and kurto-
sis (Yuan et al., 2016) are calculated as fault features to represent

the fault modes of the converter.
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A method using correlation features (mean and covariation)
or wind power converter FDs was proposed (Tan et al., 2020),
t presented good performance under different wind speeds, and
ad the advantages of short calculation time and a simple cal-
ulation process. The main components were extracted from the
istortion and envelope changes of a three-phase current signal
s fault features (Huang et al., 2019, 2018a). The principal com-
onent energy and the current proportional coefficient were used
o construct fault features (Zhang, 2020). The statistical analysis
ethods are simple and easily implemented but susceptible to
oise, loads and operating conditions.

.1.2. Fast Fourier Transform (FFT)
FFT extends the time-domain signal to frequency-domain in

rder to analyze signal frequency spectrum. The change of har-
onic components in converter signal frequency spectrum is

elated to converter fault, thus it can be used as a fault fea-
ure. FFT was used for spectrum analysis and the spectrum at a
pecific frequency was utilized to detect inverter OC faults (Xia
nd Ning, 2019; Khomfoi and Tolbert, 2007b). Discrete Fourier
ransform (DFT) was applied to the output voltage to select the
ain harmonic information, and then fault identification was
erformed by BPNN (Jiang et al., 2012). However, FFT produces
rror information for the analysis of nonlinear signal due to it is
inear assumption; besides, FFT is not suitable for detecting tran-
ients or short spikes of signals since it has no time resolution.
onsequently, the nonlinearity (due to the existence of nonlinear
ower semiconductor devices) and non-stationarity (due to the
omplex operating conditions) of wind power converter signals
ake FFT unable to guarantee the accuracy of converter FDs.

.1.3. Short Time Fourier Transform (STFT)
STFT is an extension of FFT to analyze the time-varying fre-

uency response of non-stationary signals, it divides a signal into
ome small time windows and analyzes these windows using
FT to provide localization in time and capture frequency in-
ormation. STFT provides a three-dimensional representation of
ignal frequency response (ie, time, frequency, and amplitude).
n STFT-based inverter FDs was proposed (Du and Wang, 2010).
TFT-based spectral analysis was applied to detect wind power
onverter OC faults (Ismail et al., 2019). However, the resolu-
ion of STFT is constant because of the use of fixed-width win-
ows, that is, high time-resolution and high frequency-resolution
re unable to be obtained at the same time. Thus, the high-
omputational cost required to achieve a high-resolution is a
ajor drawback of STFT.

.1.4. Wavelet Transform (WT)
WT decomposes a signal into a group of frequency compo-

ents and gradually observes the signal from coarse to fine,
t can represent the signal characteristics in both time-domain
nd frequency-domain. A telescopic window can be achieved
hrough appropriate selection of scale factor and translation fac-
or, so WT has multi-resolution characteristics, that is, WT can
rovide a high frequency-resolution for low-frequency compo-
ents and a high time-resolution for high-frequency components.
T is outstanding for extracting the time-varying features of
on-stationary signals and has been widely used in converter FDs.
WT was used to extract fault features from converter phase

oltages to detect MMC sub-module SC faults (Liu et al., 2015a).
he energy of each layer was extracted as fault features after
T decomposition and reconstruction of converter original sig-
als (Liu et al., 2017a). Wavelet packet decomposition (WPD) was
ombined with energy vector to extract fault features of converter
oltage signals (Sun et al., 2017). Zhang et al. used feature analysis
FA) and judgment (JD) to amplify the divergence of data obtained
5353
by WT (Zhang et al., 2019), it can not only accurately detect
the single-switch OC faults of the grid-connected converter in
the wind turbine system, but also the double-switch OC faults.
Discrete wavelet transform (DWT) was adopted to analyze the
converter signal, and the detailed coefficients were extracted
as fault features (Dhumale and Lokhande, 2016; Rekha et al.,
2017; Potamianos et al., 2014), it had a fast computation. DWT
was used to preprocess inverter current to obtain approximate
coefficients, and then their energy vectors were calculated as
fault features (Wu et al., 2017). WT can also be regarded as a
set of bandpass filter to filter signal noise (Liu et al., 2017b),
it improved the accuracy of converter FDs but increased the
complexity. However, WT is susceptible to the wavelet basis, and
it lacks adaptability.

5.1.5. Empirical Mode Decomposition (EMD)
EMD is proposed to effectively analyze the signal with non-

linearity and non-stationarity. Based on local features time scale,
EMD decomposes a signal into a group of intrinsic mode functions
(IMFs). IMFs need to meet sifting stop criteria and they are simple
signals with two properties: the number of zero crossings and
extreme points equal or differ at most by one in the entire data
set; the maximum and minimum envelopes are locally symmetric
about the time axis at any time. IMF is a basis function depend-
ing on the original signal rather than predefined, so EMD is an
adaptive data-driven technology.

Ref. Khan et al. (2020) used EMD to decompose the voltage
signal of wind power converter and took median, RMS, vari-
ation, mean, entropy, and standard deviation of IMFs as fault
features. An EMD-SVM based fault diagnostic method for three-
level NPC inverter was proposed (Miao et al., 2017). Ensemble
EMD (EEMD)-Norm entropy (NE) based wind power converter
FDs was presented (Liang et al., 2020), the fault features were
described by IMF-NE, and the diagnostic results showed high
accuracy and outstanding robustness.

5.1.6. Variational Mode Decomposition (VMD)
VMD is an adaptive non-recursive data processing technology,

it decomposes a signal into a discrete set of bandwidth-limited
sub-signals with sparse characteristics, which known as modes.
Each mode generated by VMD can be compressed around a cen-
tral frequency determined with the decomposition process. By
minimizing the sum of mode estimation bandwidths, VMD con-
structs the mode decomposition into a process of solving the
optimal solution of a constrained variational problem.

VMD was combined with skewness and kurtosis to extract the
fault features of a wind power converter (Yuan et al., 2016). In
Zhang et al. (2020b), VMD was applied to decompose converter
three-phase current signals and the trend feature vectors were
extracted based on the obtained mode coefficient series, this
method not only accurately diagnosed the single and double OC
faults, but also had strong robustness to wind speed variation.

5.1.7. Principal Component Analysis (PCA)
PCA can mine the essential low-dimensional features of orig-

inal data set, so as to appropriately describe the data set major
trends. PCA was adopted to extract the features correspond-
ing to various faults, and then fault modes were identified by
SVM (Wang et al., 2013), it showed an excellent performance
against noise and computational complexity. Ref. Kouadri et al.
(2020) used PCA to extract fault features of wind power converter
and used Hidden Markov Model (HMM) to classify the fault
modes, then OC faults and SC faults were effectively detected.
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.1.8. Independent Component Analysis (ICA)
ICA plays an essential role in actual systems real-time FDs

ince it allows potential variables not to obey Gaussian distri-
ution. Ref. Hu et al. (2020) proposed an ICA-based FDs for
rid-connected NPC inverter, in which ICA was applied to extract
ault features, and then ANN was used for fault modes identi-
ication. The application of ICA technology reduced the number
f ANN input neurons and training time; besides, the lower
imensional input space reduced noise, improved the diagnostic
erformance.
The performance of various signal processing and feature ex-

raction methods are summarized in Table 2 from the aspects of
unction, domain, resolution, nonlinear signal processing, com-
lexity/computational cost and signal sampling rate, and then the
dvantages and drawbacks of each method are presented.
The methods mentioned in Table 2 all can be used to extract

eatures, WT and EMD can also be used to denoising (Liang
t al., 2020; Zhang et al., 2019; Liu et al., 2017a; Dhumale and
okhande, 2016; Parimalasundar and Vanitha, 2015; Rekha et al.,
017; Geng et al., 2020; Potamianos et al., 2014; Liu et al., 2015a;
han et al., 2020; Miao et al., 2017; Wu et al., 2017; Liu et al.,
017b), PCA and ICA are usually used to reduce the feature
imension (Wang et al., 2013; Kouadri et al., 2020; Wang et al.,
015; Cai et al., 2017; Wang et al., 2016; Li et al., 2016; Gomathy
nd Selvaperumal, 2016; Hu et al., 2020). Due to wind power con-
erters are composed of multiple power switching devices with
onlinear and time-varying characteristics, signals measured by
ensors usually have serious nonlinear properties. An excellent
ault diagnosis method should be capable of handling nonlinear
ignals (Liang et al., 2020; Ismail et al., 2019; Zhang et al., 2019;
iu et al., 2017a; Dhumale and Lokhande, 2016; Parimalasun-
ar and Vanitha, 2015; Rekha et al., 2017; Geng et al., 2020;
otamianos et al., 2014; Liu et al., 2015a; Khan et al., 2020; Miao
t al., 2017; Yuan et al., 2016; Zhang et al., 2020b; Du and Wang,
010; Sun et al., 2017; Wu et al., 2017; Liu et al., 2017b). The
daptive data-driven technique decomposes the signal according
o an algorithm rather than a predefined basis function (Liang
t al., 2020; Khan et al., 2020; Miao et al., 2017; Yuan et al., 2016;
hang et al., 2020b).
High-quality feature extraction can effectively improve the

ccuracy of FDs. The PCA technology is combined with other fea-
ure extraction techniques to extract more comprehensive fault
eatures. For example, FFT-PCA (Wang et al., 2015; Cai et al.,
017; Wang et al., 2016), DWT-PCA (Gomathy and Selvaperu-
al, 2016), WPD-PCA (Li et al., 2016). Firstly, FFT, DWT, WPD
ere used to extract fault features, and then PCA was applied
o obtain lower-dimensional feature samples, which reduced the
ressure of classifier training and recognition. ANN was combined
ith multistate data processing (MSDP)-subsection fluctuation
nalysis (SSFA) feature extraction method to obtain inverter mul-
iple OC fault FDs (Huang et al., 2018b). Deep Belief Network
DBN) optimized by double chain quantum genetic algorithm
DCQGA) was used for fault feature extraction, and the online
iagnosis of single and double switch OC faults were obtained
ccurately and quickly by LSSVM classifier (Shi et al., 2019), it had
igh robustness to converter operating conditions. These methods
howed that a simple classification algorithm could obtain good
iagnostic results as long as the features were extracted appropri-
tely. Besides, the hybrid feature extraction strategy combining
ignal analysis method and statistical index had obtained good
iagnostic performance (Liang et al., 2020; Khan et al., 2020; Yuan
t al., 2016).

.2. Fault classification diagnosis

The converter fault modes can be identified by an artificial
ntelligence algorithm.
5354
5.2.1. Artificial Neural Network (ANN)
ANN-based FDs can learn and popularize from samples. Since

its strong nonlinear approximation and adaptive learning abil-
ity, ANN has become a common tool for detecting converter
faults (Parimalasundar and Vanitha, 2015; Khomfoi and Tolbert,
2007a). An ANN is trained to identify different fault modes of the
converter from the signals containing fault information, which
can be original signals (Ko et al., 2012), or features extracted from
original signals (Tan et al., 2020; Dhumale and Lokhande, 2016;
Rekha et al., 2017; Li et al., 2016).

Ref. Kim and Kim (2020) proposed an ANN-based two-step
diagnosis method to identify multiple OC faults in three-phase
converters. The three-phase current parameters were input to
ANN to diagnose the converter OC faults in high-power wind
turbines (Ko et al., 2012). DWT-detail coefficients of current or
voltage signals were extracted as fault features to train ANN
classifier in order to identify fault modes (Dhumale and Lokhande,
2016; Rekha et al., 2017). WPD-PCA fault features were extracted
as ANN input for FDs (Li et al., 2016). Ref. Tan et al. (2020)
used ANN to train the correlation features (mean and covariation)
among three-phase currents to detect the fault of wind power
converter. Ref. You and Zhang (2012) used fault feature and self-
organizing mapping (SOM) to diagnose wind power converter
faults.

ANN is time-consuming due to it needs numerous data to
cover all possible fault modes, which is a great challenge in
practice. Besides, it is difficult to prove the reliability and con-
vergence of ANN-based methods since ANN is a heuristic tech-
nology. Several issues remain to be further studied: the design
of network scale and structure; the balance between rapidity,
convergence and real-time of the algorithm; the guarantee of the
representativeness and integrity of learning samples.

5.2.2. Vector machine algorithm
Vector machine algorithm is a machine learning technology

based on statistical learning theory, it requires less training sam-
ples due to high sparse degree and generalization ability. Support
vector machine (SVM) was applied to train the features (skew-
ness and kurtosis) to identify wind power converter faults (Yuan
et al., 2016). The FFT-RPCA feature was input to SVM classifier,
and inverter fault states were obtained accurately (Wang et al.,
2016). Ref. Shi et al. (2019) used least square SVM (LSSVM) as
a classifier to identify the single and double OC faults, and high
robustness to operating conditions was obtained. In Duan et al.
(2020), multiclass SVM was used to classify multi-scale entropy
features to diagnose wind power converter faults. However, SVM
is also a heuristic technique and has similar drawbacks as ANN;
besides, the inequality constraints in SVM significantly increase
computational complexity. The effectiveness of relevance vector
machine (RVM) and multiclass relevance vector machine (mRVM)
classifier in converter FDs have been verified in Gomathy and
Selvaperumal (2016) and Wang et al. (2015), respectively.

5.2.3. Expert system
Expert system is a rule-based technology, which presents

expertise in a set of rules. The expert system-based converter
FDs was learned from the converter operational history by hu-
man experts, and the mapping between measured values and
corresponding fault modes was constructed based on experi-
ence (Szczesny et al., 1997). Expert system has the advantages
of easy development and transparent reasoning. However, the
expert system-based fault diagnostic methods are system-specific
with low universality and scalability; besides, apart from the
drawbacks of heuristic technique, a major disadvantage of the
methods is that their scale increases exponentially with the
number of fault modes, increasing the computational cost.



J. Liang, K. Zhang, A. Al-Durra et al. Energy Reports 8 (2022) 5341–5369

r
e
u
R
w
d
i
b
e
a

Table 2
Comparison of different signal processing and feature extraction methods.
Methods Function Domain Resolution Nonlinear

signal
processing

Complex-
ity/computational
cost

Signal sampling
rate

Advantages Drawbacks

Statistical analysis
(Sedghi et al.,
2011; Tan et al.,
2020; Yuan et al.,
2016; Gao et al.,
2019; Chen and
Bazzi, 2017; Baghli
et al., 2019;
Huang et al., 2019,
2018a)

Feature
extraction

Time/
frequency

Rely on
input

Possible Low Any Sim-
ple/straightforward

Sensitive to
noise, operating
conditions, and
load
disturbance

FFT (Xia and Ning,
2019; Jiang et al.,
2012; Khomfoi
and Tolbert,
2007b)

Feature
extraction

Frequency High No Medium High/medium Extends time
domain signal to
frequency domain

Based on linear
assumption;
has no time
resolution

STFT (Ismail et al.,
2019; Du and
Wang, 2010)

Feature
extraction

Time/
frequency

Medium Yes High High/medium Provides
localization in
time and captures
frequency
information

Constant
resolution

WT (Zhang et al.,
2019; Liu et al.,
2017a; Dhumale
and Lokhande,
2016;
Parimalasundar
and Vanitha, 2015;
Rekha et al., 2017;
Geng et al., 2020;
Potamianos et al.,
2014; Liu et al.,
2015a; Wu et al.,
2017; Liu et al.,
2017b)

Feature
extraction;
denoising

Time/
frequency

Medium Yes Medium High/medium Multi-resolution Susceptible to
the wavelet
basis; lacks
adaptability

EMD (Liang et al.,
2020; Khan et al.,
2020; Miao et al.,
2017)

Feature
extraction;
denoising

Time/
frequency

High Yes Medium High/medium Adaptive signal
processing

Mode mixing

VMD (Yuan et al.,
2016; Zhang et al.,
2020b)

Feature
extraction

Time/
frequency

High Yes Medium High/medium Adaptive signal
processing

Boundary effect

PCA (Wang et al.,
2013; Kouadri
et al., 2020; Wang
et al., 2015; Cai
et al., 2017; Wang
et al., 2016; Li
et al., 2016;
Gomathy and
Selvaperumal,
2016)

Feature
extraction;
dimension
reduction

Time/
frequency

Rely on
input

Possible High Any Reduce dimension Heavy
complexity and
calculation

ICA (Hu et al.,
2020)

Feature
extraction;
dimension
reduction

Time/
frequency

Rely on
input

Possible High Any Reduce dimension;
real-time

Heavy
complexity and
calculation
5.2.4. Fuzzy Logic System (FLS)
FLS divides the feature space into fuzzy sets and adopts fuzzy

ules for reasoning. In Gmati et al. (2021), predictive current
rrors were used to generate diagnostic variables, then FLS was
sed to identify the faulty switches of voltage source inverters.
ef. Yan et al. (2019) combined the normalized average currents
ith FLS to diagnose power switches faults in inverter. However,
iagnostic variables are susceptible to noise, loads and operat-
ng conditions. The converter fault leg was successfully detected
ased on DWT detail coefficient feature and FLS (Potamianos
t al., 2014). Ref. Liu et al. (2015a) presented a method based on
daptive neuro-fuzzy inference system for SC faults identification
5355
of MMC sub-modules, it had the advantages of high accuracy,
good generalization, and time-saving. The FDs and online moni-
toring for grid-connected inverter OC faults can be obtained using
this method (Kamel et al., 2015).

The effective methods for analyzing and designing FLS have
not yet been established, generally depending on expert expe-
rience and trial-and-error. The selection of fuzzy sets and fuzzy
rules are still difficult issues. Besides, the size of FLS increases
exponentially with the number of converter fault modes, increas-
ing the calculation burden. Moreover, FLS lacks the self-learning
ability that is necessary for a highly demanding real-time FDs.
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.2.5. Bayesian Network (BN)
BN is a probability-based technique, it represents a group

f random variables and their conditional dependencies by a
irected acyclic graph. BN is suitable for real-time state predic-
ion and has been used in converter FDs since it can solve the
ncertainty issue. In Cai et al. (2017), the inverter fault modes
ere identified by BN, it had high diagnostic accuracy and strong
obustness to the uncertainty caused by sensor noise and bias.
he accuracy of BN significantly depends on the size of data
amples and the availability of prior tests.

.2.6. Stacked Auto-Encoder (SAE)
SAE is easy to train and efficient to learn. SAE was used to au-

omatically learn rectifier fault features from original signals (Xu
t al., 2018). A stacked sparse auto-encoder based fault diagnostic
ethod for inverter was proposed (Yin et al., 2019).

.2.7. Convolutional Neural Network (CNN)
CNN shows priority in weight sharing and shift-invariance.

NN was used to diagnose converter OC faults in wind tur-
ine system (Xue et al., 2019), it showed significant performance
nder various operating conditions. A modified CNN model CNN-
lobal Average Pooling (GAP) was applied for inverter FDs (Gong
t al., 2020), it reduced the model parameter quantity of tra-
itional CNN, and high accuracy and rapidity were obtained.
n Du et al. (2021), a deep CNN (DCNN)-based fault diagnosis
ethod was proposed, sparse representation (SR) was applied

o constructed inverter fault features, DCNN was used to train
ault modes, it alleviated overfitting caused by limited training
amples.

.2.8. Long Short-Term Memory (LSTM) network
LSTM can update the information automatically. Ref. Xue et al.

2020) proposed an LSTM network-based method to diagnose
ind power converter multiple OC faults, it had strong robustness
o wind speed fluctuation and sensor bias and had powerful data
rocessing ability. LSTM was used to combined with short-time
avelet entropy and SVM to diagnose MMC faults (Han et al.,
021), it significantly reduced the number of samples.

.2.9. Deep Belief Network (DBN)
DBN has a high generalization performance due to establish

joint probability distribution between the observed signal and
abel. DBN was applied to obtain a fault recognition model of
ind power converter by learning fault features (Liu et al., 2017a),
his method obtained high diagnostic accuracy and fast conver-
ence. A DBN classifier trained by current VMD-trend feature was
sed for grid-side converter single and double switch FDs in wind
urbine system (Zhang et al., 2020b), it was robust to wind speed
ariation.
The performance of various fault classification methods is

ompared in Table 3 including function, complexity/computationa
ost, and then the advantages and drawbacks of each method are
resented.
ANN (Zhang, 2020; Ko et al., 2012; Sedghi et al., 2011; Tan

t al., 2020; Huang et al., 2018b; Jiang et al., 2012; Zhang et al.,
019; Dhumale and Lokhande, 2016; Parimalasundar and Vanitha,
015; Rekha et al., 2017; Geng et al., 2020; Khan et al., 2020; Li
t al., 2016; Hu et al., 2020; Khomfoi and Tolbert, 2007a; Kim and
im, 2020) and deep learning algorithms SAE (Xu et al., 2018; Yin
t al., 2019), CNN (Xue et al., 2019; Gong et al., 2020), LSTM (Xue
t al., 2020), DBN (Liu et al., 2017a; Zhang et al., 2020b; Sun
t al., 2017) all can be used for feature extraction and classifi-
ation. Deep learning algorithms have better diagnostic results,
ut are computationally expensive and more time-consuming. It
s difficult to prove the reliability and convergence of heuristic
5356
technology ANN and SVM (Liang et al., 2020; Miao et al., 2017;
Yuan et al., 2016; Wang et al., 2013, 2016; Shi et al., 2019).
Rule-based technology expert system (Szczesny et al., 1997) and
FLS (Potamianos et al., 2014; Liu et al., 2015a; Gmati et al.,
2021; Yan et al., 2019; Kamel et al., 2015) have low universal-
ity and scalability, and their scale increases exponentially with
the number of fault modes, increasing the computational cost.
Probability-based technique BN (Cai et al., 2017) is suitable for
real-time state prediction, and can solve the uncertainty issue.

Several optimized algorithms have been developed and ap-
plied in order to improve classification performance. Multivari-
able optimization technologies (e.g., genetic algorithm) can be
adopted to seek optimum component combination to train an
ANN, and a minimum classification error was obtained (Khom-
foi and Tolbert, 2007b). Cuckoo Search Optimization (CSO) and
Evolutionary Particle Swarm Optimization (EPSO) were used to
optimize FLS and RVM respectively to obtain high FDs accu-
racy (Gomathy and Selvaperumal, 2016). An optimized DBN using
Crow search algorithm (CSA) to select the neurons number in two
hidden layers was adopted to identify converter faults (Sun et al.,
2017), but the calculation was heavy complexity and expensive.

Some new techniques have been applied in the field of con-
verter FDs. A machine learning method using supervisory control
and data acquisition (SCADA) system data was applied to diag-
nose converter faults (Liu et al., 2020b; Xiao et al., 2021). Kou
et al. (2020b) used Concordia transform and random forests to ob-
tain OC fault diagnosis with superior robustness for NPC inverter.
Random forests with transient synthetic features was used for
three-phase rectifier online OC fault diagnosis (Kou et al., 2020a).
Mixed kernel support tensor machine (MKSTM) was applied for
OC fault diagnosis (Li et al., 2019). Information fusion technology
was used to diagnose inverter faults (Wang et al., 2018).

The data-driven methods can perform intelligent diagnoses
without system model and prior knowledge, but the accuracy
significantly depends on the sample data and the quality of data
training. It should be noted that the more sample data is, the
higher accuracy can be obtained, but a longer training time is
required. These methods need to be further modified to improve
their performance since the drawbacks of expensive computation,
long diagnosis time, and complicated real-time implementation.

Several integrated schemes of various fault diagnosis meth-
ods have been proposed. Model-based method and signal-based
method were mixed to diagnose IGBT OC faults (Maamouri et al.,
2019), sliding mode observer was used to estimated currents,
then the measured and estimated values of current were applied
to define fault indices. Model-based method and data processing
method were combined for NPC inverter fault detection and iso-
lation (Sanchez et al., 2019), a sliding-mode proportional integral
observers was used.

6. Comparison and discussion on fault diagnosis method for
wind power converter

All fault diagnosis methods summarized in this paper have
acceptable efficiency and performance. This section conducts a
detailed qualitative and quantitative analysis of these methods.
Then, several technical challenges and development trends of
fault diagnosis methods for wind power converters are pointed
out.

6.1. Basic information on different fault diagnosis methods for wind
power converters

The basic information of each fault diagnosis method for wind
power converters is listed in Table 4, including Reference (Ref.),
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Table 3
Comparison of different fault classification methods.
Methods Function Complex-

ity/computational
cost

Advantages Drawbacks

ANN (Zhang, 2020; Ko
et al., 2012; Sedghi et al.,
2011; Tan et al., 2020;
Huang et al., 2018b;
Jiang et al., 2012; Zhang
et al., 2019; Dhumale
and Lokhande, 2016;
Rekha et al., 2017; Geng
et al., 2020; Khan et al.,
2020; Li et al., 2016; Hu
et al., 2020; Khomfoi
and Tolbert, 2007a; Kim
and Kim, 2020)

Feature extraction;
diagnosis; prognosis

Medium Simple/straightforward; strong
nonlinear approximation and
adaptive learning ability

Time-consuming; difficult to prove the
reliability and convergence

SVM (Liang et al., 2020;
Miao et al., 2017; Yuan
et al., 2016; Wang et al.,
2013, 2016; Shi et al.,
2019)

Feature extraction;
diagnosis; prognosis

Medium Simple/straightforward; high
generalization ability

Time-consuming; difficult to prove the
reliability and convergence

Expert system (Szczesny
et al., 1997)

Diagnosis Medium Easy development; transparent
reasoning

Low universality and scalability; scale
increases exponentially

FLS (Potamianos et al.,
2014; Liu et al., 2015a;
Gmati et al., 2021; Yan
et al., 2019; Kamel et al.,
2015)

Diagnosis Medium Simple/straightforward Difficult to select fuzzy sets and fuzzy
rules; scale increases exponentially;
lacks the self-learning ability

BN (Cai et al., 2017) Diagnosis; prognosis High Can solve the uncertainty issue Depends on the size of data samples
and the availability of prior tests

SAE (Xu et al., 2018; Yin
et al., 2019)

Feature extraction;
diagnosis; prognosis

High Easy to train and efficient to learn Heavy complexity and calculation

CNN (Xue et al., 2019;
Gong et al., 2020)

Feature extraction;
diagnosis; prognosis

High Shows priority in weight sharing and
shift-invariance

Heavy complexity and calculation

LSTM (Xue et al., 2020) Feature extraction;
diagnosis; prognosis

High Update information automatically Heavy complexity and calculation

DBN (Liu et al., 2017a;
Zhang et al., 2020b; Sun
et al., 2017)

Feature extraction;
diagnosis; prognosis

High High generalization performance Heavy complexity and calculation
publication year, fault type (OC, SC), category, feature extrac-
tion method, fault identification method, used signal, domain,
nonlinear signal processing.

The signals used in each fault diagnosis method are also listed
n Table 4, which provides a reference for which signal can be
elected in the fault diagnosis design. Researchers can select the
ppropriate signals to design the fault diagnosis method accord-
ng to their own requirements and actual conditions. Converter
ault diagnosis generally uses current or voltage signals.

Current-based methods adopt signals existing in control sys-
em, including phase current (Jlassi et al., 2015; Zhao and Cheng,
017; Zhang et al., 2020b), or circulating current (Shao et al.,
016; Deng et al., 2015). From the comparison of qualitative
etrics in Table 5 and quantitative indices in Table 6, it can be
een that, for current-based method, no extra sensors or high
iagnostic costs are required, but they have load dependence
nd sensitive to transients, and are susceptible to closed-loop
ontrol algorithms. From Tables 5 and 6, voltage-based methods
an achieve rapid fault detection and high robustness to loads
nd noise, such as pole voltage (Shahbazi et al., 2018, 2016),
nput or output voltage (Liang et al., 2020; Tan et al., 2018;
ang et al., 2015; Cai et al., 2017; Wang et al., 2016), DC-Link

oltage (Ismail et al., 2019). Nevertheless, the measurement of
iagnostic voltage may require additional sensors or detection
ircuits, so the implementation cost and complexity of the system

ncrease.
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6.2. Qualitative analysis on different fault diagnosis methods for
wind power converter

The qualitative analysis is carried out from the aspects of
multiple fault diagnosis, additional hardware requirement, model
complexity/computational cost/tuning effort, threshold, diagnosis
speed, degree of model dependence, amount of data required, ap-
plicable system and converter type, applicable objects, technology
application maturity, as shown in Table 5.

(1) Single/multiple fault diagnosis
The fault diagnosis method proposed in Karimi et al. (2008)

and Lee et al. (2015) can only detect the faulty leg and cannot
locate the faulty switch. The method in Qiu et al. (2016), Freire
et al. (2014), Choi et al. (2012) and Shahbazi et al. (2018) can
diagnose a single faulty switch and Duan et al. (2011), Mahdhi
et al. (2020), Zhao and Cheng (2017), Duan et al. (2020) obtain
multiple faults diagnosis.

(2) Additional hardware requirement
Additional current or voltage sensors increase the implemen-

tation cost due to the complexity of the system structure (Karimi
et al., 2008), and even interfere with the normal operation of
the wind power converter. The fault diagnosis method without
additional hardware is favored (Xu et al., 2021; Freire et al., 2010,
2013; Choi et al., 2012).

(3) Model complexity/computational cost/tuning effort
Signal-based methods are simple and straightforward due to

only the diagnostic variables need to be calculated (Mahdhi et al.,
2020; Freire et al., 2014; Zhao and Cheng, 2017). Model-based
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Table 4
Basic information on different fault diagnosis methods.
Ref. Fault type Category Feature extraction

method
Fault identification
method

Used signal Domain Nonlinear
signal
processing

Jlassi et al. (2015) OC Model-based Luenberger
observer

Residual analysis,
look-up table

Three-phase
currents

Time –

Shahbazi et al. (2016) OC Model-based Voltage observer Residual analysis Pole voltages Time –
Zhang et al. (2020a) OC Model-based Voltage observer Fault indicator Sub-module

voltage
Time –

Shao et al. (2013) OC Model-based Sliding mode
observer

Residual analysis Capacitor voltage,
arm currents

Time –

Shao et al. (2016) OC Model-based Sliding mode
observer

Residual analysis Circulating current Time –

Deng et al. (2015) OC Model-based Kalman filter Residual analysis Circulating current Time –
Liu et al. (2015b) OC and SC Model-based Nonlinear adaptive

observer
Limiting checking,
residual analysis

Phase currents Time –

Qiu et al. (2016) OC Signal-based Wind speed-based
normalized
current trajectory

Pattern of
current’s park
vectors

Three phase
currents

Time –

Mahdhi et al. (2020) OC Signal-based Normalizing phase
currents

Limiting checking,
look-up table

Two input power
converter currents

Time –

Xu et al. (2021) OC Signal-based Instantaneous
amplitude
estimation

Limiting checking Three-phase
currents

Time –

Karimi et al. (2008) OC and SC Signal-based Error voltage Limiting checking,
look-up table

Pole voltages Time –

Duan et al. (2011) OC Signal-based Average current Limiting checking,
look-up table

Three-phase
currents

Time –

Freire et al. (2014) OC Signal-based Average current Limiting checking Phase currents Time –
Zhao and Cheng
(2017)

OC Signal-based Absolute
normalized
current

Limiting checking,
look-up table

Three-phase
currents

Time –

Freire et al. (2010) OC Signal-based Slope of current
vector trajectory

Limiting checking,
look-up table

Three-phase
currents

Time –

Freire et al. (2013) OC Signal-based Slope of current
vector trajectory

Limiting checking,
look-up table

Phase currents Time –

Choi et al. (2012) OC Signal-based current vector
shape

– Phase currents Time –

Lee et al. (2015) OC Signal-based Zero current
duration

Limiting checking,
look-up table

Phase currents Time –

Tan et al. (2018) OC Signal-based Output voltage
RMS

Look-up table Output voltages Time –

Shahbazi et al. (2018) OC Signal-based Error voltage Residual analysis Pole voltages Time –
Ismail et al. (2019) OC Signal-based Time–frequency

analysis
Time–frequency
analysis

DC-link voltage Time–
frequency

Yes

Liang et al. (2020) OC Data-driven EEMD-NE SVM Three phase
voltages

Time–
frequency

Yes

Kouadri et al. (2020) OC and SC Data-driven PCA HMM Three-phase
currents

Time –

Cai et al. (2017) OC Data-driven FFT-PCA BN Two output
line-to-line
voltages

Frequency No

Ko et al. (2012) OC Data-driven Detection
parameter

ANN Three phase
current

Time –

Zhang et al. (2019) OC Data-driven WT BPNN Three-phase
bridge legs voltage

Time–
frequency

Yes

Liu et al. (2017a) OC Data-driven WT DBN Three-phase
currents

Time–
frequency

Yes

Liu et al. (2015a) SC Data-driven WT Adaptive
neuro-fuzzy
inference system
(ANFIS)

Output phase
voltages

Time–
frequency

Yes

Zhang et al. (2020b) OC Data-driven VMD-TFA DBN Three-phase
currents

Time–
frequency

Yes

Wang et al. (2015) OC and SC Data-driven FFT - PCA mRVM Output voltages Frequency No
Wang et al. (2016) OC Data-driven FFT-RPCA SVM Output voltages Frequency No
Hu et al. (2020) OC Data-driven ICA ANN Phase voltages Time –
Duan et al. (2020) OC Data-driven LMD-MSE multiclass SVM Three-phase

currents
Time–
frequency

Yes

(continued on next page)
methods require accurate physical model of converter to diag-
nose faults, current observer (Jlassi et al., 2015), sliding mode
observer (Shao et al., 2016), Kalman filter (Deng et al., 2015),
adaptive observer (Liu et al., 2015b) are all referred to complex
modeling and calculation. Data-driven methods require signal
5358
processing and classifier training, numerous historical data and
complex calculation are used, resulting in a heavy computational
burden and high cost (Kouadri et al., 2020; Wang et al., 2015; Cai
et al., 2017; Wang et al., 2016). Several optimized algorithms have
been developed and applied in order to improve classification
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Table 4 (continued).
Ref. Fault type Category Feature extraction

method
Fault identification
method

Used signal Domain Nonlinear
signal
processing

Xue et al. (2019) OC Data-driven Data normalization CNN Three phase
currents and
voltages

Time –

Xue et al. (2020) OC Data-driven Data normalization LSTM Three phase
currents voltage

Time –

Liu et al. (2020b) For the
whole
converter
rather than
a specific
fault

Data-driven Radar charts CNN, SVM SCADA system
data

Time –

Kou et al. (2020b) OC Data-driven Concordia
transform

Random forests Three-phase
currents

Time –

Han et al. (2021) OC and SC Data-driven Short-time
wavelet entropy

LSTM-SVM The bridge arm
current

Time–
frequency

Yes

Gomathy and
Selvaperumal (2016)

OC and SC Data-driven DWT-PCA RVM-EPSO;
FLS-CSO

Output voltages Time–
frequency

Yes

Khomfoi and Tolbert
(2007b)

OC and SC Data-driven FFT NN Output voltages Frequency No

Sun et al. (2017) OC and SC Data-driven WPD CSA-DBN Output voltages Time–
frequency

Yes
performance (Gomathy and Selvaperumal, 2016; Khomfoi and
Tolbert, 2007b; Sun et al., 2017).

(4) Threshold
Some fault diagnosis methods for wind power converter are

ased on a fixed threshold, which needs to be adjusted according
o the rated power or operating conditions, affecting the reliabil-
ty of the diagnostic results (Mahdhi et al., 2020; Karimi et al.,
008). Several adaptive threshold-based fault diagnosis methods
ave been proposed (Jlassi et al., 2015; Zhao and Cheng, 2017),
hich have strong robustness to system transients. In order to
btain a portable method to be universally applied to different
ind power systems and different topologies and configurations,

t is advantageous to set as few thresholds and simple tuning as
ossible.
(5) Diagnosis speed: online, offline
The fault diagnosis method proposed in Mahdhi et al. (2020),

u et al. (2021) and Karimi et al. (2008) are suitable for online
eal-time diagnosis.

(6) Degree of model dependence
The model-based method has a high degree of model depen-

ence due to the need for an accurate system model (Shahbazi
t al., 2016; Zhang et al., 2020a). The signal-based method uses
easured signal and signal patterns’ prior knowledge for fault
iagnosis, so it has low dependence on system model (Tan et al.,
018; Ismail et al., 2019). The data-driven method only require
athematical analysis of the collected signal to diagnose faults
ithout relying on the model (Xue et al., 2020; Liu et al., 2020b).
(7) Amount of data required
Data-driven methods need a large amount of data to train

lassifiers, while model-based and signal-based methods have
ess amount of data required.

(8) Applicable system and converter type
Several works devoted to developing the fault diagnosis

ethod for converters in PMSG-based wind turbine systems (Xu
5359
et al., 2021; Liu et al., 2015b), the studies regarding the converters
fault diagnosis for DFIG-based wind turbine systems are Zhao and
Cheng (2017) and Karimi et al. (2008). Typical configurations of
wind power converters mainly include 2L-BTB, 3L-NPC-BTB and
MMC. Qiu et al. (2016) and Mahdhi et al. (2020) were used for
converter fault diagnosis with 2L-BTB topology, Choi et al. (2012)
and Lee et al. (2015) were applied for 3L-NPC-BTB configuration,
and Liu et al. (2015b) and Ko et al. (2012) were applied to MMC
converter.

(9) Applicable objects
A fault occurs in one side converter may lead to variations

in voltage or current of the other side converter. Some methods
only have the ability of fault detection and location of single-sided
converter, Qiu et al. (2016) for generator-side converter and Choi
et al. (2012) for grid-side converter. Xu et al. (2021) can handle
the faults of both sided converters at the same time.

(10) Technology application maturity
The fault diagnosis method proposed in Duan et al. (2011),

Liu et al. (2017a) and Liu et al. (2015a) are verified by simula-
tion, Mahdhi et al. (2020), Karimi et al. (2008) and Freire et al.
(2014) are verified by experimental setup. Some methods give
both simulation and experimental verification (Qiu et al., 2016;
Xu et al., 2021; Ko et al., 2012; Zhang et al., 2019), the method (Liu
et al., 2020b) is verified in engineering project.

6.3. Quantitative analysis on different fault diagnosis methods of
wind power converter

The quantitative analysis including the number of faults, di-
agnosis time, accuracy, precision, recall, F1-score, false detection
rate, missed detection rate, robustness is presented in Table 6.

(1) Number of faults
The data-driven method is more suitable for applications with

a large number of faults than the model-based and signal-based
method (Hu et al., 2020; Xue et al., 2020). Because it can accu-
rately identify faults only by training the classifier model with the
collected data, no precise system physical principles and signal
patterns’ prior knowledge is required (these are detrimental for
a large number of fault types). The only downside is that the
large number of fault types can make the training of the model
extremely time-consuming.
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Table 5
Qualitative metrics of different fault diagnosis methods.
Ref. Single/

multiple fault
Threshold Additional

hardware
Model complexity/
computational cost/
tuning effort

Applicable
objects

Technology
application
maturity

Diagnosis
speed

Applicable sys-
tem/converter
type

Amount of
data
required

Degree of
model
dependence

Jlassi et al.
(2015)

Single and
multiple faults

Adaptive No Model complexity Back-to-
back
converter

Simulation
platform and
experimental
setup

Online PMSG, 2L-BTB
converter

Less High

Shahbazi
et al. (2016)

Single fault Fixed No Model complexity Back-to-
back
converter

Simulation
platform and
experimental
setup

Online DFIG, 2L-BTB
converter

Less High

Zhang et al.
(2020a)

Single and
multiple faults

– Yes Model complexity – Experimental
setup

Online MMC Less High

Shao et al.
(2013)

Single fault Fixed No Model complexity – Simulation
platform

Online MMC Less High

Shao et al.
(2016)

Single fault Fixed No Model complexity – Simulation
platform and
experimental
setup

Online MMC Less High

Deng et al.
(2015)

Single and
multiple faults

Fixed No Model complexity – Simulation
platform and
experimental
setup

Online MMC Less High

Liu et al.
(2015b)

Single fault Fixed No Model complexity Grid-side
converter

Simulation
platform

Online PMSG, MMC Less High

Qiu et al.
(2016)

Single fault – No Sim-
ple/straightforward;
low-computational
demand

Generator-
side
converter

Simulation
platform and
experimental
setup

Online PMSG, 2L-BTB
converter

Less Low

Mahdhi
et al. (2020)

Single and
multiple faults

Fixed No Sim-
ple/straightforward;
low-computational
demand

Generator-
side
converter

Experimental
setup

Online PMSG, 2L-BTB
converter

Less Low

Xu et al.
(2021)

Single and
multiple faults

Fixed No Sim-
ple/straightforward;
low-computational
demand

Back-to-
back
converter

Simulation
platform and
experimental
setup

Online PMSG, 2L-BTB
converter

Less Low

Karimi et al.
(2008)

Fault leg
(no ability to
localize the
faulty switch)

Fixed Yes Sim-
ple/straightforward;
low-computational
demand

Back-to-
back
converter

Experimental
setup

Online DFIG, 2L-BTB
converter

Less Low

Duan et al.
(2011)

Single and
multiple faults

Fixed No Sim-
ple/straightforward;
low-computational
demand

Generator-
side
converter

Simulation
platform

Online DFIG, 2L-BTB
converter

Less Low

Freire et al.
(2014)

Single fault Fixed No Sim-
ple/straightforward;
low-computational
demand

Back-to-
back
converter

Experimental
setup

Online PMSG, 2L-BTB
converter

Less Low

Zhao and
Cheng
(2017)

Single and
multiple faults

Adaptive No Sim-
ple/straightforward;
low-computational
demand

Back-to-
back
converter

Simulation
platform and
experimental
setup

Online DFIG, 2L-BTB
converter

Less Low

Freire et al.
(2010)

Single fault Fixed No Sim-
ple/straightforward;
low-computational
demand

Back-to-
back
converter

Simulation
platform

Online PMSG, 2L-BTB
converter

Less Low

Freire et al.
(2013)

Single and
multiple faults

Fixed No Sim-
ple/straightforward;
low-computational
demand

Back-to-
back
converter

Simulation
platform and
experimental
setup

Online PMSG, 2L-BTB
converter

Less Low

Choi et al.
(2012)

Single fault – No Sim-
ple/straightforward;
low-computational
demand

Grid-side
converter

Simulation
platform and
experimental
setup

Online 3L-NPC-BTB
converter

Less Low

Lee et al.
(2015)

Fault leg
(no ability to
localize the
faulty switch)

– No Sim-
ple/straightforward;
low-computational
demand

Back-to-
back
converter

Experimental
setup

Online PMSG,
3L-NPC-BTB
converter

Less Low

(continued on next page)
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Table 5 (continued).
Ref. Single/

multiple fault
Threshold Additional

hardware
Model complexity/
computational cost/
tuning effort

Applicable
objects

Technology
application
maturity

Diagnosis
speed

Applicable sys-
tem/converter
type

Amount of
data
required

Degree of
model
dependence

Tan et al.
(2018)

Single fault Without
threshold

No Sim-
ple/straightforward;
low-computational
demand

Generator-
side
converter

Simulation
platform and
experimental
setup

Online PMSG, 2L-BTB
converter

Less Low

Shahbazi
et al. (2018)

Single fault Fixed Yes Sim-
ple/straightforward;
low-computational
demand

Back-to-
back
converter

Simulation
platform and
experimental
setup

Online DFIG, 2L-BTB
converter

Less Low

Ismail et al.
(2019)

Multiple faults
(no ability to
localize the
faulty switch)

– No Sim-
ple/straightforward;
low-computational
demand

Back-to-
back
converter

Simulation
platform

Online DFIG, 2L-BTB
converter

Less Low

Liang et al.
(2020)

Single and
multiple faults

– No Computationally
expensive

Grid-side
converter

Simulation
platform

Offline DFIG, 2L-BTB
converter

Large Low

Kouadri
et al. (2020)

Single fault – No Computationally
expensive

Back-to-
back
converter

Simulation
platform

– Squirrel-cage
induction
generator
(SCIG), 2L-BTB
converter

Large Low

Cai et al.
(2017)

Single and
multiple faults

– No Computationally
expensive

Grid-side
converter

Simulation
platform and
experimental
setup

Offline PMSM, 2L-BTB
converter

Large Low

Ko et al.
(2012)

Single and
multiple faults

– No Computationally
expensive

Grid-side
converter

Simulation
platform and
experimental
setup

– PMSG, MMC Large Low

Zhang et al.
(2019)

Single and
multiple faults

– No Computationally
expensive

Grid-side
converter

Simulation
platform and
experimental
setup

Offline PMSG, 2L-BTB
converter

Large Low

Liu et al.
(2017a)

Single and
multiple faults

– No Computationally
expensive

Generator-
side
converter

Simulation
platform

Offline PMSG, 2L-BTB
converter

Large Low

Liu et al.
(2015a)

Single fault – No Computationally
expensive

– Simulation
platform

– MMC Large Low

Zhang et al.
(2020b)

Single and
multiple faults

– No Computationally
expensive

Grid-side
converter

Simulation
platform and
experimental
setup

Offline PMSG, 2L-BTB
converter

Large Low

Wang et al.
(2015)

Single and
multiple faults

– Yes Computationally
expensive

Generator-
side
converter

Experimental
setup

Offline MMC Large Low

Wang et al.
(2016)

Single fault – Yes Computationally
expensive

Generator-
side
converter

Simulation
platform and
experimental
setup

Offline PMSG, MMC Large Low

Hu et al.
(2020)

Single and
multiple faults

– No Heavy complexity
and calculation

Grid-side
converter

Simulation
platform

Offline 3L-NPC-BTB
converter

Large Low

Duan et al.
(2020)

Single and
multiple faults

– No Computationally
expensive

Back-to-
back
converter

Simulation
platform

– PMSG, 2L-BTB
converter

Large Low

Xue et al.
(2019)

Single fault – No Heavy complexity
and calculation

Back-to-
back
converter

Simulation
platform

Online PMSG, 2L-BTB
converter

Large Low

Xue et al.
(2020)

Single and
multiple faults

– No Heavy complexity
and calculation

Back-to-
back
converter

Simulation
platform and
experimental
setup

Online DFIG, 2L-BTB
converter

Large Low

Liu et al.
(2020b)

– – No Heavy complexity
and calculation

– Engineering
project

– – Large Low

(continued on next page)
(2) Diagnosis time
Signal-based methods can detect faults in just a few tens of

microseconds (Shahbazi et al., 2018; Karimi et al., 2008), while
model-based methods take several to tens of milliseconds due to
5361
the complex modeling and computation process required (Shao
et al., 2013, 2016). The need for signal processing and classi-
fier training on a large amount of historical data makes data-
driven methods more time-consuming, typically taking hundreds
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Table 5 (continued).
Ref. Single/

multiple fault
Threshold Additional

hardware
Model complexity/
computational cost/
tuning effort

Applicable
objects

Technology
application
maturity

Diagnosis
speed

Applicable sys-
tem/converter
type

Amount of
data
required

Degree of
model
dependence

Kou et al.
(2020b)

Single and
multiple faults

– No Computationally
expensive

– Simulation
platform and
experimental
setup

Online 3L-NPC-BTB
converter

Large Low

Han et al.
(2021)

Single and
multiple faults

– No Computationally
expensive

– Experimental
setup

– MMC Large Low

Gomathy
and Sel-
vaperumal
(2016)

Single and
multiple faults

– No Optimization
techniques: EPSO,
CSO;
heavy complexity
and calculation

– Experimental
setup

Offline 2L-BTB
converter

Large Low

Khomfoi
and Tolbert
(2007b)

Single fault – Yes Optimization
technology: genetic
algorithm;
heavy complexity
and calculation

– Simulation
platform and
experimental
setup

Offline MMC Large Low

Sun et al.
(2017)

Single fault – No Optimization
algorithm: CSA;
heavy complexity
and calculation

– Simulation
platform and
experimental
setup

Offline DC–DC
converter

Large Low
of milliseconds to a few seconds (Wang et al., 2015; Hu et al.,
2020).

(3) Effectiveness and reliability
The metrics accuracy/precision/recall/F1-score/false detection

ate/missed detection rate are used to evaluate the effectiveness
nd reliability of a fault diagnosis method. High accuracy/precision
recall/F1-score (Liang et al., 2020; Cai et al., 2017; Xue et al.,
020) and low false detection rate/missed detection rate (Mahdhi
t al., 2020; Kouadri et al., 2020) are desirable.
(4) Robustness
The specific parameter variations of operating conditions are

ummarized to facilitate researchers to quantitatively compare
he proposed method with existing methods under the same load
hanges, transients, wind speed changes, and noise levels. For
xample, both Liang et al. (2020) and Xue et al. (2019) proposed
ault diagnosis methods for converters that are robust to wind
peed changes, and the accuracy in Liang et al. (2020) at 20 dB
an reach 99.2756%, higher than that of 80% at 45 dB in Xue et al.
2019), so it is obvious that the method in Liang et al. (2020) is
ore robust to wind speed and noise.
All fault diagnosis methods summarized in this paper have

cceptable efficiency and performance. It is difficult to explain
hich method in Tables 4–6 is more popular due to the complex-

ty and bulk of wind power converter systems. The comparison in
ables 5 and 6 are beneficial for finding the best scheme to handle
ifferent faults according to different requirements.

.4. Challenges on wind power converter FDs

Wind power converters topology and configuration continue
o evolve due to the constant emergence of complex high-power
achinery. Besides, wind power converters suffer from numerous
tresses and operating condition variations. Thus, the wind power
onverters FDs face severe challenges.
(1) Easy implementation
Wind turbine system is a sophisticated system. Since fault

iagnosis is an additional module of wind power converters, min-
mizing the increase of hardware devices for converter FDs and
implifying the diagnosis algorithm are essential to developing a
ault diagnostic method that is easy to implement.

(2) Wind power converter benchmark
At present, most of the proposed methods are tested in simu-

ation platform and experimental setup. Proposing a benchmark
5362
for fault diagnosis and fault-tolerant control of wind power con-
verter is of great significance, researchers engaged in fault diag-
nosis can test a new method against this benchmark and compare
it with other previous methods. The benchmark establishes wind
power converter model at system level containing a fault setup
module, which presents an interface for fault setting, including
the faults of sensors, power switches, passive components and
actuators. It also provides a verification of the reliability and
robustness issues of the fault diagnosis method.

(3) Application in wind farms
The effectiveness and reliability of numerous proposed wind

power converters FDs are verified in simulation platform and
experimental setup, but the reliability and robustness verification
in engineering projects is lacking. The wind turbine systems in
actual wind farms are different from the simulation and experi-
mental equipment in terms of configuration and power capacity;
besides, the actual power grid voltage shocks, real-time operating
condition disturbances and on-site environmental interference
are very different from the laboratory environment. Applying the
designed converter FDs to wind farms is a major challenge.

6.5. Development trends of fault diagnosis methods for wind power
converters

Some development trends of fault diagnosis methods for wind
power converters are concluded as follows:

(1) The developments of sensor and database technology have
brought convenience to data monitoring and storage, making it
possible to obtain massive and sufficient system data. Applying
the rapidly developing artificial intelligence techniques to wind
power converters FDs to obtain excellent diagnostic performance
has become an important trend.

(2) With the increasing complexity of wind power converters,
multi-data sources integration based converter FDs has become a
new trend. The application of multi-sensor data fusion technol-
ogy or single-sensor multi-feature extraction information fusion
technology can fully mine the fault characteristics of converter,
so as to significantly improve fault diagnostic accuracy.

(3) In order to obtain excellent real-time diagnostic perfor-
mance, the integration of various fault diagnostic technologies is
a trend.
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Table 6
Quantitative metrics of different fault diagnosis methods.
Ref. Number of

faults
Robustness Diagnosis time Effectiveness and reliability:

Accuracy/Precision/Recall/F1-
score/False detection
rate/Missed detection rate

Jlassi et al.
(2015)

15 types 1. PMSG stator resistance Rs (Rs = 1.5Rsn, with load
torque variation).
2. PMSG stator inductance Ls (Ls = 0.7Lsn, with speed
variation).
3. PMSG stator inductance Ls (Ls = 1.5Lsn, with speed
variation).
4. Speed variations (600 rpm∼1200 rpm).
5. Load torque variation (no-load ∼64% of the rated value).

Within one fundamental
current period

–

Shahbazi
et al. (2016)

– – Within one fundamental
current period

–

Zhang et al.
(2020a)

2 types – T1 fault: within 300 µs;
T2 fault: within 200 µs.

–

Shao et al.
(2013)

– 1. Light load condition: 5% load.
2. Parameter uncertainty: lcal = 1.1 l, Ccal = 1.2 C, lcal is
arm inductance for calculation, and l the actual value; Ccal
is dc-capacitance for calculation, and C is the actual value.
3. Measurement inaccuracy: add 2% of the systematic error
and 10% of the random error to the measure capacitor
voltage.
4. Imbalanced capacitor voltage: Vc1 = 1.25 Vc4 before fault
occurrence.

Within 100 ms –

Shao et al.
(2016)

– 1. Simulation: (1) measurement noise (5% white noise); (2)
parameter uncertainty; (3) measurement errors (1% scaling
errors in measurement).
2. Experiment: (1) parameter uncertainty (10% error in the
inductance; 0.11-� parasitic resistance in the arm
inductors;); (2) measurement errors (5% scaling error in
the measurement); (3) transients (modulation index of the
ac voltage changes from 0.6 to 0.95 at 0.07 s and changes
back at 0.12 s).

Less than 50 ms –

Deng et al.
(2015)

3 types 1. Simulation: (1) process noise (variance is 4e−5); (2)
measurement noise (variance is 5e−4).
2. Experiment: (1) process noise (variance is 5e−5); (2)
measurement noise (variance is 3e−3).

Locating fault within 7
fundamental periods

–

Liu et al.
(2015b)

3 types Different operating conditions: 10 MW, 20 MW. Within 1 fundamental
period

–

Qiu et al.
(2016)

6 types 1. Constant wind: speed at 5 m/s.
2. Step wind: ranging from 3 to 6 m/s with certain wind
speed last for one or two seconds.
3. Turbulent wind: average wind speed of 5 m/s and
turbulent scale of 0.1–0.2.

Fast but not defined –

Mahdhi
et al. (2020)

9 types Generator rotation speed changes. 15 ms False detection rate: 0%;
Missed detection rate 50%

Xu et al.
(2021)

21 types Wind speed variations (10 m/s∼12 m/s). Within 0.5 fundamental
period

–

Karimi et al.
(2008)

– – Within 10 µs –

Duan et al.
(2011)

21 types – 55 ms –

Freire et al.
(2014)

– 1. Load transient (from rated load torque to 16% of the
rated torque).
2. Time-varying load conditions (with an average load
torque of 33% of the rated load, and an oscillating torque
component with a frequency of 4 Hz).
3. Unbalanced load conditions (add a 12 � resistance to
phase a of the grid-side converter).

Within 0.5 fundamental
period

–

Zhao and
Cheng
(2017)

21 types Wind speed (from 10 m/s to 6 m/s at 6 s). 40 ms –

Freire et al.
(2010)

12 types Load transients (load torque from 4 Nm to 16 Nm at t =

0.14 s).
Less than a fundamental
period

–

(continued on next page)
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Table 6 (continued).
Ref. Number of

faults
Robustness Diagnosis time Effectiveness and reliability:

Accuracy/Precision/Recall/F1-
score/False detection
rate/Missed detection rate

Freire et al.
(2013)

15 types 1. Simulation: load torque (from 16% of rated value to
rated value at t = 0.12 s, and reduced to 16% of rated
value at t = 0.14 s, then increased to 50% of rated value at
t = 0.2 s.)
2. Experiment: (1) load torque (from rated value to 16% of
rated value at t = 0.17 s.); (2) speed transient (from 600
rpm ∼900 rpm at t = 0.14 s.)

Within 0.5 fundamental
period

–

Choi et al.
(2012)

4 types – Within two fundamental
periods

–

Lee et al.
(2015)

– – Fast but not defined –

Tan et al.
(2018)

7 types Wind speed (10.5 m/s, 7 m/s). Less than 1/4 of the
period

–

Shahbazi
et al. (2018)

– Independence from wind condition, rotor frequency. 30 µs –

Ismail et al.
(2019)

– – 9 ms –

Liang et al.
(2020)

22 types 1. Wind speed variation: from 10 m/s to 15 m/s with an
interval of 0.0625 m/s.
2. Sensor noise: 5 dB, 10 dB, 15 dB, and 20 dB.
3. Training/testing ratio: 3:2, 10:1, 15:1, 25:1, 35:1, 45:1.

– Accuracy: 99.2756% (20 dB);
97.8598% (15 dB); 90.0758%
(10 dB); 71.8040% (5 dB).

Kouadri
et al. (2020)

7 types Noise – Accuracy: 93.61%; Precision:
95.22%; Recall: 95.06%;
F1-score: 95.13%; False
detection rate: 10%

Cai et al.
(2017)

22 types 1. Simulation: (1) frequency and modulation index. (1)
train data: frequency varies from 30 Hz to 80 Hz with the
interval of 2 Hz and the modulation index varies from 0.6
to 0.9 with the interval of 0.001. (2) Test data: when the
frequency is 60 Hz and the modulation index varies from
0.6005 to 0.9005 with the interval of 0.01.
(2) Robustness to sensor noise: from 0 to 20 dB.
(3) Robustness to sensor bias: from −1.6 V to 1.6 V.
2. Experiment: frequency and modulation index. (1) train
data: frequency is 60 Hz and the modulation index is 0.8.
(2) test data: when the frequencies are 55, 65, and 75 Hz
and the modulation indexes are 0.65, 0.75, and 0.85.

– Accuracy: 98.48% (10 dB).

Ko et al.
(2012)

22 types – Within 1.5 fundamental
periods

–

Zhang et al.
(2019)

22 types – – Accuracy: 99.999%

Liu et al.
(2017a)

22 types – – Accuracy: 98%

Liu et al.
(2015a)

4 types – – Accuracy:100%

Zhang et al.
(2020b)

22 types Wind speed – Accuracy: 100% (simulation);
99.99% (experiment)

Wang et al.
(2015)

37 types 10% white Gaussian noise. Average testing time
131ms

Accuracy: 98.11% (10 dB)

Wang et al.
(2016)

9 types 10% white Gaussian noise. Less than 12.4 ms Accuracy: 100%

Hu et al.
(2020)

Typical
faults: 25
types;
Atypical
faults: 48
types.

1. The inverter input voltage: 450 V, 500 V, 550 V, 600 V.
2. The load power: 10 kW, 20 kW, 30 kW.

4 s Accuracy: 95.1%

Duan et al.
(2020)

22 types – 0.0129 s Accuracy: 99.28%

(continued on next page)
7. Conclusion

The continuous development of wind power converters’ fault
diagnosis reduces the downtime of wind turbine systems caused
5364
by converter faults, saves maintenance costs, improves the avail-
ability and reliability of the systems, and promotes the large-scale
penetration of wind power generation.

This paper studies the typical fault modes of wind power
converters, including short-circuit faults and open-circuit faults in
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Table 6 (continued).
Ref. Number of

faults
Robustness Diagnosis time Effectiveness and reliability:

Accuracy/Precision/Recall/F1-
score/False detection
rate/Missed detection rate

Xue et al.
(2019)

12 types 1. Wind speed fluctuates around the average value of
10 m/s.
2. Noise: 35 dB, 40 dB, 45 dB, 50 dB.

The time delay is short
enough (0.001 s)

Precision: Higher than 91.2%
(none noise).
Recall: Higher than 92.1%
(none noise).
F1-score: Higher than 92.2%
(none noise); higher than 80%
(45 dB).

Xue et al.
(2020)

79 types 1. Wind speed fluctuation: varies randomly between
8–18 m/s.
2. Sensor bias: ranges from 0 to 2.
3. Noise.

1. Without interference
factors: diagnosis time
delay of LSTM is short
enough (Td: 0.0016 s).
2. With interference
factors: (Td: 0.0022 s).

Precision: 1. Without
interference factors: 98%
(average).
2. With interference factors:
95% (average).
Recall: 1. Without interference
factors: 97% (average).
2. With interference factors:
94% (average).
F1-score: 1. Without
interference factors: 0.98
(average).
2. With interference factors:
0.94 (average).
3. Sensor bias 0.5: 70%
(average).
4. Gaussian noise 35 dB: 60%.
5. Experimental evaluation:
96%

Liu et al.
(2020b)

– Wind speed: from 3 m/s to 20 m/s. – Accuracy: 94.87% (10-s
resolution data); 89.03%
(10-min data).
Precision: 100% (10-s
resolution data); 99.1% (10-min
data).
Recall: 89.75% (10-s resolution
data); 78.76% (10-min data).
False detection rate: 5.13%
(10-s resolution data); 10.97%
(10-min data).

Kou et al.
(2020b)

More than
15 types

Different loads conditions: 10 � load, 20 � load. Simulation: 4.6 ms;
Experiment: half a cycle.

Accuracy: 97.27% (simulation);
98.07% (experiment).
False detection rate: 1.93%

Han et al.
(2021)

10 types – – Accuracy: High than 93.77%

Gomathy
and Sel-
vaperumal
(2016)

25 types 1. Case 1: Training dataset/Testing dataset (80/20).
2. Case 2: Training dataset/Testing dataset (90/10).

1. Case 1: 1.43 s
(CSO-RVM); 3.34 s
(EPSO-Fuzzy).
2. Case 2: 2.06 s
(CSO-RVM); 4.47 s
(EPSO-Fuzzy);

Accuracy: 1. Case 1: 92.07%
(CSO-RVM); 91.24%
(EPSO-Fuzzy).
2. Case 2: 95.67% (CSO-RVM);
94.86% (EPSO-Fuzzy).

Khomfoi
and Tolbert
(2007b)

8 types Different modulation indices: 0.8, 1.0. – Accuracy: 85%

Sun et al.
(2017)

10 types 1. Input voltage: varies from 26.6 V to 29.4 V.
2. Training dataset/Testing dataset: case 1 (80/20), case 2
(60/40), case 3 (50/50).

32.6 s (in case 1); 27.36
s (in case 2); 25.83 s (in
case 3).

Accuracy: 96.36% (in case 1);
95.68% (in case 2); 92.55% (in
case 3); 95% (experiment).
power switch. The reliability and robustness issues are discussed.
Then it comprehensively reviews the performances of model-
based, signal-based and data-driven methods for wind power
converter fault diagnosis. Qualitative analysis and quantitative
comparison are carried out detailed.

(1) The model-based method can accurately and real-time
iagnose multiple faults. However, the complex modeling and
alculation make the diagnosis time longer than that of signal-
ased method. Additionally, it significantly depends on the pre-
ision of system model and parameters. Furthermore, proper
uning of observers is required to guarantee the performance of
ault diagnosis, this means additional implementation work and
omputational effort.
5365
(2) The signal-based method is simple and straightforward.
It has significant real-time performance and is suitable to be
integrated into the wind power converter controller for fault-
tolerant control. However, it is susceptible to load changes and
system transients and requires prior-knowledge of the system.

(3) The data-driven method can be easily conducted only
with the measured signals, so it has excellent portability among
different wind power systems. It has superior nonlinear signal
processing ability, strong reliability and robustness, and multiple
fault diagnosis ability by using advanced algorithms. However,
it requires a large amount of historical data for training, so the
computation is expensive and time-consuming, and it has poor
real-time performance.
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The existing fault diagnosis methods for wind power converter
iagnose faults based on the significant changes of system state,
hich is not effective for early faults. Additionally, the balance
etween high diagnostic performance and implementation ef-
ort, and the portability in different wind power systems also
eed to be considered. These open problems stimulate the ex-
loration of more advanced fault diagnosis methods, such as ad-
anced artificial intelligence technique-based method, multi-data
ources integration-based method, and various fault diagnosis
echnologies hybrid method.

The future work on fault diagnosis for wind power converters
an be involved in the wind power converter benchmark and
pplication in wind farms. The contribution of this paper has
ocused on fault diagnosis methods, little exploration has been
iven to the fault prognosis and health management of wind
ower converters, such as fault prediction, fault-tolerant control,
ondition monitoring, and condition-based maintenance, these
lso are future issues that could require further investigations.
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