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Abstract: With the expansion of E-mobility technology, the demand for Medium-Voltage (MV)
Electric Buses (E-buses) charging infrastructure has significantly increased. In this regard, the
effective connection of E-bus chargers to a medium voltage power grid is essential to provide fast
charging and carry out multiple charging processes simultaneously. One of the main building blocks
for E-bus charging is the DC-DC converter stage responsible for regulating the power flow and
matching the different voltage and power levels. Accordingly, this paper presents a comprehensive
review of DC-DC converter topologies applicable to MV E-bus fast charging. This review discusses
and compares the basic isolated DC-DC converter topologies. In addition, the DC-DC converters
are classified based on their conversion stages. Moreover, isolated DC-DC converter topologies
applicable for MV E-bus fast charging applications, including Dual Active Bridge (DAB) modular-
based structure converter and Modular Multilevel Converter (MMC)-based DAB, are discussed
where the merits and demerits of each topology are highlighted. Moreover, this review illustrates
how DAB converters are employed in different power level applications through the multimodule
converter or the MMC-based DAB structure. Furthermore, the challenges and required features for
MV DC-DC converter topologies are discussed.

Keywords: fast charging; full-bridge; half-bridge; sub-modules; single-stage conversion; two-stage
conversion; dual active bridge; modular multilevel converter; multimodule converter

1. Introduction

The implementation of low carbon public transport is considered one of the levers
towards developing E-mobility technology. Recently, the transport sector has been mov-
ing towards zero-emission transportation where electrification is highly concerned. In
other words, the electric powertrain has been evolving rapidly in recent years due to the
restrictions and regulations on carbon emissions and reduced battery prices. Bloomberg
has reported in 2018 that the growth in oil consumption has been reduced by more than
3% since 2011 due to electric transport [1]. Three-quarters of this reduced consumption is
specifically from electric buses, meaning that a considerable portion of energy transition
should be towards electrified public transport. In addition, it is expected that by 2025, the
number of electric buses will be increased by three times, meaning that half of the buses
will be electrified [1].

There is a tremendous interest worldwide towards replacing gasoline-powered ve-
hicles with low-carbon mobility or E-mobility technologies, including; electric buses and
public electric transport such as electric buses. However, the development of electric buses
is taking place at different rates worldwide depending on the country and the city. Talking
about the development of E-buses in Asia, it is clearly noticed that China is considered as
the leading country when E-buses are concerned. In 2018, 99% of the E-bus deployment was
in China. According to the study presented in [1], more than 600,000 E-buses are deployed
in Chinese cities in 2021. It is expected that the number of E-buses will further increase,
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reaching 1,323,490. Several Asian countries are also electrifying their public transport, such
as Delhi, wherein 2019, 1000 E-buses were ordered.

On the other hand, many E-bus fleets are acquired in American cities and universities.
As per California’s Innovative Clean Transit Rule (ICTR) which might be followed by other
states, by 2023, 25% of the circulating buses must be zero-emission [2]. It is expected that
by 2040, this percentage will further increase, reaching 100% [2]. Currently, in the South of
America, specifically in Santiago, 30% of the public transport are electrified, aiming to electrify
its fleet by 2040. In 2019, the first electric shuttle project was launched. In 2021, the city of
Santiago has 200 E-buses circulating with a capacity of 6 million. In addition, by March 2019,
a fleet of 20 E-buses has been launched in Ecuador to transport 10,500 citizens daily [1]. As
per the new rules agreed by the European Union, by 2023, one-fourth of the deployed buses
should be clean. This ratio will be further intensified to one-third by 2030 [1,3].

The following figure presents the evolution of electric buses. Figure 1 illustrates the
stages carried out to launch the first E-bus in 2018 by Mercedes [4].

Energies 2022, 15, x FOR PEER REVIEW 2 of 20 
 

 

buses are deployed in Chinese cities in 2021. It is expected that the number of E-buses will 
further increase, reaching 1,323,490. Several Asian countries are also electrifying their 
public transport, such as Delhi, wherein 2019, 1000 E-buses were ordered. 

On the other hand, many E-bus fleets are acquired in American cities and universi-
ties. As per California’s Innovative Clean Transit Rule (ICTR) which might be followed 
by other states, by 2023, 25% of the circulating buses must be zero-emission [2]. It is ex-
pected that by 2040, this percentage will further increase, reaching 100% [2]. Currently, in 
the South of America, specifically in Santiago, 30% of the public transport are electrified, 
aiming to electrify its fleet by 2040. In 2019, the first electric shuttle project was launched. 
In 2021, the city of Santiago has 200 E-buses circulating with a capacity of 6 million. In 
addition, by March 2019, a fleet of 20 E-buses has been launched in Ecuador to transport 
10,500 citizens daily [1]. As per the new rules agreed by the European Union, by 2023, 
one-fourth of the deployed buses should be clean. This ratio will be further intensified to 
one-third by 2030 [1,3]. 

The following figure presents the evolution of electric buses. Figure 1 illustrates the 
stages carried out to launch the first E-bus in 2018 by Mercedes [4]. 

 
Figure 1. Evolution of Electric Buses [4]. 

Due to the restrictions and regulations imposed by many governments, notable ef-
forts towards electrification have been made to reduce exhaust emissions in transporta-
tion. Bloomberg has reported that by 2030, 84% of the new buses will be E-buses [5]. Figure 
2 presents the E-bus charging infrastructure market worldwide, showing the fast, moder-
ate, and slow-growing regions in the E-bus market. As shown in Figure 2, China is con-
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worldwide as a substitution for gasoline-powered vehicles due to their better performance 
in terms of reducing CO2 emissions as well as reducing the consumption of petroleum [7–
16]. Although gasoline power vehicles have been realized as a well-known technology for 
the past 100 years, it is expected that E-mobility technology will be further adopted to 
overtake the domination of conventional vehicles. 

As presented earlier, E-mobility technologies have been a solid rising trend in many 
countries, especially in recent years, to avoid the high price of fuel, minimize noise pollu-
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fectively is crucial since fast charging and multiple buses charging at one time instant is 
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Due to the restrictions and regulations imposed by many governments, notable efforts
towards electrification have been made to reduce exhaust emissions in transportation.
Bloomberg has reported that by 2030, 84% of the new buses will be E-buses [5]. Figure 2
presents the E-bus charging infrastructure market worldwide, showing the fast, moderate,
and slow-growing regions in the E-bus market. As shown in Figure 2, China is considered
the leading country in the E-bus market. Europe and North America follow China in the
E-bus charging infrastructure market [6].

To further illustrate, due to the restrictions and regulations imposed to reduce fossil
fuel prices as well as gas emissions, there is a high interest in E-mobility technologies world-
wide as a substitution for gasoline-powered vehicles due to their better performance in
terms of reducing CO2 emissions as well as reducing the consumption of petroleum [7–16].
Although gasoline power vehicles have been realized as a well-known technology for the
past 100 years, it is expected that E-mobility technology will be further adopted to overtake
the domination of conventional vehicles.

As presented earlier, E-mobility technologies have been a solid rising trend in many
countries, especially in recent years, to avoid the high price of fuel, minimize noise pollu-
tion, reduce CO2 emissions, and satisfy the customer need for having more efficient and
environmentally friendly technology. Due to the rising demand for electric buses (E-buses)
infrastructure, connecting E-bus chargers to Medium Voltage (MV) networks effectively is
crucial since fast charging and multiple buses charging at one time instant is not offered
by the low voltage charging infrastructure. Accordingly, connecting the E-buses to an MV
power grid is essential to accommodate the widespread of E-mobility technology. One of
the key enabling technologies for realizing such a concept is the advanced power electronics
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converters installed to provide efficient charging. A typical charger is presented in Figure 3,
which mainly involves an AC-DC stage and a DC-DC stage.
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The DC-DC converter stage for medium voltage E-buses charging applications is an
important technology enabling the wider spread and adoption of E-mobility technologies
since adjusting the voltage level and controlling the power flow are essential. DC-DC
converters for such applications must be designed to achieve specific requirements such as
providing bidirectional power flow, meeting different voltage and power ratings, providing
galvanic isolation, and offering high-efficiency and high power density with low cost [17].
DC-DC converters are mainly required in the MV power grid for E-bus charging to match
the different voltage and power levels since currently there is a lack of common standards
and to regulate the power flow. One of the fast-charging station requirements is designing
the DC-DC converters in a modular structure. This is because modular converters are
scalable and can offer easier maintenance. Each module handles only a small fraction of
the total required power. Therefore, the selected semiconductor devices are characterized
by low voltage and low current ratings, allowing for higher switching frequency operation
and, accordingly, reduced overall size and weight of the converter system. This review
paper will mainly focus on presenting different DC-DC converter topologies applicable for
MV E-bus fast charging.

The paper is structured as follows: Section 2 presents the basic isolated and non-
isolated DC-DC converter topologies, where the basic isolated DC-DC converter topologies
are classified as single-ended and double-ended topologies, Section 3 presents different
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DC-DC converter topologies for MV E-bus fast charging applications with tree-diagram
classification based on the number of conversion stages, Section 4 presents the challenges
and requirements for MV DC-DC converters, and Section 5 summarizes the overall review
for the MV DC-DC converter topologies applicable for E-bus fast charging.

2. Basic Isolated and Non-Isolated DC-DC Converter Topologies

Converter topologies, in general, are divided into two main categories: non-isolated
and isolated topologies. Figure 4 shows DC-DC converters based on isolated and non-
isolated topologies. The main difference is that electrical isolation is provided between the
input and the output via an intermediate transformer of medium/high frequency [18].
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Figure 4. Switch-Mode DC-DC converters classification.

This survey will not focus on non-isolated DC-DC converters in Figure 4 since these
converters are primarily employed in low-power applications, where galvanic isolation is
not a primary requirement. Galvanic isolation in medium voltage applications is necessary
to offer better switching utilization and reduce the reactive power circulation, especially
when the DC link voltages input and output are not equal. The absence of an isolating
transformer would result in high losses due to the excessive reactive power circulation.

As shown in Figure 4, non-isolated topologies include the DC-DC converter’s basic types:
Buck, Boost, Buck-Boost, and Cuk converters. From the basic non-isolated DC-DC converters,
the conventional isolated DC-DC converters in Figure 4 are derived. The isolated converters
listed in Figure 4 cover wide power ranges. Modular converters will be further classified
based on the number of conversion stages focusing on MV DC-DC converters.

Isolated topology can be categorized as single-ended or double-ended. An isolated
converter is considered a single-ended converter if the flux during operation swings in
one quadrant of the BH curve. However, it is considered as a double-ended converter if
the flux during operation swings in two quadrants of the BH curve. The merits of double-
ended topology over the single-ended topology are that it requires a smaller core and does
not require an extra reset winding. In this section, the basic isolated DC-DC converters
shown in Figure 4 are compared in terms of the output power range, cost, number of active
switches, and electrical stress. The order from low-power to high-power of the basic isolated
DC-DC converters is Flyback, Forward, Push-Pull, Half-Bridge (HB), and Full-Bridge
(FB) [18]. All the semiconductor devices used in the figures are IGBTs. However, the power
switches could also be MOSFETs. The selection of the power switches will be according
to the overall system requirements. In [19], a hybrid multimodule DC-DC converter is
presented where a comparison between multimodule DC-DC converter using IGBTs and
MOSFETs are compared in terms of efficiency, switching frequency, power density, and
volume. In [19], the hybrid concept is achieved through employing two different groups
of multimodule converters. The first is designed to be in charge of a high fraction of the
total required power, operating at a relatively low switching frequency. The second is
designed for a small fraction of the total power, operating at a relatively high switching
frequency. To support the power converter controller design, a generalized small-signal
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model for the hybrid converter is studied. Additionally, cross feedback output current
sharing (CFOCS) control for the hybrid input-series output-parallel (ISOP) converters is
examined to ensure uniform power-sharing and the desired fraction of power handled by
each multimodule group. The power loss analysis of the hybrid converter is provided and
compared to conventional multimodule DC-DC converters.

The flyback converter shown in Figure 5a is usually employed in low-power appli-
cations. It is a low-cost converter and easy to use since it involves only one active switch.
However, the Flyback converter is a single-ended converter and requires additional capaci-
tors because of the high ripple currents at the input and the output sides. Accordingly, this
converter suffers from poor transformer utilization. Forward and Active Clamp Forward
converters are usually used in medium power applications. These two converters also
suffer from the poor utilization of the transformer since they are classified as single-ended
topologies, in addition to the limited duty cycle in both converters.
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Figure 5. Basic isolated DC-DC converters: (a) Flyback converter; (b) Forward converter; (c) Push-Pull
converter; (d) Half-Bridge converter; (e) Full-Bridge converter.

The other three topologies are Push-Pull, HB, and FB, shown in Figure 5c–e, respec-
tively, and are double-ended topologies that can be employed in high-power applications
since full utilization of the transformer can be achieved [18]. In addition, further optimiza-
tion of the transformer can be achieved because of the large duty cycle range. To clarify, a
duty cycle of 50% per side can be achieved in double-ended topologies, which corresponds
to an effective duty cycle close to 100% at the filter inductor of the output. Accordingly,
operating at an effective duty cycle of 100% will significantly reduce the output filter size
and the transformer RMS current.

Even though the push-pull converter is a double-ended topology, during the off state,
the maximum voltage stress across the switching devices of the primary side reaches above
two times the supply voltage. This issue is avoided in the HB topology, where the primary
voltage stress does not increase beyond the supply voltage. In addition, an HB converter
allows for better transformer utilization since it has one primary winding. The FB converter
has double-ended merits. In addition, the switch voltage at the primary side does not
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exceed the supply voltage. Similarly, it has a single primary winding, which allows for good
transformer utilization. However, in terms of complexity and cost, the FB converter is more
complex and is of higher cost when compared to the HB converter due to the employment
of four switches at the primary side [18]. Table 1 presents a comparison between the isolated
DC-DC topologies in terms of the power range, transformer utilization, number of active
switches and cost.

Table 1. Comparison Between the Basic Isolated DC-DC Converters.

Topology Power Range Transformer
Utilization

Number of
Active Switches Cost

Flyback Lowest
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This section focused on the conventional DC-DC topologies used in modular struc-
tured DC-DC converters to meet higher voltage and power requirements. The following
section will review the modular DC-DC converters classified based on the conversion
stages, where any of the discussed topologies in this section can be employed.

3. DC-DC Converters for Medium Voltage E-Bus Charging

Two different methods can be established to meet different voltage and power re-
quirements. The first method is established by utilizing power switches in two-level
DC-DC converters with high voltage and high current ratings to be connected in series
and/or parallel. Nevertheless, unsymmetrical voltage sharing would result from the series
connection of the semiconductor devices due to the parameters mismatch. This mismatch
includes leakage inductance, switching delays, and collector-to-emitter capacitance. Conse-
quently, to avoid the unsymmetrical sharing, voltage balancing techniques are essential to
avoid any failure since the failure in one element will lead to the entire converter failure,
resulting in low reliability [20]. However, in the second method, the modular concept is
established in the power converters [21]. In other words, MV E-bus charging technologies
have motivated the use of modular converter systems. Modular converters are considered
a cost-effective alternative. In addition, if any failure cases occur, low-power modules can
be hot-swapped, facilitating the maintenance of such converters. Moreover, to meet higher
power requirements, the number of the employed modules can be scaled up. Furthermore,
redundancy can be established through employing more modules [22]. To clarify, each unit
is responsible for delivering a fraction of the total input power in modular structure-based
DC-DC converters. Accordingly, the installed semiconductor devices are of low voltage and
current ratings in which operating at high switching frequency can be achieved, improving
the converter system’s efficiency, lowering the losses, and reducing the transformer size. To
avoid the drawbacks associated with the series connection in the first approach, modular
converters topologies such as Multimodule Converters (MCs) and Modular Multilevel
Converters (MMCs) are used to provide modularity features and achieve the required
voltage and power levels. These two converters will be further discussed in the following
sections in MV power grids for E-bus charging.

One of the possible DC-DC converters classifications is based on the number of con-
version stages. The first category is a single-stage conversion with no distinct intermediate
AC link. While the second category is the two-stage conversion, where there is an intermedi-
ate AC link between two AC-DC converters [23]. In single-stage conversion, one converter
is used, resulting in a lower number of switches when compared to two-stage conversion
and accordingly lower weight, volume, and cost. Figure 6 shows the classification of the
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DC-DC converters based on the conversion stages, where the two-stage conversion can
be further classified based on the AC link between the two DC-AC converters. The first
configuration is with a transformer; however, the second configuration is transformerless.
The AC link waveforms can have the sinusoidal, squared, or trapezoidal form [23].
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Figure 6. DC-DC converters classification based on the number of conversion stages.

The following subsections will cover some of the DC-DC converters that are proposed
in literature applicable to MV E-bus fast charging applications, focusing on modular
DC-DC converters. Each type will be discussed, highlighting the merits and demerits of
each converter. In addition, a comparison between the DC-DC converters listed in Figure 6
will be carried out.

3.1. Single-Stage DC-DC Converters

The following subsections present some of the single-stage DC-DC converters pro-
posed in the literature applicable for MV E-bus fast-charging applications.

3.1.1. Modular Multilevel DC-DC Converter (MMC)

The first representation of the single-stage conversion is the MMC provided in [24] and
shown in Figure 7. A secondary power loop is introduced to exchange power with the primary
power loops in this topology. By using the orthogonal power flow principle at different
frequencies, the power between the primary and secondary loops is exchanged. This topology
requires large filter components, making it not promising for DC-DC conversion [23,24].

In [21], the MMC DC-DC converter shown in Figure 7 has been compared to the DAB
DC-DC converter in four different scenarios. According to the study carried out in [21], the
MMC DC-DC converter investment costs are at least three times higher than the investment
costs of the converter system based on DAB. This is due to the fact that MMC DC-DC
converter requires more semiconductor devices. It is concluded from [21] that the MMC
DC-DC converter is not applicable to high-voltage ratios because of the poor efficiency
resulting from the high circulating current in the converter. In addition, the number of
semiconductor devices will be much higher. However, if the voltage ratio between the
primary and secondary voltages is not high and galvanic isolation is not a requirement,
then an MMC DC-DC converter will be preferable.
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Figure 7. Modular Multilevel DC-DC converter (MMC) circuit diagram.

3.1.2. MVDC Auto-Transformer (MVDC-AT)

The MVDC Auto-Transformer (MVDC-AT) proposed in [25,26] and shown in Figure 8
is a single-stage converter that consists of two MMCs connected in series with a common
AC link to allow energy transfer between the upper and the lower converters. In this
topology, the installed transformer power ratings and conversion losses can be minimized
since only a portion of the overall DC power has to be converted [23].

In [27], the DAB DC-DC converter is compared to the MVDC-AT shown in Figure 8.
However, in [28], the MMC-based Front-to-Front (F2F) topology has been compared with
the MVDC-AT, where it is found that MVDC-AT can transfer higher DC power with
lower semiconductor effort. It is concluded that MVDC-AT is an effective solution when
galvanic isolation is not required since the transformer used is smaller in size. However, the
transformer windings are exposed to high-voltage stress. In addition, HB cells in the outer
arms need to be substituted by FB cells to avoid the propagation of the DC fault [23,28].
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3.1.3. Hybrid Cascaded DC-DC Converter (HCDC)

A new family of DC-DC converters classified as single-stage converters is proposed
in [29]. This hybrid cascaded DC-DC converter consists of semiconductor devices and a
stack of SMs [23]. To illustrate, the converter presented in [29] and shown in Figure 9 is
a polyphase structure, where each phase contains a semiconductor device and an energy
storage device. In this converter, more than one phase is used to avoid the interruption
of power flow. The controlled switch contains IGBTs connected in series, where each arm
has two switches. However, the storage device is created through cascading HB-SMs [23].
The main advantage of this converter is that it can operate under soft-switching since the
SMs are highly controllable. Despite the low switching losses achieved, this converter
suffers from the high conduction losses because of the high number of semiconductors
used in the conduction path [23,29]. In addition, to meet higher voltage and higher power
demands, hundreds of IGBTs are connected in series, making the voltage balance across
the IGBTs an issue. Other DC-DC converters classified as single-stage converters can be
found in [23,30–32].
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Figure 9. Hybrid Cascaded DC-DC Converter (HCDC) circuit diagram.

3.2. Two-Stage DC-DC Converters

Two AC-DC converters are connected to F2F via an intermediate AC link [23]. This
concept was initially introduced through the DAB in [33,34]. This category can be further
classified according to the AC link. The possible configurations are using a transformer or
transformerless configuration; through using L filter or LCL filter [23].

Transformerless topologies can be used with low transformation ratios; however, it is
essential to use the transformer topologies in medium and higher ratios. The main advan-
tage of using an L filter is avoiding using the bulky AC transformer. However, no isolation
is provided to prevent the fault from propagating to other DC systems. A transformerless
topology, namely the MMC-based LCL DC-DC converter and other DC-DC converters
containing AC transformers, are presented in the following subsections.

3.2.1. MMC-Based LCL DC-DC Converter

Generally, LCL DC-DC topology provides high stepping ratios and inherent DC
fault isolation without the need for an AC transformer [23,35]. Due to the absence of the
AC transformer in LCL topology, the operating frequency can be increased. To provide a
modular structure, lower power losses, higher power quality, and higher reliability, the
MMC converter is introduced in resonant topologies, as shown in Figure 10 [23,35]. In
addition, the MMC with the resonant topologies assists in having a higher efficiency for all
transformation ratios [23]. Other transformerless topologies are presented in [23,36,37].
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Figure 10. MMC-LCL converter circuit diagram.

3.2.2. Two-Level Dual Active Bridge Converter (2L-DAB)

The DAB DC-DC converter is a topology used in high-power applications [38,39].
Figure 11 presents the DAB configuration, which involves two active bridges connected
through an intermediate high-frequency transformer. The first FB converts the input side
DC voltage to a high-frequency AC voltage; however, the second FB converts back the
square wave AC voltage to a DC output voltage [40].
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Figure 11. Dual Active Bridge (DAB) converter circuit diagram.

The DAB can be a single-phase converter or three-phase converter depending on the
design criteria [17]. The maximum power transferred depends on the leakage inductance
of the intermediate transformer, which acts as an energy transferring element [33]. The
DAB topology provides bidirectional power flow. This is done by controlling the phase
shift between the primary and secondary bridge [20]. The switches can be switched at ZVS
and/or Zero Current Switching (ZCS). To further illustrate, during the switching actions,
the transformer leakage inductance resonates with switching devices’ output capacitances
to limit the rate of change of voltage and current across the semiconductor devices [18].
This action reduces the switching loses of the converter and increases the power efficiency.

Several control strategies are presented in order to increase the soft-switching range
and reduce the transformer current. In addition, a high conversion ratio can be obtained by
choosing the transformer turns ratio. However, the active bridges should be rated at the
full converter power and voltage, limiting their employment in high-power applications
since the semiconductor switches should be connected in series and/or parallel to meet the
voltage and/or current requirements. In addition, high isolation is required at higher volt-
age levels for the intermediate transformer. Moreover, one of the two-level DAB converter
design challenges is that at higher operating voltages, the rate of change of voltage across
the intermediate transformer is high [17].

In order to avoid these problems and be able to employ a DAB converter in high-
voltage high-power applications, multiple DAB converter units can be connected in series
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and/or parallel to increase the voltage and current ratings as proposed in [41–43]. This is
termed a multimodule DC-DC converter, which will be further discussed in the follow-
ing subsection.

Applying the modular concept to the two-level DAB would achieve easier scalability.
In addition, installing additional modules makes the system more reliable. However, con-
necting multiple DAB units in series/parallel will require special attention to the isolation
level of the low-power transformers, which results in higher costs [17]. There are four
possible architectures for modular two-level DAB, which are: Input-Series Output-Series
(ISOS), Input-Series Output-Parallel (ISOP), Input-Parallel Output-Parallel (IPOP), Input-
Parallel Output-Series (IPOS) [44]. Figure 12 presents the four modular DAB architectures
considering three DAB units.
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Figure 12. Modular DAB DC-DC converter architecture: (a) ISOS; (b) ISOP; (c) IPOP; (d) IPOS.

3.2.3. Multimodule DC-DC Converters (MCs)

The multimodule DC-DC converter shown in Figure 13a can be employed in medium/
high-voltage high-power applications. In this converter, each SM contributes a small portion of
the total power. Therefore, high switching frequency operation can be achieved in multimodule
DC-DC converters without affecting the efficiency of the converter system [45].

Multimodule DC-DC converters can offer both unidirectional and bidirectional power
flow. In such a configuration, power-sharing control techniques are required to ensure
equal power distribution [45]. However, the converter shown in Figure 13b based on FB
topology faces some drawbacks that can be summarized as high reverse recovery currents
in high-power applications. In addition, the soft-switching technique in the FB converter
can only be achieved within a limited range [33,34,45]. Although, several solutions have
been suggested in [33,34,46,47] to reduce the high reverse recovery current.

Figure 13a presents a generic multimodule DC-DC converter, where any of the con-
figurations shown in Figure 13b–e can be used. In Figure 13e, the frequency of the FB
converters is adjusted based on the AC link resonant frequency to provide a sinusoidal
voltage waveform across the transformer’s windings, enabling the power switches to
operate near the ZCS. However, in this approach, the series resonant capacitor voltage
is high, which oversizes the SM’s resonant capacitor. Accordingly, the resonant version
is not preferable compared to the non-resonant version in Figure 13c, which provides a
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smaller size and lighter weight. Generally, most resonant converters have high-voltage
or high-current stresses on the switching devices. This can be accepted in low/ medium
voltage applications but cannot be tolerated in high-voltage applications. Resonant versions
are single-phase converters that suffer from large ripple currents on both DC links.
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The main drawback accompanied with the multimodule DC-DC converters discussed
in this section is that when employed in voltage levels that are beyond the medium-voltage,
high isolation level will be required with the multiple transformers used [45]. However, in
multimodule DC-DC converters, an AC transformer offering galvanic isolation is essential
to offer series/parallel connections at the input and output sides. Several research studies
have addressed the concept of multimodule DC-DC converters. In [48], a generalized
modeling and control approach for modular isolated DC-DC converters for ultra-fast EV
chargers is presented. In [49], an ISOP modular DC-DC converter for low-speed EVs
is presented. In [19], hybrid multimodule DC-DC converters for ultrafast EV chargers
are presented.

Summarizing the concept of multimodule DC-DC converters, this topology is a mod-
ular structure-based converter. It can offer a bidirectional power flow by using SMs
containing DAB, DHB, and series resonant converters, where each topology has its merits
and demerits [23,50]. Soft switching operation, along with higher switching frequency,
can be achieved in multimodule DC-DC converters, resulting in significantly reducing the
component volume without sacrificing efficiency [23]. In multimodule DC-DC converters,
the modularity concept is applied to the entire stage and not only in the power electronics
stage. In addition, a higher switching frequency in the AC link can be achieved, which
results in weight and size reduction.
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3.2.4. Modular Multilevel Converter (MMC-DAB/ MMC-F2F)

In 2003, Lesnicar and Marquardt introduced the DC-AC MMC concept, where several
HB-SMs of low-voltage rating are switched to produce a multilevel AC voltage wave-
form [17,21,51]. The idea of replacing the conventional DAB switches with low-voltage
SMs has gained popularity [52,53]. The DAB converter based on the MMC concept shown
in Figure 14 is a F2F topology that does not need multiple low-power transformers as the
series and/or parallel DAB converters. Instead, a multilevel or two-level voltage waveform
is generated across the winding of the transformer. The MMC-based F2F topology is
considered one of the promising DC-DC converters used in MV E-bus fast charging. As
shown in Figure 14, the MMC-F2F converter consists of two full-scale converters connected
via an intermediate transformer. The first converter converts from DC to AC, the second
converts from AC to DC, and the intermediate transformer provides galvanic isolation
and changes the voltage level if needed. The MMC-based DAB topology will provide easy
power rating adoption and fault blocking capability. In this topology, the semiconductor
switches series connection is also avoided. However, the total installed SMs ratings are
poorly utilized due to the usage of two fully rated DC-AC stages, resulting in high cost,
size, and power losses [17,54].
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Figure 14. MMC-based Front-to-Front (F2F) topology circuit diagram.

The MMC-based F2F topology is considered one of the promising DC-DC converters
used in MV E-bus fast charging. As shown in Figure 14, the MMC-F2F converter consists
of two full-scale converters connected via an intermediate transformer. The first converter
converts from DC to AC, the second converts from AC to DC, and the intermediate
transformer provides galvanic isolation and changes the voltage level if needed.

To address the technical challenges and control of the MMC-F2F topology, extensive
research efforts have been made. The prominent features of MMC-F2F topology can be
summarized as follows [17]:

• The use of multiple low-voltage SMs enabled the converter to be fully modular and
scalable, where connecting SMs in series can achieve different voltage and power
levels.

• In addition, the multilevel architecture allowed for low total harmonic distortion
in the AC waveform output, which will significantly reduce the AC side filtering
requirement.

• Low electromagnetic interference is achieved because of the low rate of change of
voltage and the enhanced reliability introduced by the redundant SMs.

The use of medium frequency in the MMC-DAB converter offers a compact trans-
former design and reduces the total size of the passive elements. In MMC-DAB, the AC link
can be operated in two modes. The first mode uses full multilevel modulation with sinu-
soidal voltage [45]. However, the second mode is the Quasi-two-level (Q2L) mode with
trapezoidal voltage as suggested in [55]. The operation of both modes is explained in [45].
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A. Conventional Multilevel operation of MMC-DAB

The main features of the first mode can be summarized in low voltage stresses on
the MMC-DAB transformer and low switching losses compared with the 2L-DAB. This
is accomplished through the small voltage step sequential switching [45]. In addition,
MMC-DAB operating in the first mode has a lower power density than the 2L-DAB
since the active power with the low order voltages and current harmonics is not fully
utilized [21,45,56,57]. Moreover, soft switching for all the switching devices cannot be
achieved as in the DAB configuration. Accordingly, the cell capacitance must be oversized
to avoid high-voltage stresses across the switching devices [45].

B. Quasi-two-level (Q2L) operation of MMC-DAB

The second mode, which is the Q2L operation of MMC, is proposed in [57]. In this
mode, the MMC operates as a two-level converter, where the modular converter cell
capacitors are used as a clamping network to ease the output phase voltage transitions. In
other words, the converter generates a square wave with a controllable change in the rate
of the voltage level through the cell voltages employment to create transient voltage levels.
This would diminish the cell capacitance energy storage requirement and the MMC overall
footprint, making the Q2L MMC-DAB a suitable and promising solution for MV E-bus
charging applications [45,57]. Accordingly, employing Q2L MMC-DAB in such applications
would result in high efficiency, low switching frequency, and system reliability.

To further illustrate, the DC transformer based on MMC proposed in [57] consists of
two three-phase MMCs connected via AC transformer, where HB cells are employed in
both MMCs. This mode offers a considerable reduction in the converter’s cost, weight,
and footprint [23,57]. The DC voltage regulation is managed by controlling the phase shift
and the voltage magnitude. In order to mitigate the voltage stress on the AC transformer
stage, both converters operate in a Q2L mode, which would make the topology applicable
for medium voltage and high voltage levels. Similar to the first staircase mode operating
with a sinusoidal waveform, the trapezoidal voltage waveform is created through the cell’s
sequential switching. The cell capacitors are used as energy tanks to produce intermediate
voltage levels for a few microseconds during the transitions. This would significantly
diminish the cell capacitance.

The purpose of the presented Q2L operating mode for MMC in [57] is to be utilized
as a DAB DC transformer topology. In this mode, several merits are offered, which can
be highlighted in the two-level operation with controlled values for the rate of change
of voltage, in addition to the significant reduction in the converter footprint due to the
low cell capacitance requirement. Moreover, soft switching can be achieved using the
DC transformer topology. Furthermore, this mode offers flexibility in installation and
manufacturing.

Up to this point, the basic DC-DC converter topologies are discussed. However, more
recent concepts substitute the DC-AC converters in the F2F topology with new hybrid
concepts. These DC-AC converters are based on F2F topology and combine the desired
features of the MMC and the two-level converter. These presented converters include
Hybrid Cascaded Two-level converter, Alternative Arm MMC (AA-MMC), Controlled
Transition Bridge (CTB), and Transmission Arm Multilevel Converter (TAC) operating in
Q2L that are presented in [23,45,58].

C. MMC Topologies Assessment

In [59], the F2F converter, MVDC-AT, and MMC DC-DC converter are compared in
terms of their functionality, efficiency, and topology effort.

The comparison carried out in [21] and [27] between the MMC DC-DC and DAB
DC-DC converters and between DAB and MVDC-AT converters is based on different case
studies. However, in [59], a generalized approach is used to compare the three MMC
converter-based topologies regardless of the actual voltage or the desired power levels.

The three MMC topologies have been compared by noticing their performance charac-
teristics: switching power utilization, conversion efficiency, and passive component efforts.



Energies 2022, 15, 5487 15 of 20

Despite the absence of galvanic isolation, it has been shown in [59] that the MVDC-AT
provides high efficiency and uses small passive components compared to other topologies.
Accordingly, MVDC-AT is preferred economically when galvanic isolation is not a require-
ment. This topology is also considered the most suitable solution for low and medium
transformation ratios.

A comparison between the three MMC topologies and the 2L-DAB and the MC-DAB-based
DC-DC converters is presented in Table 2. The converters are compared in terms of the number
of conversion stages, galvanic isolation, transformation ratio, semiconductor efforts, switching
frequency, and transformer size.

Table 2. Comparison between MCC topologies and multimodule two-level DC-DC converters.

P.O.C MMC MVDC-AT MMC-F2F/MMC-DAB 2L-DAB/MC-DAB

Conversion Stages Single Single Two Two

Galvanic Isolation × ×
X X

Galvanic isolation is necessary

Transformation Ratio Low and medium Low and medium High High

Semiconductor Efforts Multilevel (Lower dv
dt ), lower voltage stresses Two-level Waveform

Switching Loses
X

×
Lower switching losses compared to the two-level switching

Switching frequency Lower switching frequency (single transformer is used)
Higher switching

frequency (multiple
transformers are used)

Transformer size
×

X
Larger in size compared to 2L-DAB and MC-DAB based

Number of
semiconductor devices

× X

Switches are higher than the MC-DAB DC-DC converter. Lower number of
switches

Efficiency Poor efficiency (especially with high voltage transformation ratio) Higher efficiency
Provide higher efficiency in low partial load conditions.

Performance Single-stage is superior when galvanic isolation is not required or transformer
ratio is not high

Better performance at
high voltage

transformation ratios.

Insulation
Requirements Not required Multiple transformers

require high insulation

Magnetic Components A higher number of capacitors (yet the effect on the total investment cost
is low).

A lower number of
capacitors.

Investment Costs
× X

The cost of MMCs is higher than the MC-DAB converters. Lower investment cost.

Manufacturer X

×
MC-DAB is more

complex in terms of
manufacturing

4. Medium-Voltage DC-DC Converters Challenges and Requirements

The use of high-frequency is an attractive solution for obtaining magnetic components
with reduced volume and weight. However, switching at high frequencies will lead to an
extremely high rate of change of voltage, making the transformer’s design more challenging.
In other words, the transformer design will be difficult in terms of isolation and difficulty in
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transmitting power with dominant low-order harmonics [45]. The safety galvanic isolation
standards by IEC are provided in [59,60].

Talking about the most desirable features of DC-DC converters, Medium-voltage
DC-DC converters should be scalable to achieve the required voltage and power ratings. In
addition, an interfacing transformer for galvanic isolation is likely to be used [34,45].

Furthermore, voltage stresses at the interfacing transformer primary and secondary
windings, as well as the voltage stresses across the switching devices of the converter and
the passive components, must be controlled. Moreover, constraints should be imposed on
the AC link fundamental frequency since the interfacing transformer weight and volume
reduction in the high-voltage DC-DC converter are constrained by the switching losses level.
However, higher AC link frequency can be achieved in multimodule DC-DC converters
since each SM is rated at low voltage and power levels.

Regarding the system-level challenges, power quality issues in DC distribution and
microgrids should be considered. Power quality in DC systems is mainly concerned with
the employed power conversion stages, considered the main building blocks in DC systems.
In DC distribution, the four fundamental power quality concerns are identified as: harmonic
currents, inrush current, fault current, and grounding [61–63].

• Harmonic Currents: The existence of voltage and current oscillations in such systems
makes the harmonics discussion relevant in which the term harmonics refers to the
oscillatory voltages and currents. Due to the non-linear effects of power converters,
harmonic currents, and circulating currents result. To limit the harmonic currents,
filters are required. Voltage oscillations and resonance currents can result from har-
monic currents, which may reflect voltage harmonic distortion at the point of common
coupling (PCC) of the AC grid. In this regard, utility customers are limited by the
harmonic current requirements in international standards (e.g., IEEE 519) [64].

• Inrush current: To control the harmonic currents and voltage ripple resulting from
the load and the source converter, respectively, filters are utilized in which the filter
capacitance may cause inrush currents. To solve the inrush current problem, soft-start
techniques are addressed in [65].

• Fault Current: Due to the absence of periodic voltage and zero current crossings,
arcing faults cannot be detected and extinguished easily in DC systems. Addition-
ally, fault current contribution represents an issue in DC networks. Therefore, a
DC-DC converter with fault current blocking capability is required. In this regard,
protection in DC systems is of high interest. A review focusing on DC protection is
carried out and conducted in [66].

• Grounding: The selection of the grounding configuration in the DC systems affects
the power quality as well as the safety of the overall system, especially in fault
conditions. In this regard, the European Telecommunications Standards Institute (ETSI)
published a standard document that provides details about grounding techniques for
data centers [67].

In [68], an overview of DC system architectures is discussed. In which safety and
protection concerns in DC distribution systems are discussed in terms of personal and
equipment protection as well as grounding methods.

Transportation systems are considered sources of electric and magnetic fields to which
a large portion of the population is unavoidably exposed. Accordingly, investigation of
such effects with the long-term exposure of the public to the low-frequency electromagnetic
field (EMF) is crucial. In [69] and [70], EMF exposure level measurements are performed
and analyzed under different scenarios. From the study performed in [69], distributing
passengers in a uniform manner is highly recommended to reduce the effects of undesired
exposure. The simulation methodology provided in [69] can be used to assess the limitations
and recommendations for EMF exposure.
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5. Conclusions

In this paper, the basic isolated DC-DC converters are discussed and compared in
terms of their power range, transformer utilization, number of active switches, and cost.
In addition, isolated DC-DC converters are categorized and presented as single-ended
and double-ended topologies. Moreover, DC-DC converter topologies applicable for MV
E-bus fast charging applications are classified according to the number of conversion stages:
single-stage or two-stage conversions. These converters include DAB modular-based
structure converter, and MMC-based DAB are discussed where the merits and demerits of
each topology are highlighted. Furthermore, this review illustrates how DAB converters
are employed in different power level applications through the series and/or parallel
connection of multiple DABs or through the MMC-based DAB structure. Furthermore, the
challenges and required features for MV DC-DC converter topologies are discussed.
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