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Abstract
Lead (Pb) is one of the most frequent hazardous air contaminants, where the lungs are particularly vulnerable to its toxic-
ity. However, the Pb distribution and its impact on lung inflammation/apoptosis and particularly the involvement of nuclear 
factor kappa B (NF-κB) and aryl hydrocarbon receptor (AhR) signaling pathways in Pb-induced lung toxicity have not yet 
been fully investigated. Adult male Wistar albino  rats were exposed to Pb nitrate 25, 50, and 100 mg/kg b.w. orally for 3 
days. The histopathological changes of several rat organs were analyzed using hematoxylin and eosin staining. The concen-
trations of Pb ion in different organ tissues were quantified using inductive coupled plasma mass spectrometry, while gas 
chromatography-mass spectrometry was used to identify organic compounds. The changes in the mRNA and protein expres-
sion levels of inflammatory and apoptotic genes in response to Pb exposure were quantified by using RT-PCR and Western 
blot analyses, respectively. Treatment of rats with Pb for three consecutive days significantly increased the accumulation 
of Pb in lung tissues causing severe interstitial inflammation. Pb treatment also increased the percentage of lung apoptotic 
cells and modulated apoptotic genes (Bc2, p53, and TGF-α), inflammatory markers (IL-4, IL-10, TNF-α), and oxidative 
stress biomarkers (iNOS, CYP1A1, EphX) in rat lung tissues. These effects were associated with a significant increase in 
organic compounds, such as 3-nitrotyrosine and myeloperoxidase, and some inorganic elements, such as selenium. Impor-
tantly, the Pb-induced lung inflammation and apoptosis were associated with a proportional increase in the expression of 
NF-κB and AhR mRNAs and proteins. These findings clearly show that Pb induces severe inflammation and apoptosis in 
rat lungs and suggest that NF-κB and AhR may play a role in Pb-induced lung toxicity.
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Introduction

Heavy metals are the most significant air pollutants that 
are neither created nor biodegradable, making their expo-
sure an increasing issue (Jarup 2003). Among these heavy 
metals, lead (Pb) is ranked the second most commonly 
encountered toxic substance according to the Agency for 
Toxic Substances and Disease Registry 2019 (ATSDR 
2019). Human and experimental animal studies have 
shown that exposure to Pb affects the function of a vari-
ety of immune cells and the production of inflammatory 
mediators and cytokines, such as interleukins, transform-
ing growth factor-beta1 (TGF-β1), and tumor necrosis fac-
tor-alpha (TNF-α) (Chibowska et al. 2016; Lassiter et al. 
2015). These cytokines and immunomodulatory markers 
are regulated by several transcription factors, including the 
nuclear factor kappa B (NF-κB) and the aryl hydrocarbon 
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receptor (AhR) (Beamer and Shepherd 2013; Li and 
Verma 2002), which both have an essential role in organ 
inflammation and apoptosis (Li and Verma 2002; Villa 
et al. 2017). Among these organs, the lungs are considered 
as a primary soft organ for Pb exposure and accumulation 
as they consist of diverse cells (Kumar et al. 1991).

AhR activation with subsequent induction of its target 
gene cytochrome P4501A1 (CYP1A1) has been shown to 
play a role in lung toxicity. Several previous studies have 
linked the exposure to AhR activating environmental pol-
lutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 
with lung inflammation and apoptosis in pheochromocytoma 
PC12 cells (Beamer and Shepherd 2013; Sánchez-Martín 
et al. 2010). This effect was associated with modulation of 
the immune system cells and hematopoietic stem cell dif-
ferentiation (Beamer and Shepherd 2013), while was dimin-
ished in AhR-null (AhR−/−) mice or by using AhR chemi-
cal inhibitors in cerebellar granule cells (AhR+/+) cultures 
(Sanchez-Martin et al. 2011). On the other hand, the NF-κB 
family of transcription factors are ubiquitously expressed 
regulators of cell proliferation, oxidative stress, apoptosis, 
inflammation, and fibrosis of the lung (Ghosh et al. 1998). In 
this context, it has been shown that suppression of lipopol-
ysaccharide-induced inflammation and oxidative stress by 
punicalagin was mediated through blockage of NF-κB acti-
vation (Jha and Das 2017), whereas activation of NF-κB in 
airway epithelium cells increased lung inflammation in mice 
(Sheller et al. 2009).

A cross-talk between NF-κB and AhR in lung inflam-
mation has been reported in both in vitro and in vivo 
studies. In which, activation of AhR by TCDD targets 
NF-κB in a ligand-dependent manner (Kimura et al. 2009; 
Vogel et al. 2014; Vogel and Matsumura 2009), leading 
to the regulation of inflammatory responsive genes, such 
as interleukin-1 (IL-1), IL-6, and IL-8 in non-small cell 
lung cancer patient (Chen et al. 2012; Kobayashi et al. 
2008). Interestingly, the overexpression of AhR signifi-
cantly increased NF-κB activity and thus promoting the 
development of lung adenocarcinomas (Chen et al. 2012). 
However, the role and involvement of AhR and NF-κB in 
Pb-induced lung toxicities in the rat lung model remain 
uninvestigated. Therefore, the current study was con-
ducted a) to investigate the distribution of Pb in differ-
ent vital organs and tissues, b) to determine the effect on 
serum biomarkers, apoptosis, inflammation, the profile of 
organic ions, and inorganic compounds in lung tissue, and 
c) to explore the role of the NF-κB and AhR pathways in 
the Pb-induced lung damage in vivo rat model.

Materials and methods

Materials

Lead (II) nitrate (purity <99.95%) was purchased from 
Sigma-Aldrich, St. (Louis, MO, USA). Muse Annexin V 
and Dead Cell assay kit was obtained from Merck Milli-
pore (Darmstadt, Germany). TRIzol reagent was obtained 
from Invitrogen Co., (Island, NY, USA). High-capacity 
cDNA Reverse Transcription and SYBR Green PCR Mas-
ter Mix kits were ordered from Applied Biosystems (Foster 
City, CA, USA). Primary antibodies against target proteins 
NF-κB p65 and AhR and their HRP-conjugated secondary 
antibodies were purchased from Santa Cruz Biotechnol-
ogy, (Santa Cruz, CA, USA). Enhanced chemilumines-
cence Western blot detection kit was obtained from EMD 
Millipore Co., (Billerica, MA, USA).

Animal study design and treatment protocols

Wistar albino rats (adult male; 200–230 g body weight) 
were obtained from the Animal Care Center, King Saud 
University, Riyadh, Saudi Arabia. Under regulated con-
ditions (25°C and a 12-h light/dark cycle), all animals 
were kept in metabolic cages and had unlimited access 
to a pulverized standard rat pellet diet. All animals were 
allowed to acclimatize to the environment in the animal 
facility for a week before starting the experiments. These 
animals were cared for and handled in accordance with 
Animal Care Center  regulations and international guide-
lines (e.g., NIH 1976). The study protocol was approved 
by the Research Ethics Committee of King Saud Uni-
versity in Riyadh, Saudi Arabia (ethical approval # 
KSU-SE-20-33).

A total of 24 rats, a sample size that was calculated 
by the Resource equation method (Charan and Kantharia 
2013) to give a significance of 5% and a power of 95%, 
were divided randomly but equally into 4 groups. The first 
group (control) received a single dosage of normal saline 
(2.5 ml/kg/day) by gavage for three consecutive days. The 
second (Pb 25), third (Pb 50), and fourth (Pb 100) groups 
received lead nitrate [Pb  (NO3)2, Pb] 25, 50, and 100 mg/
kg body weight (b.w.) by gavage, respectively, for three 
consecutive days. These doses of Pb were chosen from our 
previous published work (Ansari et al. 2013), which are 
about 1.1%, 2.2%, and 4.4%, respectively, of the reported 
 LD50 (2250 mg/kg) of Pb nitrate in rats (Sharma et al. 
2010), and none of the rats died during the experimen-
tal period. Animals were anesthetized with halothane at 
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the end of the treatment period and blood samples were 
taken through heart puncture. The serum was separated 
by centrifugation at 3000×g for 5 min and kept at −20°C 
until analysis. Under halothane anesthesia, the thorax was 
opened, and lung, heart, and liver tissues were dissected 
quickly, lavaged with phosphate-buffered saline (PBS) 
(Collins et al. 2016), and then stored at −80°C for further 
analysis. Each dissected organ was divided into four seg-
ments; the first segment was homogenized and used to iso-
late RNAs and proteins for gene expression experiments, 
the second segment was fixed in 10% formalin for use in 
a histopathology study, the third segment was used for 
flow cytometry analysis, and the fourth segment was used 
for the analysis of inorganic ions and organic compounds 
(Collins et al. 2016).

Pb distribution in rat organ tissues

The distribution of Pb in different rat organ tissues was quan-
tified by using inductively coupled plasma mass spectrom-
etry (ICP-MS). Using microwave digestion, all tissue sam-
ples were digested in nitric acid and the distribution of Pb 
in these tissues was assessed as previously described (Orct 
et al. 2017). Approximately 500 mg  tissue was placed in a 
plastic bag and homogenized with sterile deionized water for 
60 s by mechanical dissociation  (Stomacher®80, lab system, 
France). The homogenate was transferred into a 15-mL plas-
tic tube and centrifuged for 10 min at 3000×g. Supernatant 
from each homogenate was stored at −20°C for ICP-MS 
analysis. The homogenate samples were then digested in 
pure 70% nitric acid at 70°C for 12 h, and then dilated by 
ultrapure deionized water and the elemental profile was ana-
lyzed using an ICP-MS instrument (Agilent Technologies, 
ICPMS-7500 System) (Albratty et al. 2017).

Serum analysis of immunological markers

The serum levels of immunological markers, including mye-
loperoxidase (MPO) (cat. no. 704655.10) and proteinase 3 
(PR-3) (Cat. no. 704660.10) were determined by enzyme-
linked immunosorbent assay (ELISA) (QUANTA Lite assay, 
INOVA Diagnostics, USA). Immunoglobulins (IgG, IgE, 
and IgA) were determined by nephelometry (Siemens BN2 
nephelometer, Germany). Lactate dehydrogenase (LDH) and 
creatine kinase-MB (CK-MB) were determined by chemi-
luminescent microparticle immunoassay (CMIA) (Architect 
c16000 analyzer, Abbott Diagnostics Inc, USA).

Histopathology examination

The effect of Pb on the histology of rat organs (brain, heart, 
and lung tissues), obtained from control rats and rats exposed 
to Pb (100 mg/kg b.w.), were analyzed using hematoxylin 

and eosin (H&E) staining, as previously described (Afshar 
et al. 2008) with slight modification (Ansari et al. 2013). 
Briefly, parts of the organ tissues were fixed in 10% formalin 
and then cut into 3–4-mm-thick paraffin-embedded sections. 
The sections were then stained with H&E for examination 
of histopathological changes under light microscopy by two 
independent histopathologists.

Cell apoptosis

The percentage of cells undergoing apoptosis/necrosis 
in response to Pb was determined according to manufac-
turing protocols and as described previously (Khan et al. 
2012). Briefly, lung cells isolated from rat lung tissues were 
washed with cold PBS followed by trypsinization. The col-
lected lung cells were centrifuged at 300×g for 5 min and 
then re-suspended in 0.5 mL PBS. Thereafter, lung cells 
were stained with annexin V/propidium iodide (PI), and the 
apoptotic and necrotic cell populations were analyzed by 
Flow Cytometer  Muse® Cell Analyzer (Merck Millipore, 
CA, USA).

RNA isolation, cDNA synthesis, and RT‑PCR

Total RNA from lung tissues was isolated using the TRI-
zol method as previously described (Rio et al. 2010). RNA 
quantity and quality were determined using NanoDrop 
 8000®, Thermo Scientific (USA) at an optical density 
260/280 range of ~2.0. cDNA synthesis was performed and 
the changes in the mRNA expression levels of NF-κB, AhR, 
CYP1A1, IL-4, IL-6, IL-8, IL-10, TNF-α, epoxide hydro-
lases (EphX), TGF-α, BcL2, p53, and inducible nitric oxide 
synthase (iNOS) (Table 1) in response to Pb exposure were 
quantified byQuantStudio 6 Flex Real-Time PCR System 
(qRT-PCR), Applied Biosystems (Foster City, CA) using 
SYBR Green Master mix as described by the manufacturer. 
The changes in gene expression normalized to an endog-
enous reference gene (β-actin) were calculated using the 
relative gene expression method (i.e., ΔΔCT) (Livak and 
Schmittgen 2001).

Protein extraction and Western blot analysis

Total proteins concentrations isolated from lung tissues of all 
groups were quantified using a Direct Detect Infrared Spec-
trophotometer (Millipore, MA, USA), as previously described 
(Abrams et al. 2003). Western blot analysis was performed 
to determine the protein expression of NF-κB and AhR nor-
malized to β-actin as initially described before (Korashy 
and El-Kadi 2004). Briefly, about 30 μg of proteins from all 
animal groups were separated on 10–12% sodium dodecyl 
sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) 
and then electrophoretically transferred to nitrocellulose 
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membrane. After serial washings, the membranes were incu-
bated at 4°C with specific primary antibodies against target 
proteins followed by secondary antibodies at room tempera-
ture. The bands of the target proteins were visualized by 
C-DiGit® Blot Scanner (LI-COR Biosciences, USA) and then 
the semi-quantified by  ImageJ® (Rueden et al. 2017).

Analysis of inorganic ions and organic compounds 
in rat blood

Lung tissue homogenates were centrifuged for 10 min at 
3000×g and the resultant supernatants were utilized for 
GC-MS and ICP-MS analyses. For GC-MS analysis, lung 
homogenate samples were extracted by a solid phase–extracted 
(SPE) method according to the manufacturer’s protocol using 
a Clean  Screen® DAU SPE cartridge. The extracted residues 
were reconstituted by methanol and analyzed using a non-
targeted screening method via a GC-MS instrument (Agilent 
Technologies, GCMS-7890B System). For ICP-MS analysis, 
lung homogenate samples were digested in pure 70% nitric 
acid at 70°C for 12 h which were then dilated by ultrapure 
deionized water. The elemental profile was analyzed using an 
ICP-MS instrument (Agilent Technologies, ICPMS-7500 Sys-
tem) as described before (Albratty et al. 2017).

Statistical analysis

Results are expressed as mean ± standard error of the 
mean (SEM). Student t-test or one-way analysis of vari-
ance (ANOVA) followed by a Student-Newman-Keuls test 
were performed using Sigma Plot (Systat Software, Inc, 
CA) to compare the experimental groups’ results to their 
corresponding control group. The statistical significance 
was defined at a P-value of <0.05.

Results

Distribution of Pb in rat lungs a compared to heart 
and brain and the effect on the histological changes

In the current study, we determined the distribution of Pb 
metal, after three days of oral administration, in rat lungs 
in comparison to the heart and brain tissues using the ICP/
MS technique. Figure 1A shows that Pb accumulated in 
all tested rat tissues in a dose-dependent manner. Interest-
ingly, the lung exhibited the highest Pb accumulation by 
approximately 95-fold followed by the heart by 86-fold, 
and 68-fold for the brain. To further explore the deliri-
ous effect of Pb and whether the high accumulation levels 
of Pb are associated with histopathological changes, we 
conducted H&E staining of the rat lung, heart, and brain 
tissues. Figure 1B shows that rats exposed to one single 
dose of Pb (100 mg/kg b.w) for 3 days exhibited severe 
interstitial inflammation, fibrosis, and alveolar collapse in 
the lungs (L2 and L3) as compared to control lung (L1). In 
the heart tissues, marked congestion, interstitial inflamma-
tion, fibrosis, and focal cardiac muscle degeneration were 
observed (H2 and H3), as compared to normal heart struc-
ture (H1). Whereas cellular degeneration and increased 
inflammatory cells were detected in the brain tissues (B2 
and B3) as compared to normal brain (B1) structures. 
Based on these results, the Pb dose (100 mg/kg b.w.) was 
utilized in all subsequent studies in rat lung tissues.

Effect of Pb exposure on rat lung apoptosis

The ability of Pb to induce apoptosis in rat lung cells was 
assessed by (1) determining the percentage of cells undergoing 
apoptosis/necrosis and (2) measuring the levels of BcL2, p53, 
and TGF-α mRNAs. Figure 2A shows that 3-day exposure to 
Pb (25, 50, and 100 mg/kg b.w.) significantly increased the  

Table 1  Primer sequences used for real-time polymerase chain (RT-PCR) reactions

Gene 5′→3′ forward primer 5′→3′ reverse primer References

NF-κB GGC AGC ACT CCT TAT CAA GGT GTC GTC CCA TCG TAG (Korashy et al. 2016a)
CYP1A1 CCA AAC GAG TTC CGG CCT TGC CCA AAC CAA AGA GAA TGA (Korashy et al. 2016a)
AhR CTC CCT CCA CAG TTG GCT TTG TTT G GAT TCT GCG CAG TGA AGC ATG TCA G (Jacob et al. 2011)
IL-4 TGG GTC TCA GCC CCC ACC TT TCC GTG GAT ACC GTT CCC GGT (de Melo et al. 2015)
IL-6 CCG GAG AGG AGA CTT CAC AGA GGA AGC CTC CGA CTT GTG AAG TGG TAT A (de Melo et al. 2015)
IL-8 CAT TAA TAT TTA ACG ATG TGG ATG CGT TTC A GCC TAC CAT CTT TAA ACT GCA CAA T (Tong et al. 2008)
TNF-a GTG ATC GGT CCC AAC AAG AGG GTC TGG GCC ATG GAA (Korashy et al. 2016a)
EphX2 CAC ATC CAA GCC ACC AAG CC CAG GCC TCC ATC CTC CAG (Ansari et al. 2013)
TGF-a TCA ACA AGT GCC CAG ATT CCC GGC TTC TCT TCC TGC ACC AAA (Hu et al. 2021)
BcL2 CAA CAT CGC TCT GTG GAT GAC TGG GGC CAT ATA GTT CCA CAA (Saleh and El-Shorbagy 2020)
P53 ACA GCG TGG TGG TAC CGT AT GGA GCT GTT GCA CAT GTA CT (Korashy et al. 2016b)
iNOS GTC ACC TAT CGC ACC CCG AGATG GCC ACT GA CAC TCC GCA CAA AG (Al-Harbi et al. 2015)
β-actin CCA GAT CAT GTT TGA GAC CTT CAA GTG GTA CGA CCA GAG GCA TACA (Korashy et al. 2016a)
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percentage of lung cells that underwent apoptosis in a dose-
dependent manner to 3.5%, 9.5%, and 22.9%, respectively, com-
pared to control healthy cells (0.1 %). Furthermore, the Pb (100 
mg/kg b.w.)-induced apoptosis in the lungs was further evi-
denced by the decreased expression of the anti-apoptotic gene 
BcL2 (by 40%), and increased expression of the pro-apoptotic 
TGF-α gene (by 60%) compared to control cells (Fig. 2B).

Effect of Pb exposure on the inflammation of lung tissues

To further understand the effect of Pb on lung inflamma-
tion, we measured the mRNA levels of several inflamma-
tory markers, IL-4, IL-6, IL-8, IL-10, iNOS, and TNF-α in 

rat lung tissues using RT-PCR. As shown in Fig. 3A, rats 
exposed to oral Pb 100 mg/kg b.w. for 3 days presented sig-
nificant increases in the mRNA expression levels of IL-4, 
IL-10, iNOS, TNF-α, which were associated with a signifi-
cant decrease in IL-6 and IL-8 mRNA levels as compared to 
controls. To explore whether the effect of Pb on metabolizing 
enzymes is responsible for the detoxification of environmen-
tal pollutants, we measured the mRNA levels of CYP1A1, 
the downstream target for AhR and EphX1. Figure 3B shows 
that Pb increased the expression of CYP1A1 by approxi-
mately 50%, whereas downregulated EphX1 mRNA levels 
by 75% as compared to control.

Fig. 1  Pb distribution and 
histopathology changes in lung, 
heart, and brain tissues from 
rats exposed to once-daily dose 
of Pb for 3 days. A The Pb 
concentration levels in lung, 
heart, and brain tissues from 
rats treated with Pb (25, 50, and 
100 mg/kg b.w.) were deter-
mined by ICP-MS. The values 
are presented as mean ± SEM 
(n = 3). *p < 0.05 compared to 
the control (Pb 0 mg/kg b.w.). 
B Histopathologic examination 
of rat lung, heart, and brain 
tissues from rats treated with 
Pb (100 mg/kg Pb b.w.) was 
performed using H&E staining. 
Representative images of lung 
histology of control rat (L1) 
show a normal architecture 
(50× magnification), whereas 
L2 (100× magnification) and 
L3 (200× magnification) show 
severe interstitial inflamma-
tion, fibrosis, and alveolar 
collapse in the lungs. H1 shows 
a normal heart (20× magnifica-
tion), whereas H2 and H3 show 
marked congestion, interstitial 
inflammation, fibrosis, and focal 
cardiac muscle degeneration 
(100× magnification). B1 rep-
resents normal brain structure 
(200× magnification) and B2 
(200× magnification) and B3 
(100× magnification) demon-
strate cellular degeneration and 
increased inflammatory cells
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Effect of Pb exposure on serum inflammatory 
biomarkers levels

To determine the possible effects of Pb exposure on the levels 
of inflammatory biomarkers in the blood, we measured the 
capacity of high oral dose of Pb (100 mg/kg b.w.) to induce 
changes in the serum levels of immunological markers, such 
as MPO, PR-3, CK-MB, immunoglobulins, and LDH using 
ELISA. Table 2 illustrates that rats exposed to oral Pb 100 
mg/kg b.w, expressed significant increases in the serum lev-
els of CK-MB, LDH, and MPO by approximately 2-, 2.4-, 
and 1.5-fold, respectively. On the other hand, a significant 
decrease (40%) in immunoglobulin IgG was observed.

Effect of Pb exposure on the profile of inorganic 
and organic compounds in rat lung tissues

GC-MS and ICP-MS were used to identify the organic 
and inorganic profiles, respectively. Table 3 shows the 

most important changes in the organic compound profile 
of rat lung tissues in response to oral Pb exposure (100 
mg/kg b.w.) compared to those of a matched control. The 
organic compound profile of lung tissue homogenates 
reflects changes in inflammatory and oxidative stress-
related metabolites in the Pb-exposed group. Interestingly, 
tyrosine p-octyl acetophenone fatty acid esters were only 
present in the lung tissue of Pb-exposed rats. Furthermore, 
GC-MS analysis revealed that the percentages of peak 
areas of 1-hexadecanol, 1-nonadecene, methyl stearate, and 
1,2-octadecanediol were higher in Pb-treated group than 
control group (Table 3). 

Table 4 shows the most important changes in the inorganic 
ion profile of rat lung tissues in response to oral Pb exposure 
(100 mg/kg b.w.) compared to those of a matched control. 
Importantly, the levels of magnesium and copper ions in lung 
homogenates of Pb-treated rats significantly decreased by 
approximately 400% and 7%, respectively, whereas selenium 
ion showed a 13% increase as compared to control groups.

Fig. 2  Apoptotic effects in lung cells of rats exposed to a once-daily 
dose of Pb for 3 days. A The percentage of apoptotic rat lung cells 
after 3 days of  treatment of Pb (25, 50, and 100 mg/kg, b.w.) was 
determined by flow cytometry using annexin V/PI as substrates. One 
of the three representative experiments from different cell prepara-

tions was only shown. The values are presented as mean (n = 3). B 
The mRNA levels of BcL2, p53, and TGF-α normalized to the β-actin 
housekeeping gene were determined by RT-PCR. The values are  
presented as mean ± SEM (n = 6, duplicate). *p < 0.05 compared to 
the control (Pb 0 mg/kg b.w.)
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Effect of Pb exposure on NF‑κB and AhR function 
in lung tissues

To answer the question of whether NF-κB and AhR could 
have a role in Pb-induced lung inflammation in rats, we meas-
ured the effect of Pb on the mRNA and protein expressions 

of NF-κB and AhR in rat lung tissues. Figure 4 shows that 
treatment with Pb 100 mg/kg b.w. for 3 days resulted in a sig-
nificant increase in NF-κB and AhR mRNA by approximately 
45% (Fig. 4A). At the protein expression level, Pb significantly 
induced the protein expression of NF-κB and AhR by 3- and 
2-fold, respectively (Fig. 4B), in a manner similar to mRNA.

Discussion

In this study, we investigated (a) the distribution of Pb in rat 
lung tissues in comparison with other rat vital organs (heart 
and brain) and its impact on organs histology, (b) the effect 
of Pb on inflammatory and apoptotic markers in rat lung 
tissues and sera, and (c) the effect of Pb on the expression 
of NF-κB and AhR pathways in rat lung tissues. The key 
findings of the current work are that Pb after oral administra-
tion for three days highly distributed to the lung and induced 
inflammatory and apoptotic changes mediated through the 
activation of NF-κB and AhR.

Exposure to environmental pollutants is known to 
induce lung inflammation through the stimulation of 
several inflammatory mediators such as cytokines and 
interleukins (Moldoveanu et al. 2009). It is becoming 
increasingly clear that Pb-induced inflammation plays 

Fig. 3  Effects of Pb on the expression of inflammatory genes in the 
lungs of rats exposed to once-daily Pb (100 mg/kg) for 3 days. The 
mRNA levels of A IL-4, IL-6, IL-8, IL-10, iNOS, TNF-α, and B 
CYP1A1 and EphX normalized to β-actin housekeeping gene were 
determined using RT-PCR. The values are presented as mean ± SEM 
(n = 6, duplicate). *p < 0.05 compared to the control (Pb 0 mg/kg b.w.)

Table 2  Serum biomarkers analysis in rats exposed to once-daily 
dose of Pb (100 mg/kg, p.o.) for 3 days

Data are expressed as mean±SEM, *P<0.05 compared to the control 
(Pb 0 mg/kg b.w.) (Student t-test)

Biomarkers Control Pb-treated

CK-MB (U/ml) 603.33±43.75 1196.37±134.83*
LDH (U/ml) 422±80.74 998.66±182.95*
Creatinine (μmol/l) 18±0.7 20.4±1.17
Urea (mmol/l) 6.55±0.02 7.06±0.25
MPO (U/ml) 0.55±0.06 0.84±0.05*
PR-3 (U/ml) 2.38±0.02 2.51±0.04
IgM (g/l) 0.45±0.01 0.39±0.04
IgG (g/l) 2.52±0.01 1.8±0.03*

Table 3  The most important organic profiles identified by GC-MS 
analysis in lung homogenate of rats exposed to once-daily dose of Pb 
(100 mg/kg, p.o.) for 3 days

MF, molecular formula; MW, molecular weight; RT, retention time; 
PA%, peak area percentage. Note: all compounds were revealed with 
library similarity index (SI) scores above 90%

Compound name MF MW RT (min) PA%

Control Pb-treated

3-Nitrotyrosine C9H11NO3 181 7.26 0 5.34
p-Octylacetophenone C16H24O 232 9.19 0 2.67
1-Hexadecanol C16H34O 242 10.34 2.13 24.4
1-Nonadecene C19H38 266 11.7 3.29 52.85
Methyl stearate C19H38O2 298 12.55 4.85 26.25
1,2-Octadecanediol C18H38O2 286 14.08 4.92 68.79

Table 4  The most important inorganic profiles identified by using 
ICP-MS analysis in lung homogenate of rats exposed to once-daily 
dose of Pb (100 mg/kg, p.o.) for 3 days

Data are expressed as mean±SEM, *P<0.05 compared to the control 
(Pb 0 mg/kg b.w.) (Student t-test)

Groups Element levels (μg/L)

Control Pb-treated

Magnesium (Mg) 18.33±0.02 3.63±0.01*
Copper (Cu) 3.86±0.001 3.59±0.06*
Selenium (Se) 1.41±0.003 1.6±0.02*
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an important role in lung toxicity (Ansari et al. 2013; 
Korashy and El-Kadi 2008b; Wang et al. 2017; Zajda 
et al. 2017). Initially, in this study, we tested the distribu-
tion profile of Pb after oral administration to specifically 
determine which organ is most targeted by Pb. ICP-MS 
analysis shows that Pb was mainly accumulated in the 
lungs followed by the heart and the brain. The results are 
consistent with previously reported studies that demon-
strated that the lung is one of the largest soft tissues for 
Pb absorption and accumulation (Peter and Strunc 1983; 
Sun et al. 2009). The highest distribution of Pb to the lung 
was associated with clinical manifestations of toxicity. 
First, changes in lung histology were characterized by the 
presence of severe interstitial inflammation and fibrosis 
in the lung tissues after 3 days of administration of Pb 
100 mg/kg b.w., in a manner consistent with the findings 
of previous studies (Ansari et al. 2013; Chibowska et al. 
2016). Second, a significant increase in the serum levels 
of several inflammatory markers such as LDH, CK-MB, 
and antibodies against neutrophil cytoplasmic antigens 
(MPO and PR-3 levels) and the decrease in IgG and IgM 
levels, suggesting the ability of Pb to induce lung and 
systemic inflammation. Although CK-MB and LDH are 
found in almost all tissues of the body and can be elevated 
in many pathological conditions, several previous studies 
have observed elevated serum levels of LDH and CK-MB 
in patients with chronic cough and lung inflammation 
(Faruqi et al. 2012) and lung cancer (Lee et al. 1985).

Three days of exposure to Pb induced severe lung inflam-
mation as evidenced by (a) increased the gene expression 
of several inflammatory cytokines and mediators such as 
IL-4, IL-10, iNOS, TNF-α, and TGF-α and (b) inhibited 
the gene expression of anti-inflammatory markers such as 
IL-6 and IL-8. The release of IL-4 found to be linked with 
lung inflammatory diseases that are accompanied by NF-κB 
activation (Rokudai et al. 2006). Although IL-10 has been 
identified as an anti-inflammatory cytokine, its deficiency 
may be responsible for the activation of NF-κB and exces-
sive inflammation. The IL-10 over expression in the lung 
of transgenic mice causes mucus metaplasia, tissue inflam-
mation, and airway fibrosis (Lee et al. 2002; Saadane et al. 
2005). What is supporting our findings is the observations of 
Tyagi and co-workers who reported that induction of mac-
rophage-derived cytokines (TNF-α) and iNOS is associated 
with lung inflammation, and an increased risk of developing 
lung fibrosis and cancer (Beamer and Shepherd 2013; Tyagi 
et al. 2012). Both TNF-α and iNOS are considered inflam-
matory and apoptotic regulators (Nakazawa et al. 2017; 
Wang et al. 2018a). Recently, TNF-α and iNOS expressions 
have been associated with the activation of p53 and NF-κB, 
resulting in inflammation and apoptosis (Natarajan et al. 
2018; Sawada et al. 2004).

Apoptosis is an important contributor to the pathophysi-
ology of lung diseases. The involvement of apoptosis in Pb-
induced lung inflammation is evidenced by (a) increasing the 
percentage of apoptotic cells in rat lungs with a proportional 
decrease in the percentage of healthy cells, (b) decreasing 
the expression of the anti-apoptotic BcL2, and (c) increasing 
TGF-α mRNA levels. Both BcL2 and TGF-α are involved 
in the modulation of apoptosis (Cory et al. 2003; Piacen-
tini et al. 1991). Although physiological apoptosis does not 
induce inflammation, cell death and damage induced by 
chemical toxins might lead to leakage of cell contents into the 
adjacent tissues, causing the accumulation of neutrophils and 
the release of enzymes and oxygen radicals which enhance 
the inflammatory reaction (Haanen and Vermes 1995).

Perhaps the most interesting part of this study was the 
identification of potential organic and inorganic compounds 
that could medicate the inflammatory and apoptotic effects 
of Pb. GC-MS analysis of rat lung tissues has revealed an 
elevation of several organic compounds such as 1-hexade-
canol, 1-nonadecene, methyl stearate 1,2-octadecanediol, 
and nitrotyrosine and p-octyl suggesting their role in subse-
quent inflammation (Pennathur et al. 2016; Sala et al. 2003; 
Sala et al. 2001). In this context, tyrosine compounds are 
known to play important roles in metabolism and have been 
shown to convert to nitrotyrosine upon nitration via perox-
ynitrite or/and MPO, which contributes to lung inflammatory 
diseases and apoptosis (Estévez et al. 1998; Haddad et al. 
1994; Masuda et al. 2000; Moulian et al. 2001; Sheffield 
et al. 2006; Shin et al. 1996). The presence of nitrotyrosine 

Fig. 4  Effects of Pb exposure on the expression of NF-κB and AhR 
in rat lung tissues. NF-κB and AhR mRNA A and protein B levels 
were quantified using RT-PCR and Western blot analyses, respec-
tively, normalized to  the β-actin housekeeping gene. The values are 
presented as mean ± SEM (n = 3, duplicate). *p < 0.05 compared to 
the control (Pb 0 mg/kg b.w.)
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in the lung tissue of Pb-exposed rats suggests the presence 
of reactive nitrogen molecules (peroxynitrite) and oxidative 
stress regulator (MPO), which mediates oxidative stress and 
inflammation (Jin et al. 2011; Wang et al. 2018b). How-
ever, analysis of the inorganic compound profile revealed 
that magnesium levels in rat lung homogenates decreased 
in response to Pb, indicating the protective role of magne-
sium in both the immune and respiratory systems (Mathew 
and Altura 1988). In this context, it has been demonstrated 
that magnesium deficiency promotes elastin degradation 
and excess intracellular calcium entry, leading to oxidation 
stress, nitration stress, and lung inflammation and dysfunc-
tion (Janssen 2017; Rayssiguier et al. 2010). Our results are 
in agreement with previous studies that showed that lung 
cancer patients exhibit lower serum levels of magnesium 
with higher Pb levels (Cobanoglu et al. 2010). In addition, 
sub-chronic Pb intoxication in rats causes a reduction in the 
tissues content of magnesium (Todorovic et al. 2008). Fur-
thermore, it has been reported that magnesium could antago-
nize Pb-induced lung adenomas in mice through inhibiting 
Pb uptake by human amniotic epithelial cells (Guiet-Bara 
et al. 1990; Poirier et al. 1984).

Another marker that mediates Pb-induced lung inflammation 
and toxicity is EphX which plays a role in the protection against 
oxidative stress through the detoxification of toxic epoxide inter-
mediates (Chen et al. 2011; Liu et al. 2013; Morisseau 2013). 
Thus, downregulation of EphX expression in response to Pb 
could be one of the mechanisms of Pb-induced lung inflamma-
tion (Chen et al. 2011, Liu et al. 2013, Morisseau 2013). Taking 
these observations with the ability of Pb to modulate the expres-
sion of xenobiotic-metabolizing enzymes such as CYP1A1 
raises the question of the possible involvement of CYP1A1 in 
Pb-induced lung toxicity. To test this possibility, we measured 
the expression of CYP1A1 in Pb-exposed lung tissues. Interest-
ingly, we found an inverse proportional increase in CYP1A1 and 
AhR mRNA levels with EphX1 levels, indicating the role of 
AhR/CYP1A1 in Pb-induced lung inflammation. It is becoming 
increasingly clear that the cross-talk between AhR and NF-κB 
signaling plays an important role in lung toxicity (Ansari et al. 
2013; Korashy and El-Kadi 2008b; Wang et al. 2017; Zajda et al. 
2017). Importantly, we found that activation of AhR/CYP1A1 
in response to Pb was associated with a proportional increase 
in NF-κB mRNA in the lung tissues of the Pb-exposed group 
compared with the control. These results are in agreement with 
previous reports that demonstrated that Pb induced the activation 
of NF-κB and AhR in vitro and in vivo heart models (Ansari 
et al. 2013; Korashy and El-Kadi 2008a, b).

In conclusion, our results demonstrate that the lungs 
were the most vulnerable to the toxic effects of Pb at 
the molecular and cellular levels through the activation of 
inflammation and apoptosis, which are mediated via the 
modulation of AhR and NF-κB pathways. The induction 
of gene expressions of TNF-α, iNOS, and CYP1A1, while 

the reduction in the EphX gene, accumulation of lung fatty 
acids and 3-nitrotyrosine, reduction of lung tissues content 
of magnesium, supports the roles of oxidation stress, nitra-
tion stress, apoptosis, and inflammation in Pb-induced lung 
immunotoxicity.
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