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Abstract: First- and last-mile trips are becoming increasingly expensive and detrimental to the

environment, especially within dense cities. Thus, new micro-mobility transportation modes such

as e-scooter sharing systems have been introduced to fill the gaps in the transportation network.

Furthermore, some recent studies examined e-scooters as a green option from the standpoint of

environmental sustainability. Currently, e-scooter charging is conducted by competitive freelancers

who do not consider the negative environmental impact resulting from not optimizing the fuel

efficiency of their charging trips. Several disputes have been recorded among freelance chargers,

especially when simultaneously arriving at an e-scooters location. The paper aims to find the optimal

tours for all chargers to pick up e-scooters in the form of routes, such that each route contains one

charger, and each e-scooter is visited only once by the set of routes, which are typically called an

E-Scooter-Chargers Allocation (ESCA) solution. This study develops a mathematical model for the

assignment of e-scooters to freelance chargers and adapts a simulated annealing metaheuristic to

determine a near-optimal solution. We evaluated the proposed approach using real-world instances

and a benchmark-simulated dataset. Moreover, we compare the proposed model benchmark dataset

to the baseline (i.e., state-of-practice). The results show a reduction of approximately 61–79% in the

total distance traveled, leading to shorter charging trips.

Keywords: micro-mobility; e-scooters; freelancers; simulated annealing; assignment problem

1. Introduction

Micro-mobility modes, such as dockless e-scooter systems, have recently emerged
as an alternative mode of transportation, filling the gap in transportation systems. This
modern transport mode gained momentum in 2018 because e-scooters are energy-efficient,
environmentally friendly, easy to handle, and compact. There are many advantages to
e-scooter use, including lower costs, environment friendliness, exercise and fitness, and
improved accessibility to other transport systems. According to the National Association
of City Transportation Officials, more than 38.5 million rides were taken with e-scooters in
2018 in the U.S. Furthermore, e-scooters are now operational in over 65 major U.S. cities [1].

Micro-mobility, such as an e-scooter, is a useful means of transportation that provides
sustainability in the face of the current hazards presented by an over-growing population,
traffic congestion, and greenhouse gas impacts [2]. Environmental pollution and carbon
dioxide emissions can be significantly minimized by utilizing micro-mobility rather than
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regular motor vehicles [3,4]. Furthermore, replacing private vehicle trips with micro-
mobility promotes sustainability by lowering gas emissions and traffic accidents [5]. In [6],
the relation between the E-scooters and characteristics of sustainable urban development
was examined, such as land use type and walkability. Recently, research has examined
e-scooters as a green choice in terms of environmental sustainability [7,8].

Brisbane, Australia, recorded more than one 50,000 trips commuted by e-scooters
within the first two weeks of launching the service; after four months, in mid-November
2018, the number of trips increased to one million. This highly significant rise in demand
is backed by a vast, un-noticed infrastructure network designed to sustain charged and
available scooters at all times. Currently, e-scooter charging primarily depends on free-
lancers who compete without considering the negative environmental impact resulting
from not optimizing their charging-trip fuel-efficiency. Freelance chargers spend significant
time searching for e-scooters because of the competitive nature of the profession and the
inaccuracy of the location-finders of some e-scooters [9]. The charger’s task is to locate
e-scooters that need to be charged via the app and drive them home for charging. Although
simple, there are two significant problems with this approach. First, the current practice is
focused on a first-come-first-serve basis and can only be verified when a charger arrives
at the scooter’s location and has been unlocked with the app. This aspect of app usage
results in rivalry and causes the chargers to travel long distances without first verifying
the availability of the e-scooter in order to upgrade the online application. Many disputes
between freelance chargers have been reported when they have simultaneously arrived
at an e-scooter [10]. The rivalry between chargers can result in physical violence and
threatens the safety of the operation [11]. Second, due to the nature of their tasks, freelance
chargers are considered independent contractors, as defined by the “gig” economy. While
this gig economy provides the chargers with flexibility and independence, it also does not
guarantee a minimum wage or maximum hours [12].

We hypothesized that matching chargers with an optimal assignment of e-scooters
could eliminate competition and possibly avert physical violence. It could also reduce
the charging and rental costs of e-scooters that could be converted into increased income
for the chargers. E-scooter assignment has been widely discussed, and potential models
have been implemented in various other operations, such as e-bike and electric vehicle
sharing systems. Ref. [13] proposed two approaches to solving the problem of charging
shared e-bikes. Ref. [14] explored electric vehicle charging methods at the lowest possible
cost for a practical vehicle sharing system. They developed a queuing network model
using a nonlinear optimization system with fractional quadratic constraints. Ref. [15]
suggested a model that would fit battery locations with electric taxis. Ref. [16] created a
model for assigning vehicle blocks to busses in public transit, considering various temporal
and spatial constraints. Ref. [17] developed a two-stage heuristic algorithm to solve the
school bus routing problem. Ref. [18] investigated the optimal locations for e-scooter
sharing stations and developed a mathematical model formulated as a multi-objective topic
with maximum utility at minimum cost. However, they did not study the assignment of
freelance chargers to e-scooter locations.

To the best of our knowledge, there have been few studies on e-scooter planning
and scheduling problems in the literature, and none of these studies have addressed the
problem of integrating e-scooter locations and charger-assignment. In consultation with E-
Scooter-Chargers Allocation (ESCA), an e-scooter sharing company in Brisbane, Australia,
we found that the allocation problem can be static or dynamic, and chargers use their
private vehicles to collect e-scooters for both. The static ESCA activity assumes the e-
scooter and charger positions are either the same or are slightly apart. In the dynamic ESCA
activity, the positions of the e-scooters and chargers are constantly changing, significantly
influencing the model and affecting the potential solution. This study formulates the static
ESCA activity as a mixed-integer linear programming (MILP) model. To overcome the
time computation of MILP, we adapted the simulated annealing (SA) algorithm to find an
effective solution to the assignment problem.
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2. Problem Statement and Formulation

In this study, a real-world assignment problem with a large number of variables was
formulated as an MILP model [19], which is a combinatorial optimization problem that
makes use of exact solution techniques or commercial optimization software packages
(e.g., IBM ILOG-CPLEX), intractable due to unacceptably long CPU (Central Processing
Unit) time and memory requirements [20]. For this reason, we developed a specific SA
metaheuristic algorithm to solve the ESCA problem, where the SA approximates the optimal
global solutions in the large search space of the optimization problem. The problem of
assigning e-scooters to chargers was adapted as a “real-world assignment situation”, as
generally known in operations research. It is a trade-off between finding an effective
solution and converging in a short time. This problem is formulated using an objective
function and constraints, considering both computational time and the quality of the
solution, targeting a near-optimal solution while assigning jobs (n) to the number of
individuals (m).

In this study, we adopt the SA algorithm to solve the assignment problem between
freelance chargers and e-scooters, in which each e-scooter is assigned to only one charging
freelancer at a time, considering predefined constraints.

Consider the complete graph G = (V, E), where V is the set of nodes with two subsets
S and R; S ⊆ V and R ⊆ V, and E is the edge set of graph G. G is adapted to be the
route network, and V is the number of locations. The ESCA activity is defined on a set of
e-scooters S in the system and R is the set of chargers, where |S| = s, and |R| = r and
assume that s ≥ 1 and r ≥ 1, unless otherwise stated, select a subset of chargers s ⊆ S based
on their location. The key purpose of this suggested solution is to evaluate the e-scooter
location based on obtaining a successful assignment for the location to develop an efficient
e-scooter assignment to a charger. The objective function consists of two types of costs,
the chargers’ travel distance to collect the e-scooter and the cost of adding new freelance
chargers. The cost of recruiting new chargers is included to penalize the selection of more
chargers than needed to charge the e-scooters.

The ESCA aims to find the optimal tours for all chargers to pick up e-scooters in the
form of routes, such that each route contains one charger, and each e-scooter is visited
only once by the set of routes, which are typically called an ESCA solution. Additionally,
there is only one charger located at charger location i, and each charger must return to their
original location. The potential tours occur within a predetermined interval to minimize
the total cost of all tours. In addition, constraints are imposed on the number of e-scooters
in a tour, where the upper and lower boundaries for the number are denoted by U and L,
respectively. In this study, based on the current state-of-practice for all scenarios, we set the
maximum number of e-scooters collected by each charger to six (based on the number of
charging adapters received from the e-scooter operator). For each charger, oi is the number
of nodes (e-scooters) visited on the charger’s path from the origin to node i; 1 ≤ oi ≤ U
for all i ≥ 2 and if xikk = 1 then L ≤ oi ≤ U must be satisfied. For each (i, j) ∈ E, we
define one binary variable xijk which takes the value 1 if one charger departs from the
kth node (location) and travels through the arc (edge) ij, and 0 if otherwise. In the ESCA
solution approach, the six charged e-scooters are returned to a single position, and hence,
the solution does not achieve the redistribution of the charged e-scooters.

Figure 1 depicts an illustrative example of the ESCA, with seven chargers and twenty-
four e-scooters. In this example, there is only one e-scooter at each location, and each
charger collected a maximum of six e-scooters. From Figure 1, we can find four chargers
have collected the twenty-four e-scooters, and the three chargers are not selected. The
solution does not consider the redistribution of the charged e-scooters.
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Figure 1. An illustrative example of the ESCA problem.

2.1. Notation

The mathematical notation of the ESCA problem formulation is presented below,
including the objective function and constraints.

s: number of e-scooters
r : number of chargers
R: set of charger vertices, R = {1, ., r}
S: set of e-scooter pickup vertices, S = { r + 1, r + 2, . . . , n}
V: set of all vertices, V = R ∪ S; V = {1., n}
E: set of all arcs ij, E = V × V
cij : transportation costs traveling from i to j; i = 1 . . . V and j = 1 . . . V
U: highest number of e-scooters allocated to a charger within a sub-tour.
L: lowest number of e-scooters allocated to a charger within a sub-tour.
oi: number of nodes (e-scooters) visited on the charger’s path from origin to node i.
xijk: a binary variable that equals 1 if arc ij is used and belongs to the kth charger; 0, if

otherwise.

2.2. Objective Function

Equation (1) is specified to minimize relevant e-scooter charging costs. Two expense
words are used in the objective function; the expense of distances between the positions of
e-scooters and freelancers, and the cost of adding a new freelancer. The first term shows
the traveling costs in the two directions (ckj, cjk) (pick up and deliver the e-scooters), while
the second term shows the costs of adding a new freelancer (cij).

xkjk: a binary variable that equals 1 if arc kj is used and belongs to the kth charger;
otherwise, it equals zero.
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xjkk: a binary variable that equals 1 if arc jk is used and belongs to the kth charger;
otherwise, it equals zero.

f = Min

(

r

∑
k=1

n

∑
j=r+1

ckjxkjk + cjkxjkk

)

+
r

∑
k=1

n

∑
i=r+1

n

∑
j=r+1

cij xijk (1)

2.3. Constraints

Equation (2) constraints that only one charger departs from each charger location;
k ∈ R.

n

∑
j=r+1

xkjk = 1 ∀ k ∈ R (2)

Equation (3) constraints that each e-scooter can only be visited once

r

∑
k=1

xkjk +
r

∑
k=1

n

∑
i=r+1

xijk = 1 ∀ j ∈ S (3)

Equation (4) ensures that the number of chargers in the inbound direction equals the
outbound direction. This means that, at each location, the number of chargers who deliver
and send e-scooters must be the same at each location. In this case, using Equation (2), the
number of chargers in each direction is one.

xkjk +
n

∑
i=r+1

xijk − xjkk −
n

∑
i=r+1

xjik = 0, ∀ k ∈ R, j ∈ S (4)

Equation (5) requires that the charger location nodes respect that the number of
chargers in the outbound direction at the origin (charger start point) equals the number of
chargers in the inbound direction at the same origin. In this case, based on Equation (2),
the number of chargers in both directions is one.

n

∑
j=r+1

xkjk −
n

∑
j=r+1

xjkk = 0 ∀ k ∈ R (5)

Equation (6) indicates the limitations on the maximum number, U, of e-scooters picked
up in each tour; where, if i is the first node on the tour, then the initial value of nodes
(e-scooters) visited on the charger’s path from the origin to node i, Oi is 1.

Oi + (U − 2)
r

∑
k=1

xkik −
r

∑
k=1

xikk ≤ U − 1 ∀ i ∈ S (6)

Equation (7) displays the limitations on the minimum number, L, of e-scooters picked
up in each tour; where, if i is the first node on the tour, then the initial value of nodes
(e-scooters) visited on the charger’s path from the origin to node i, Oi is 1.

Oi +
r

∑
k=1

xkik + (2 − L)
r

∑
k=1

xikk ≥ 2 ∀ i ∈ S. (7)

Equation (8) prevents each charger from picking up only one e-scooter during the
whole tour; therefore, tours with only one e-scooter picked up are not allowed.

r

∑
k=1

xkik +
r

∑
k=1

xikk ≤ 1 ∀ i ∈ S. (8)
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Equations (9) and (10) are sub-tour elimination constraints that break all sub-tours of
e-scooter nodes in which closed sub-tours are made for each charger.

Oi − Oj + U
r

∑
k=1

xijk − (U − 2)
r

∑
k=1

xjik ≤ U − 1; i 6= j, i, j ∈ S. (9)

xijk ∈ {0, 1}, i, j ∈ V and k ∈ R (10)

3. The SA-Based Assignment Algorithm

Finding the optimal solution for most complex optimization problems is a highly
challenging task, and, in many cases, impossible. As a problem increases in complexity,
the search space for the optimal solution of the problem exponentially increases with
the increase in the space of the states. Even with modern computing capabilities, large
computation times are still needed to search the entire space for possible solutions. Meta-
heuristic techniques tend to overcome this problem by providing heuristics to guide the
search process, thereby improving its efficiency in reaching near-optimal solutions within
a reasonable time. Metaheuristic approaches have proven their value in solving many
complex problems, such as scheduling [21–23]. According to [24], four aspects should be
considered when comparing metaheuristic techniques:

• the solution representation
• the neighborhood structure
• the local search method within the neighborhood
• acceptance-reject criteria

These algorithms adapt the iterative improvement mechanisms, in which each iterate
moves toward the solution by progressive approximation. This iterative process stops
if there is no improvement in the objective function (reaching either the local minimum
or maximum value). SA is among the most successful metaheuristic, and local search
techniques are used to solve combinatorial optimization problems using mathematical
techniques to obtain an optimal solution for complex problems by exhaustive search
methods [25]. SA is a probabilistic method to obtain the approximated global optimum for
a given minimum or maximum objective function, and is extensively used, with positive
results. SA searches the solution space and avoids being trapped in the local optimum [26].
It starts with an annealing temperature T associated with a proposed preliminary solution
as the current solution. Then, it updates the solution by searching in the neighborhood of
the preliminary solution and moving toward the solution one step at a time by progressive
approximation. This is accomplished by calculating the difference (∆) between the value of
the objective function of the preliminary solution, f(current solution), and the value of the
new solution, f(new solution), and deciding if the new step (i.e., new solution) is acceptable
or not; ∆ = f(new solution) − f(current solution). If ∆ is less than zero, then the new solution
is acceptable (for minimization problems); otherwise, the SA accepts the new solution with
the probability of 1

1+exp(∆/T)
where T is the temperature to be reduced through iterations

using the cooling (decreasing) factor α.
The environment of the ESCA problem is dynamic, where the number of e-scooters

that need to be charged is changeable with time, especially in the peak hours. Furthermore,
charger availability is changeable from time to time. Hence, we need a good and fast
solution which can fit into this dynamic and does not require large computational resources.
Based on these reasons, SA was selected to solve the proposed problem under these criteria.
SA is one of the most common metaheuristic approaches and has been successfully used
to solve the traditional capacitated vehicle routing problem (VRP) with multi-depots and
its variants [27–30], where the ESCA problem is highly related to the capacitated VRP
with multi-depots.

Encoding the ESCA problem in a suitable form for the SA is the most important step in
the implementation process. We established two lists, one of all the chargers and another of
all the e-scooters. The first charger in the chargers list was assigned the first six e-scooters
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in the e-scooters list. In other words, the mth charger in the chargers list was assigned the
e-scooters with positions from 6 ∗ (m − 1) + 1 to 6 ∗ m in the e-scooters list.

At the beginning of the SA, we randomly initialized two lists of e-scooters and chargers,
as shown in Figure 2. Each charger was assigned a maximum of six e-scooters (based on
the number of charging adapters received from the e-scooter operator). The objective was
to minimize the number of freelance chargers used. The number of chargers needed was

calculated as

6 ∗ (𝑚 − 1) + 1 6 ∗ 𝑚
⌈𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒−𝑠𝑐𝑜𝑜𝑡𝑒𝑟𝑠 𝑛𝑒𝑒𝑑 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔6 ⌉ where ⌈ ⌉⌈86⌉ = 2number o f e−scooters need charging

6

6 ∗ (𝑚 − 1) + 1 6 ∗ 𝑚
⌈𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒−𝑠𝑐𝑜𝑜𝑡𝑒𝑟𝑠 𝑛𝑒𝑒𝑑 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔6 ⌉ ⌈ ⌉ ⌈86⌉ = 2, where

6 ∗ (𝑚 − 1) + 1 6 ∗ 𝑚
⌈𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒−𝑠𝑐𝑜𝑜𝑡𝑒𝑟𝑠 𝑛𝑒𝑒𝑑 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔6 ⌉ where ⌈ ⌉⌈86⌉ = 2

6 ∗ (𝑚 − 1) + 1 6 ∗ 𝑚
⌈𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒−𝑠𝑐𝑜𝑜𝑡𝑒𝑟𝑠 𝑛𝑒𝑒𝑑 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔6 ⌉ ⌈ ⌉ ⌈86⌉ = 2is the ceiling function. For example,

for eight e-scooters and three chargers, we need

6 ∗ (𝑚 − 1) + 1 6 ∗ 𝑚
⌈𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒−𝑠𝑐𝑜𝑜𝑡𝑒𝑟𝑠 𝑛𝑒𝑒𝑑 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔6 ⌉ where ⌈ ⌉⌈86⌉ = 28

6

6 ∗ (𝑚 − 1) + 1 6 ∗ 𝑚
⌈𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒−𝑠𝑐𝑜𝑜𝑡𝑒𝑟𝑠 𝑛𝑒𝑒𝑑 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔6 ⌉ ⌈ ⌉ ⌈86⌉ = 2= 2 chargers out of the three. As

shown in Figure 3, the third charger was not assigned to an e-scooter.
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required for e-scooters.

In the implementation, the charger and e-scooter lists were set up with the proposed
objective function. We searched the solution space in the proposed SA by repeatedly
swapping chargers within the charger list and e-scooters within the e-scooter list, and
re-evaluating the objective function. The swapping procedure is termed non-adjacent
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pairwise interchange (NAPI). As shown in Figure 4, NAPI was used to swap two non-
adjacent elements, i and j, within the given list.
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As presented in Algorithm 1, the SA guided the above search to find a near-optimal solution.

Algorithm 1. Procedure of the proposed SA for E-Scooter-Charger Allocation

1. Create an initial solution

1.1 Randomly set the chargers in the charger list

1.2 Randomly set the e-scooters in the e-scooter list

1.3 Evaluate the objective function using the initial solution (initial assignment)

2. Set the algorithm parameters

2.1 Set the initial temperature, T

2.2 Set the cooling (decreasing) parameter, α

2.3 Set the maximum number of the inner loop iterations (M_ILC)

2.4 Set the maximum number of the outer loop iterations (M_OLC)

3. Set the outer loop counter O.L.C. = 1

4. While OLC < M_OLC

4.1 Set the inner loop counter I.L.C. = 1

4.2 While ILC < M_ILC

4.2.1 Swap the chargers within the charger list using non-adjacent pairwise

interchange (NAPI).

4.2.2 Swap the e-scooters within the e-scooter list using NAPI

4.2.3 Evaluate the objective function using the new lists

4.2.4 Metropolis-Hastings

4.2.4.1 If the current solution is better than the previous, increment the I.L.C.

and go to Step 4.2

4.2.4.2 Accepting the new solution if the prior solution is greater than the

current solution with probability 1
1+exp( ∆

T )
increment I.L.C. and go to

step 4.2.

4.2.4.3 Otherwise, reverse the charger list swap, reverse the e-scooter list

swap, increment I.L.C., and go to Step 4.2.

4.3 Reduce the temperature

4.4 Increment O.L.C. and go to step 4.

As shown in the above table, the adapted SA algorithm consists of an outer and inner
loop. The number of iterations in the outer loop is larger in than the inner loop. The
outer loop is responsible for reducing the temperature (T) at the end of each outer iteration
number (k) using Equation (11).

Tk+1 = α ∗ Tk (11)

where Tk is the temperature during outer iteration number k and Tk+1 is the temperature
for the next outer iteration.

Simulated annealing is a way of searching for a solution to a problem that is modeled
after the physical process of annealing. Annealing is a slow process that happens when a
thermal system starts melting at high temperatures, and then slowly cools down until it
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reaches a stable state. In this process, the system’s energy is lowered until it is at its lowest
possible level [31].

The SA algorithm is able to escape local optima by using a mechanism that allows
deterioration in the objective function value (OFV). This is because, in the early stages of the
algorithm, when the temperature parameter T is relatively high, the search for the solution
space is widely “explored”, and often “bad” solutions are accepted with high probability.
As the temperature parameter T decreases, the probability of accepting solutions that lead
to worse objective function values gradually decreases. This allows for controlled “uphill”
movements, which eventually lead to higher quality solutions [31].

4. Computational Experiments

The validation of the developed SA algorithm was performed in two stages, first
using simulation data and later using real-world data. The simulation dataset was used
to evaluate the solution provided by the SA algorithm only against the state-of-practice
(baseline), since this was a new application and there were no other approaches in the
literature to compare. In the simulation data, we generated and randomly placed the
e-scooters and chargers within a 5 km2 area. This placement was based on uniform
distribution and Euclidean distances. The proposed approach was evaluated using real-
world instances of different sizes ([14,18]). The goal of the second dataset was to evaluate
the variances of the solutions and the means and variances of the running time.

4.1. Simulated Instances

We developed an agent-based simulator in MATLAB to simulate four scenarios. In the
first scenario, 120 e-scooters were to be charged by 20 chargers. In the other three scenarios,
the number of chargers was increased while maintaining the number of e-scooters. The
simulation assumed that each charger could collect six e-scooters during the simulation
time and the chargers had a competitive approach to e-scooter collection. At the start of
the simulation, each charger checked the locations of their available e-scooters, went to
the nearest one, unlocked it, and picked it up. Then, the chargers referred to the app to
choose their next nearest e-scooter. Each charger continued the collection process until all of
their six e-scooters had been collected, and returned home to charge them. The simulation
ended when all e-scooters had been collected by their respective chargers. To statistically
compare the total distance traveled in the proposed approach to the baseline, 100 runs were
performed for each scenario and the total distance traveled for each run was estimated. It
was noted that previous studies have not considered pre-reservation of an e-scooter; thus,
it could have been possible for a charger to arrive to find that another charger had already
collected the e-scooter. Therefore, this proposed approach was designed to overcome this
limitation and assumed the following:

(i) Chargers can collect a maximum of six e-scooters; thereby, no competition can occur.
(ii) This proposed algorithm heuristically minimizes the objective function, leading to a

reduction in the distance traveled by the chargers.

The total distance traveled in this proposed approach and the state-of-practice was
calculated for each scenario using 100 randomly generated locations for e-scooters and
chargers. The distances traveled by chargers for each scenario for both the baseline and
proposed algorithms are presented in Figure 5. The results indicate that assigning e-scooters
to chargers saves time by reducing the total distance traveled by the chargers. Moreover, it
is worth mentioning that, due to competition, the total distance traveled by the chargers
in the baseline model increased as the number of chargers increased. Figure 5 shows the
simulated cases that were used as a proof of concept to show the reduction in the travelled
distance to collect the e-scooters. Moreover, using simulations, we were able to generate a
large number of instances and statistically compare the quality of the state-of-practice and
simulated annealing.
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Table 1 compares the proposed approach to the state-of-practice in terms of the mean
of the total distance traveled and the standard deviation for the solutions of the different
simulated instances. In the state-of-practice, the increase in the number of chargers is
always accompanied by an increase in the mean of the total distance traveled due to
higher competition between chargers. On the other hand, the proposed SA approach uses
resources more efficiently, and an increase in the number of chargers leads to a decrease
in the mean total distance traveled. The Wilcoxon rank-sum test results are summarized
in Table 1. This test examines the null hypothesis that the total distance traveled in the
state-of-practice and the proposed approaches are samples of continuous distributions with
equal medians, against the alternative that they are not.

Table 1. Comparison of proposed and baseline approaches using simulated instances.

The Baseline SA

No. of Chargers Mean (km) Std (km) Mean (km)
Std

(km)
meanbaseline−meanSA

meanbaseline
p-Value

20 213.58 66.08 82.68 4.51 0.61 ≪ 0.0001
30 307.68 115.97 69.20 4.15 0.78 ≪ 0.0001
40 301.04 86.06 68.03 3.85 0.77 ≪ 0.0001
50 322.01 110.85 67.17 4.45 0.79 ≪ 0.0001

4.2. Real-World Benchmark Instances

For validation purposes, 18 benchmark instances ranging from 13 to 410, were tested
by the proposed algorithm; the data is available in [32,33]. Tables A1 and A2 show the
mean and standard deviation of the travel distance and running time. The parameter
tuning of the proposed algorithm was prepared using a grid search approach to find the
best combination of parameters. The grid search approach is considered a straightforward
approach; however, it requires high computational time. Therefore, the hyper-parameters
of the algorithm were set to 1000, 20,000, 200, and 0.95 for the initial temperature, the
outer loop maximum number of iterations, the inner loop number of iterations, and the
cooling parameter, respectively. Tables A1 and A2 show a similar trend in that the quality
of the solution improves as the number of available chargers increases, because increas-
ing the available e-scooters raises chances for better assignments between freelancers
and e-scooters.
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5. Discussion

The e-scooter/charger assignment is a dynamic problem in nature. Furthermore,
operators need to monitor the status of their vehicles and run an efficient and accurate
e-scooters /chargers assignment algorithm more than once a day. Hence, as shown in the
paper, the SA has been proposed to provide good solutions in a reasonable time, where,
from Table 1, in all cases, the SA found good solutions compared to the baseline for small
and medium cases. From Tables A1 and A2, the SA quickly found a good solution with
the increasing number of rechargers, because increasing the available e-scooters raises
chances for better assignments between freelancers and e-scooters. Therefore, the proposed
algorithm is more suitable in the case of solving large-scale problems. The key point here
is finding a good solution to the e-scooters /chargers assignment problem in a short time,
considering that the SA is easy for the operator to run it.

To further discuss the proposed approach performance, we examined simulated
annealing as a practical heuristic approach to solve the ESCA problem by comparing the
SA to our previous work [12]. In [12], the college admission algorithm (ACA) and the
black hole optimizer (BHO) algorithm were used to solve the ESCA problem, where the
performance of these algorithms was compared to the results of a mixed-integer linear
programming (MILP) model for small and medium cases. As ESCA is an NP-complete
combinatorial optimization problem, the MILP is inapplicable to finding the exact solution
for large-scale real cases.

In the current work, the SA was proposed to improve the solution of the ESCA problem
compared to ACA and BHO, as shown in Table 2, and how far from the optimal solution
using MILP.

Table 2. Comparison of the proposed SA, MILP, ACA, BHO, and baseline approaches using simu-

lated instances. The SA (highlighted with colors) minimized the total distances compared to other

algorithms in difference cases.
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#
o

f
C

h
a

rg
e

rs

T
o

ta
l

D
is

.

T
o

ta
l

D
is

.

T
o

ta
l

D
is

.

T
o

ta
l

D
is

ta
n

ce

T
o

ta
l

D
is

ta
n

ce
20 213.58 76.7 98.2 131.9 82.68

30 307.68 65.6 85.9 122.6 69.20

40 301.04 61.4 81.0 129.7 68.03

50 322.01 60.4 79.3 130.1 67.17

The successful implementation of this technique can assist e-scooter firms in meeting
client demand while considering rental costs and increasing the hourly fee of chargers.
Further considerations should be made when developing the commercial software for the
ESCA as follows:

1. How to extend the model in such a way that it is generally applicable based on real
data acquired from a large number of places in Australia, including Queensland.

2. How to discover a decent (near optimum) solution for major e-scooter operators who
may have to address this problem for thousands of e-scooters.

6. Conclusions

The public’s interest in micro-mobility modes has recently grown at a rapid rate,
altering many cities’ transportation infrastructure. Micro-mobility provides an economical
and quick way to commute, relieving consumers from interminable waiting and time
wasted in congested locations.



Sustainability 2023, 15, 1869 12 of 15

Recently, the usage of dockless electric e-scooters for first- and last-mile trips has
gained momentum as a micro-mobility mode. This new model has been introduced to fill
the gaps in the current transportation network and mitigate traffic congestion in dense
cities. The significant rise in demand for e-scooter sharing systems has been accompa-
nied by an expanding network of freelancers to maintain the e-scooters in charged and
accessible conditions. The current scenario is that freelancers compete for the charging of
the e-scooters to maximize their income at the cost of the environment. In this study, we
developed a mathematical model for the ESCA. Specifically, we adapted an SA algorithm
that solves the ESCA problem while overcoming the common shortcomings of the existing
state-of-practice approach. The performance of the SA algorithm was evaluated in two
stages, using both simulation and real-world data. First, the simulated dataset was used
to compare the SA algorithm approach’s solution to the state-of-practice (baseline), and
the results indicated a 61% to 79% reduction in the total distance traveled. Then, the SA
algorithm was evaluated using 18 instances of real-world data, and, in most cases, the
results showed a near-optimal solution in less than three minutes.

Overall, this pioneering study implemented an SA algorithm to solve the ESCA
problem and provided significantly better and reliable solutions than the baseline (existing
state-of-practice) method. It provided the model needed for assigning e-scooters to chargers
to minimize the chargers’ average distance traveled and eradicated direct competition
between chargers. This could eliminate the physical violence and disputes that have been
reported by chargers due to simultaneously arriving at the same e-scooter. Moreover,
implementing the proposed SA model solution could help guarantee a minimum wage for
chargers. Because the proposed SA algorithm uses the available resources (chargers) more
efficiently and eliminates duplication of effort; it provides opportunities for maximizing
e-scooter rental time, leading to a higher income for e-scooter sharing system operators.

The limitations of this study are:

• We used a static ESCA approach that does not account for time-variations in the
location of e-scooters or chargers.

• Our method assumes that the chargers would accept the assignment solution, which
may or may not be the case

Hence, future studies should extend the model as a fuzzy dynamic ESCA problem.
Fuzzy Dynamic Programming (FDP) is a mathematical tool based on fuzzy numbers or
logic that can solve many complex and multivariable problems. In FDP, the best solution
of the Dynamic ESCA is obtained by decomposing the sub-problem of a single variable.
Furthermore, future directions should be considered, such as the battery swapping problem,
constructing charging stations, and incentivizing the users to visit the charge stations and
deliver the e-scooters to recharge or swap the batteries and gain credits.
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Appendix A

Table A1. Evaluation of proposed approach using different sizes of benchmark instances (small

and medium).

City S R
No. of
Selected
Chargers

Mean Total
Dist. (km)

Std. of
Total Dist.

Average Dist. per
Charger (km)

Mean (s)
Std.
(s)

Bari 13

3 3 17.42 0.6925 5.81 24.2825 0.6536
4 3 16.48 0.4590 5.49 26.6802 2.8873
5 3 16.04 0.2366 5.35 26.4121 0.9359
6 3 15.89 0.2132 5.30 25.8882 0.2477

Denver 51

10 9 93.77 4.2992 10.43 7.6649 0.0925
15 9 84.85 5.6836 9.43 7.6642 0.0688
20 9 83.16 4.8102 9.24 7.7522 0.1255
25 9 77.19 4.1236 8.57 7.7465 0.0920

Rio De
Janeiro

55

10 10 156.03 4.2809 15.60 7.8684 0.1018
15 10 130.51 4.0688 13.05 8.4486 0.5078
20 10 126.63 5.8542 12.66 8.4389 0.1110
25 10 118.21 6.9748 11.82 9.0633 0.1438

Boston 59

10 10 149.53 1.8104 14.95 7.9769 0.1624
15 10 118.66 3.7801 11.87 8.1854 0.1057
20 10 107.24 3.4410 10.72 8.7185 0.2075
25 10 97.59 3.1160 9.76 9.0540 0.2089

Torino 75

15 13 82.49 2.6982 6.35 9.3305 0.5826
20 13 76.46 3.6623 5.88 9.1847 0.1975
25 13 71.20 1.7541 5.48 9.2049 0.1094
30 13 70.67 1.7714 5.44 9.8359 0.3867

Toronto 80

15 14 85.46 1.6811 6.10 10.0570 0.3215
20 14 80.92 3.1012 5.78 10.5567 0.5761
25 14 77.06 3.0354 5.50 11.3008 0.6557
30 14 74.27 4.7503 5.30 10.6710 0.4708

Miami 82

15 14 225.59 5.4343 16.11 26.4689 1.5830
20 14 159.78 4.9159 11.41 26.2428 0.7857
25 14 112.97 5.3943 8.07 23.9292 1.2262
30 14 89.82 4.7962 6.41 19.5331 6.9275

Ciudad De
Mexico

90

20 15 116.93 2.9714 7.80 26.1773 3.1219
25 15 101.66 1.9904 6.78 26.5732 1.9891
30 15 93.97 3.0322 6.26 26.9500 1.1487
35 15 86.37 2.1399 5.76 27.5016 0.5540

Minneapolis 116

25 20 265.37 4.8507 13.27 16.0412 0.4177
30 20 247.41 8.1364 12.37 16.1741 0.3450
35 20 239.35 8.9119 11.97 16.2944 0.2845
40 20 230.90 5.2024 11.54 16.2057 0.2166
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Table A2. Evaluation of the proposed approach using large-size benchmark instances.

City S R
No. of
Selected
Chargers

Mean Total
Distance (km)

Std. of Total
Distance

Average Dist. per
Charger (km)

Mean
(s)

Std.
(s)

Brisbane 150

30 25 157.26 5.5674 6.29 70.6994 0.7181
35 25 156.90 6.5932 6.28 71.1903 0.5602
40 25 155.55 8.3422 6.22 71.1579 0.2525
45 25 150.21 4.5519 6.01 72.2431 0.1981

Milano 184

40 31 170.24 3.7002 5.49 78.6649 0.6661
50 31 168.73 5.3349 5.44 78.9016 0.2877
60 31 166.53 5.0347 5.37 79.2027 0.3343
70 31 167.87 4.2611 5.42 79.3685 0.5798

Lille 200

40 34 404.63 12.1092 11.90 82.1638 0.3132
50 34 397.18 19.0258 11.68 82.4724 0.4127
60 34 334.06 19.7114 9.83 82.8899 0.2982
70 34 280.17 20.6407 8.24 83.8384 4.2350

Toulouse 240

40 40 320.26 8.3525 8.01 66.9241 0.6171
50 40 300.72 8.6194 7.52 69.5375 0.5668
60 40 291.34 10.2889 7.28 78.2493 0.4577
70 40 279.78 8.8202 6.99 70.2105 0.8201

Sevilla 258

50 43 360.48 8.5747 8.38 72.4298 2.7409
60 43 324.76 12.1106 7.55 74.1808 1.3228
70 43 312.89 11.3318 7.28 74.0912 1.0718
80 43 307.98 10.4338 7.16 73.1707 0.3482

Valencia 276

50 46 485.54 10.1946 10.55 75.2697 5.1969
60 46 439.79 9.9710 9.56 79.2874 3.0556
70 46 402.61 7.9594 8.75 79.3139 1.5698
80 46 396.40 8.8915 8.62 81.5518 1.4524

Bruxelles 304

60 51 486.90 16.2957 9.55 82.0023 3.2712
70 51 448.17 16.9597 8.79 84.6469 1.9173
80 51 439.38 14.4431 8.62 82.4134 1.1279
90 51 428.26 9.7240 8.40 184.4216 55.3400

Lyon 336

60 56 589.37 12.5426 10.52 93.4295 4.3040
70 56 538.87 7.5401 9.62 97.1009 6.8603
80 56 508.91 10.7859 9.09 88.6171 2.0332
90 56 492.42 11.8251 8.79 91.0158 1.5686

Barcelona 410

70 69 610.01 6.0656 8.84 101.2063 2.7764
80 69 548.78 9.6474 7.95 102.5639 2.8394
90 69 510.66 8.1314 7.40 103.1610 1.9283
100 69 491.63 12.9522 7.13 103.7572 1.4365
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