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ABSTRACT Clustering algorithms have emerged as an alternative powerful meta-learning tool to accu-
rately analyze the massive volume of data generated by modern applications. In particular, their main goal
is to categorize data into clusters such that objects are grouped in the same cluster when they are similar
according to specific metrics. There is a vast body of knowledge in the area of clustering and there has been
attempts to analyze and categorize them for a larger number of applications. However, one of the major
issues in using clustering algorithms for big data that causes confusion amongst practitioners is the lack of
consensus in the definition of their properties as well as a lack of formal categorization. With the intention
of alleviating these problems, this paper introduces concepts and algorithms related to clustering, a concise
survey of existing (clustering) algorithms as well as providing a comparison, both from a theoretical and an
empirical perspective. From a theoretical perspective, we developed a categorizing framework based on the
main properties pointed out in previous studies. Empirically, we conducted extensive experiments where we
compared the most representative algorithm from each of the categories using a large number of real (big)
data sets. The effectiveness of the candidate clustering algorithms is measured through a number of internal
and external validity metrics, stability, runtime, and scalability tests. In addition, we highlighted the set of
clustering algorithms that are the best performing for big data.

INDEX TERMS Clustering algorithms, unsupervised learning, big data.

I. INTRODUCTION

IN THE current digital era, according to (as far) massive
progress and development of the internet and online world

technologies such as big and powerful data servers, we face a
huge volume of information and data day by day from many
different resources and services which were not available to
humankind just a few decades ago. Massive quantities of
data are produced by and about people, things, and their
interactions. Diverse groups argue about the potential benefits
and costs of analyzing information from Twitter, Google,
Verizon, 23andMe, Facebook, Wikipedia, and every space
where large groups of people leave digital traces and
deposit data. This data comes from available different online

resources and services which have been established to serve
their customers. Services and resources like Sensor Net-
works, Cloud Storages, Social Networks and etc., produce
big volume of data and also need to manage and reuse that
data or some analytical aspects of the data. Although this
massive volume of data can be really useful for people and
corporations, it can be problematic as well. Therefore, a big
volume of data or big data has its own deficiencies as well.
They need big storages and this volume makes operations
such as analytical operations, process operations, retrieval
operations, very difficult and hugely time consuming. One
way to overcome these difficult problems is to have big data
clustered in a compact format that is still an informative
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version of the entire data. Such clustering techniques aim
to produce a good quality of clusters/summaries. Therefore,
they would hugely benefit everyone from ordinary users to
researchers and people in the corporate world, as they could
provide an efficient tool to deal with large data such as critical
systems (to detect cyber attacks).

The main goal of this paper is to provide readers with a
proper analysis of the different classes of available clustering
techniques for big data by experimentally comparing them
on real big data. The paper does not refer to simulation tools.
However, it specifically looks at the use and implementation
of an efficient algorithm from each class. It also provides
experimental results from a variety of big datasets. Some
aspects need careful attention when dealing with big data, and
this work will therefore help researchers as well as practition-
ers in selecting techniques and algorithms that are suitable for
big data. Volume of data is the first and obvious important
characteristic to deal with when clustering big data compared
to conventional data clustering, as this requires substantial
changes in the architecture of storage systems. The other
important characteristic of big data is V elocity. This require-
ment leads to a high demand for online processing of data,
where processing speed is required to deal with the data flows.
V ariety is the third characteristic, where different data types,
such as text, image, and video, are produced from various
sources, such as sensors, mobile phones, etc. These three V
(Volume, Velocity, and Variety) are the core characteristics
of big data which must be taken into account when selecting
appropriate clustering techniques.

Despite a vast number of surveys for clustering algorithms
available in the literature [1], [2], [7], and [38] for various
domains (such as machine learning, data mining, information
retrieval, pattern recognition, bio-informatics and semantic
ontology), it is difficult for users to decide a priori which
algorithm would be the most appropriate for a given big
dataset. This is because of some of the limitations in existing
surveys: (i) the characteristics of the algorithms are not well
studied; (ii) the field has produced many new algorithms,
which were not considered in these surveys; and (iii) no
rigorous empirical analysis has been carried out to ascertain
the benefit of one algorithm over another. Motivated by these
reasons, this paper attempts to review the field of clustering
algorithms and achieve the following objectives:
• To propose a categorizing framework that systematically
groups a collection of existing clustering algorithms into
categories and compares their advantages and drawbacks
from a theoretical point of view.

• To present a complete taxonomy of the clustering
evaluation measurements to be used for empirical study.

• To make an empirical study analyzing the most repre-
sentative algorithm of each category with respect to both
theoretical and empirical perspectives.

Therefore, the proposed survey presents a taxonomy of clus-
tering algorithms and proposes a categorizing framework that
covers major factors in the selection of a suitable algorithm
for big data. It further conducts experiments involving the

most representative clustering algorithm of each category, a
large number of evaluation metrics and 10 traffic datasets.
The rest of this paper is organized as follows. Section II pro-
vides a review of clustering algorithms categories. Section III
describe the proposed criteria and properties for the categoriz-
ing framework. In Section IV, we group and compare differ-
ent clustering algorithms based on the proposed categorizing
framework. Section V introduces the taxonomy of clustering
evaluation measurements, describes the experimental frame-
work and summarises the experimental results. In Section VI,
we conclude the paper and discuss future research.

II. CLUSTERING ALGORITHM CATEGORIES
As there are so many clustering algorithms, this section
introduces a categorizing framework that groups the various
clustering algorithms found in the literature into distinct cate-
gories. The proposed categorization framework is developed
from an algorithm designer’s perspective that focuses on the
technical details of the general procedures of the clustering
process. Accordingly, the processes of different clustering
algorithms can be broadly classified follows:
• Partitioning-based: In such algorithms, all clusters are
determined promptly. Initial groups are specified and
reallocated towards a union. In other words, the par-
titioning algorithms divide data objects into a number
of partitions, where each partition represents a cluster.
These clusters should fulfil the following requirements:
(1) each group must contain at least one object, and
(2) each object must belong to exactly one group. In the
K-means algorithm, for instance, a center is the average
of all points and coordinates representing the arithmetic
mean. In the K-medoids algorithm, objects which are
near the center represent the clusters. There are many
other partitioning algorithms such as K-modes, PAM,
CLARA, CLARANS and FCM.

• Hierarchical-based: Data are organized in a
hierarchical manner depending on the medium of prox-
imity. Proximities are obtained by the intermediate
nodes. A dendrogram represents the datasets, where
individual data is presented by leaf nodes. The initial
cluster gradually divides into several clusters as the hier-
archy continues. Hierarchical clustering methods can
be agglomerative (bottom-up) or divisive (top-down).
An agglomerative clustering starts with one object for
each cluster and recursively merges two or more of the
most appropriate clusters. A divisive clustering starts
with the dataset as one cluster and recursively splits the
most appropriate cluster. The process continues until a
stopping criterion is reached (frequently, the requested
number k of clusters). The hierarchical method has a
major drawback though, which relates to the fact that
once a step (merge or split) is performed, this cannot
be undone. BIRCH, CURE, ROCK and Chameleon are
some of the well-known algorithms of this category.

• Density-based: Here, data objects are separated based
on their regions of density, connectivity and boundary.
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FIGURE 1. An overview of clustering taxonomy.

They are closely related to point-nearest neighbours.
A cluster, defined as a connected dense component,
grows in any direction that density leads to. There-
fore, density-based algorithms are capable of discover-
ing clusters of arbitrary shapes. Also, this provides a
natural protection against outliers. Thus the overall den-
sity of a point is analyzed to determine the functions of
datasets that influence a particular data point. DBSCAN,
OPTICS, DBCLASD and DENCLUE are algorithms
that use such a method to filter out noise (ouliers) and
discover clusters of arbitrary shape.

• Grid-based: The space of the data objects is divided
into grids. The main advantage of this approach is its
fast processing time, because it goes through the dataset
once to compute the statistical values for the grids. The
accumulated grid-data make grid-based clustering tech-
niques independent of the number of data objects that
employ a uniform grid to collect regional statistical data,
and then perform the clustering on the grid, instead of
the database directly. The performance of a grid-based
method depends on the size of the grid, which is usually
much less than the size of the database. However, for
highly irregular data distributions, using a single uniform
grid may not be sufficient to obtain the required cluster-
ing quality or fulfill the time requirement. Wave-Cluster
and STING are typical examples of this category.

• Model-based: Such a method optimizes the fit between
the given data and some (predefined) mathematical
model. It is based on the assumption that the data is
generated by a mixture of underlying probability dis-
tributions. Also, it leads to a way of automatically
determining the number of clusters based on standard
statistics, taking noise (outliers) into account and thus
yielding a robust clustering method. There are twomajor
approaches that are based on the model-based method:
statistical and neural network approaches. MCLUST
is probably the best-known model-based algorithm, but
there are other good algorithms, such as EM (which
uses a mixture density model), conceptual clustering
(such as COBWEB), and neural network approaches
(such as self-organizing feature maps). The statistical

approach uses probability measures in determining the
concepts or clusters. Probabilistic descriptions are typi-
cally used to represent each derived concept. The neural
network approach uses a set of connected input/output
units, where each connection has a weight associated
with it. Neural networks have several properties that
make them popular for clustering. First, neural networks
are inherently parallel and distributed processing archi-
tectures. Second, neural networks learn by adjusting
their interconnection weights so as to best fit the data.
This allows them to normalize or prototype. Patterns
act as features (or attributes) extractors for the various
clusters. Third, neural networks process numerical vec-
tors and require object patterns to be represented by
quantitative features only. Many clustering tasks han-
dle only numerical data or can transform their data
into quantitative features if needed. The neural network
approach to clustering tends to represent each cluster
as an exemplar. An exemplar acts as a prototype of the
cluster and does not necessarily have to correspond to
a particular object. New objects can be assigned to the
cluster whose exemplar is the most similar, based on
some distance measure.

Figure 1 provides an overview of clustering algorithm tax-
onomy following the five classes of categorization described
above.

III. CRITERION TO BENCHMARK CLUSTERING
METHODS
When evaluating clustering methods for big data, specific
criteria need to be used to evaluate the relative strengths
and weaknesses of every algorithm with respect to the
three-dimensional properties of big data, including Volume,
Velocity, and Variety. In this section, we define such proper-
ties and compiled the key criterion of each property.
• Volume refers to the ability of a clustering algorithm to
deal with a large amount of data. To guide the selection
of a suitable clustering algorithm with respect to the
Volume property, the following criteria are considered:
(i) size of the dataset, (ii) handling high dimensionality
and (iii) handling outliers/ noisy data.
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TABLE 1. Categorization of clustering algorithms with respect to big data proprieties and other criteria described in Section III.

• Variety refers to the ability of a clustering algorithm
to handle different types of data (numerical, categorical
and hierarchical). To guide the selection of a suitable
clustering algorithm with respect to the Variety property,
the following criteria are considered: (i) type of dataset
and (ii) clusters shape.

• Velocity refers to the speed of a clustering algorithm
on big data. To guide the selection of a suitable clus-
tering algorithm with respect to the Velocity property,
the following criteria are considered: (i) complexity of
algorithm and (ii) the run time performance.

In what follows, we explain in detail the corresponding
criterion of each property of big data:

1) Type Of Dataset: Most of the traditional clustering
algorithms are designed to focus either on numeric
data or on categorical data. The collected data in the
real world often contain both numeric and categor-
ical attributes. It is difficult for applying traditional
clustering algorithm directly into these kinds of data.
Clustering algorithms work effectively either on purely
numeric data or on purely categorical data; most of
them perform poorly on mixed categorical and numer-
ical data types.

2) Size Of Dataset: The size of the dataset has a major
effect on the clustering quality. Some clustering meth-
ods are more efficient clustering methods than others
when the data size is small, and vice versa.

3) Input Parameter: A desirable feature for ‘‘practical’’
clustering is the one that has fewer parameters, since
a large number of parameters may affect cluster qual-
ity because they will depend on the values of the
parameters.

4) Handling Outliers/Noisy Data: A successful algorithm
will often be able to handle outlier/noisy data because
of the fact that the data in most of the real applications
are not pure. Also, noise makes it difficult for an algo-
rithm to cluster an object into a suitable cluster. This
therefore affects the results provided by the algorithm.

5) Time Complexity:Most of the clustering methods must
be used several times to improve the clustering quality.
Therefore if the process takes too long, then it can
become impractical for applications that handle big
data.

6) Stability: One of the important features for any clus-
tering algorithm is the ability to generate the same
partition of the data irrespective of the order in which
the patterns are presented to the algorithm.

7) Handling High Dimensionality: This is particularly
important feature in cluster analysis because many
applications require the analysis of objects containing
a large number of features (dimensions). For exam-
ple, text documents may contain thousands of terms
or keywords as features. It is challenging due to the
curse of dimensionality. Many dimensions may not be
relevant. As the number of dimensions increases, the
data become increasingly sparse, so that the distance
measurement between pairs of points becomes mean-
ingless and the average density of points anywhere in
the data is likely to be low.

8) Cluster Shape: A good clustering algorithm should be
able to handle real data and their wide variety of data
types, which will produce clusters of arbitrary shape.

IV. CANDIDATE CLUSTERING ALGORITHMS
This section aims to find the good candidate clustering
algorithms for big data. By good , we refer to those
algorithms that satisfy most of the criterion listed in
Section III. Table 1 provides a summary of the eval-
uation we performed on the various methods described
in Section II based on the described criteria. After this
evaluation, the next step is to select the most appropri-
ate clustering algorithm from each category based on the
proposed criteria, so to benchmark them for big data.
In this way, the best algorithm is selected from each
method, and these (selected algorithms) will be properly
evaluated. This process produced the following selections:
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FCM [6], BIRCH [40], DENCLUE [17], OptiGird [18] and
EM [8].

This section discusses each of the selected algorithms in
detail, showing how it works, its strengths and weakness, as
well as the input parameters it takes.

A. FUZZY-CMEANS (FCM)
FCM [6] is a representative algorithm of fuzzy clustering
which is based on K-means concepts to partition dataset into
clusters. The FCM algorithm is a ‘‘soft’’ clustering method in
which the objects are assigned to the clusters with a degree
of belief. Hence, an object may belong to more than one
cluster with different degrees of belief. It attempts to find
the most characteristic point in each cluster, named as the
centre of one cluster; then it computes the membership degree
for each object in the clusters. The fuzzy c-means algorithm
minimizes intra-cluster variance as well. However, it inherits
the problems of K-means, as the minimum is just a local one
and the final clusters depend on the initial choice of weights.

FCM algorithm follows the same principle of K-means
algorithm, i.e. it iteratively searches the cluster centers and
updates the memberships of objects. The main difference is
that, instead of making a hard decision about which cluster
the pixel should belong to, it assigns a object a value ranging
from 0 to 1 to measure the likelihood with which the object
belongs to that cluster. A fuzzy rule states that the sum of
the membership value of a pixel to all clusters must be 1.
The higher the membership value, the more likely a pixel
will belong to that cluster. The FCM clustering is obtained
by minimizing the objective function shown in Equation 1:

J =
n∑
i=1

c∑
k=1

µmik |pi − vk |
2 (1)

where J is the objective function, n is the number of objects,
c is the number of defined clusters,µik is the likelihood values
by assiging the object i to the cluster k ,m is a fuzziness factor
(a value 1), and |pi − vk | is the Euclidean distance between
the i-th object pi and the k-th cluster centre vk defined by
Equation 2:

|pi − vk | =

√√√√ n∑
i=1

(pi − vk) (2)

The centroid of the k th cluster is updated using Equation 3:

vk =

∑n
i=1 µ

m
ikpi∑n

i=1 µ
m
ik

(3)

The fuzzymembership table is computed using the original
Equation 3:

µik =
1∑c

l=1

(
|pi−vk |
|pi−vl |

) 2
m−1

(4)

This algorithm has been extended for clustering a RGB color
images, where the distance computation given in Equation 2

is modified as follows:

|pi − vk | =

√√√√ n∑
i=1

(piR − vkR)2 + (piG − vkG)2 + (piB − vkB)2

(5)
As mentioned earlier, this has an iterative process (see

FCM pseudo-code).

FCM pseudo-code:
Input: Given the dataset, set the desire number of clusters c, the fuzzy
parameter m (a constant > 1), and the stopping condition, initialize the
fuzzy partition matrix, and set stop = false.

Step 1. Do:

Step 2. Calculate the cluster centroids and the objective value J .

Step 3. Compute the membership values stored in the matrix.

Step 4. If the value of J between consecutive iterations is less than the
stopping condition, then stop = true.

Step 5.While (!stop)

Output: A list of c cluster centres and a partition matrix are produced.

B. BIRCH
BIRCH algorithm [40] builds a dendrogram known as a
clustering feature tree (CF tree). The CF tree can be built
by scanning the dataset in an incremental and dynamic way.
Thus, it does not need the whole dataset in advance. It has
two main phases: the database is first scanned to build an in-
memory tree, and then the algorithm is applied to cluster the
leaf nodes. CF-tree is a height-balanced tree which is based
on two parameters: branching factor B and threshold T . The
CF tree is built while scanning the data. When a data point is
encountered, the CF tree is traversed, starting from the root
and choosing the closest node at each level. If the closest
leaf cluster for the current data point is finally identified, a
test is performed to see whether the data point belongs to the
candidate cluster or not. If not, a new cluster is created with a
diameter greater than the given T . BIRCH can typically find a
good clustering with a single scan of the dataset and improve
the quality further with a few additional scans. It can also
handle noise effectively. However, BIRCHmay not work well
when clusters are not spherical because it uses the concept
of radius or diameter to control the boundary of a cluster.
In addition, it is order-sensitive and may generate different
clusters for different orders of the same input data. The details
of the algorithm are given below.

C. DENCLUE
The DENCLUE algorithm [17] analytically models the clus-
ter distribution according to the sum of influence functions
of all of the data points. The influence function can be seen
as a function that describes the impact of a data point within
its neighbourhood. Then density attractors can be identified
as clusters. Density attractors are local maxima of the overall
density function. In this algorithm, clusters of arbitrary shape
can be easily described by a simple equation with kernel
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BIRCH pseudo-code:
Input: The dataset, threshold T , the maximum diameter (or radius) of a
cluster R, and the branching factor B

Step 1. (Load data into memory) An initial in-memory CF-tree is
constructed with one scan of the data. Subsequent phases become fast,
accurate and less order sensitive.

Step 2. (Condense data) Rebuild the CF-tree with a larger T .

Step 3. (Global clustering) Use the existing clustering algorithm on CF
leaves.

Step 4. (Cluster refining) Do additional passes over the dataset and
reassign data points to the closest centroid from step #3.

Output:. Compute CF points, where CF = (# of points in a cluster N ,
linear sum of the points in the cluster LS, the square sum of N data SS).

density functions. Even though DENCLUE requires a careful
selection of its input parameters (i.e. σ and ξ ), since such
parameters may influence the quality of the clustering results,
it has several advantages in comparison to other clustering
algorithms [16]: (i) it has a solid mathematical foundation
and generalized other clustering methods, such as partitional
and hierarchical; (ii) it has good clustering properties for
datasets with large amount of noise; (iii) it allows a com-
pact mathematical description of arbitrarily shaped clusters in
high-dimensional datasets; and (iv) it uses grid cells and only
keeps information about the cells that actually contain points.
It manages these cells in a tree-based access structure and thus
it is significant faster than some influential algorithms, such
as DBSCAN. All of these properties make DENCLUE able
to produce good clusters in datasets with a large amount of
noise.

The details of this algorithm are given below.

DENCLUE pseudo-code:
Input: The dataset, Cluster radius, and Minimum number of objects

Step 1. Take dataset in the grid whose each side is of 2σ .

Step 2. Find highly dense cells, i.e. find out themean of highly populated
cells.

Step 3. If d (mean(c1), mean(c2)) < 4a, then the two cubes are con-
nected.

Step 4. Now highly populated cells or cubes that are connected to highly
populated cells will be considered in determining clusters.

Step 5. Find Density Attractors using a Hill Climbing procedure.

Step 6. Randomly pick point r .

Step 7. Compute the local 4 σ density.

Step 8. Pick another point (r+1) close to the previous computed density.

Step 9. If den(r) < den(r+1) climb, then put points within (σ /2) of the
path into the cluster.

Step 10. Connect the density attractor based cluster.

Output: Assignment of data values to clusters.

D. OPTIMAL GRID (OPTIGRID)
OptiGrid algorithm [18] is designed to obtain an optimal grid
partitioning. This is achieved by constructing the best cut-
ting hyperplanes through a set of selected projections. These
projections are then used to find the optimal cutting planes.
Each cutting plane is selected to have minimal point density

and to separate the dense region into two half spaces. After
each step of a multi-dimensional grid construction defined by
the best cutting planes, OptiGrid finds the clusters using the
density function. The algorithm is then applied recursively
to the clusters. In each round of recursion, OptiGrid only
maintains data objects in the dense grids from the previous
round of recursion. Thismethod is very efficient for clustering
large high-dimensional databases. However, it may perform
poorly in locating clusters embedded in a low-dimensional
subspace of a very high-dimensional database, because its
recursive method only reduces the dimensions by one at
every step. In addition, it suffers from sensitivity to parameter
choice and does not efficiently handle grid sizes that exceed
the available memory [12]. Moreover, OptiGrid requires very
careful selection of the projections, density estimate, and
determination of what constitutes a best or optimal cutting
plane from users. The difficulty of this is only determined on
a case-by-case basis on the data being studied.

OptiGrid pseudo-code:
Input: The dataset (x), a set of contracting projections P =
{P0,P1, · · · ,Pk }, a list of cutting planes BEST CUT⇐ 8, and CUT
⇐ 8;

Step 1. For i=0,...,k , do

Step 2. CUT best local cuts Pi(D), CUT SCORE ⇐ Score best local
cuts Pi(D)

Step 3. Insert all the cutting planes with a score ≥ min cut score into
BEST CUT;

Step 4. Select the q cutting planes of the highest score from BEST CUT
and construct a multidimensional grid G using the q cutting planes;

Step 5. Insert all data points in D into G and determine the highly
populated grid cells in G; add these cells to the set of clusters C ;

RefineC : For all clustersCi inC , perform the same process with dataset
Ci;

Output: Assignment of data values to clusters.

E. EXPECTATION-MAXIMIZATION (EM)
EM algorithm [8] is designed to estimate the maximum
likelihood parameters of a statistical model in many situa-
tions, such as the one where the equations cannot be solved
directly. EM algorithm iteratively approximates the unknown
model parameters with two steps: the E step and the M step.
In the E step (expectation), the current model parameter
values are used to evaluate the posterior distribution of the
latent variables. Then the objects are fractionally assigned
to each cluster based on this posterior distribution. In the
M step (maximization), the fractional assignment is given
by re-estimating the model parameters with the maximum
likelihood rule. The EM algorithm is guaranteed to find a
local maximum for the model parameters estimate. The major
disadvantages for EM algorithm are: the requirement of a
non-singular covariancematrix, the sensitivity to the selection
of initial parameters, the possibility of convergence to a local
optimum, and the slow convergence rate. Moreover, there
would be a decreased precision of the EM algorithm within a
finite number of steps [28].
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The details of the EM algorithm are given below.

EM pseudo-code:
Input: The dataset (x), the total number of clusters (M ), the accepted
error for convergence (e) and the maximum number of iterations

E-step: Compute the expectation of the complete data log-likelihood.

Q
(
θ, θT

)
= E

[
log p

(
xg, xm|θ

)
xg, θT

]
(6)

M-step: Select a new parameter estimate that maximizes the
Q-function,

θ t+1 = argmax
θ

Q
(
θ, θT

)
(7)

Iteration: increment t = t+1; repeat steps 2 and 3 until the convergence
condition is satisfied.

Output: A series of parameter estimates {θ0, θ1, ..., θT }, which repre-
sents the achievement of the convergence criterion.

V. EXPERIMENTAL EVALUATION ON REAL DATA
In some cases, it is not sufficient to decide the most suitable
clustering algorithm for big data based only on the theoretical
point of view. Thus, the main focus of this section is to inves-
tigate the behaviour of the algorithms selected in Section IV
from an empirical perspective.

In what follows, we described the traffic datasets used for
this experimental study in Section V-A. Section V-B provides
details of the experimental set up and Section V-C presents
a complete survey for performance metrics to be used to
experimentally investigate the relative strength and weakness
of each algorithm. Finally, the collected results and a compre-
hensive analysis study are given in Section V-D.

A. DATA SET
To compare the advantages of the candidate clustering
algorithms, eight simulated datasets are used in the
experiments including: Multi-hop Outdoor Real Data
(MHORD) [36], Multi-hop Indoor Real Data (MHIRD) [36],
Single-hop Outdoor Real Data (SHORD) [36], Single-hop
Indoor Real Data (SHIRD) [36], simulated spoofing attack
for SCADA system (detonated as SPFDS) [3], [4], simulated
denial of service attack DOS for SCADA system (deto-
nated as DOSDS) [3], [4], simulated of both spoofing and
attacks for SCADA system (detonated as SPDOS) [3], [4],
and the operational state water treatment plant (WTP).
We experimented also with two other publicly available
datasets, namely DARPA [35] and internet traffic data
(ITD) [29]. These two datasets have become a benchmark for
many studies since the work of Andrew et al. [30]. Table 2
summarizes the proportion of normal and anomalous flows,
the number of attributes and the number of classes for each
dataset. This paper does not collect the descriptions of the
datasets due to space restrictions. Thus, we recommend that
readers consult the original references [3], [4], [10], [11],
[36] for more complete details about the characteristics of the
datasets.

TABLE 2. Data sets used in the experiments.

B. EXPERIMENTAL SET UP
Algorithm 1 shows the experimental procedures used to eval-
uate the five candidate clustering algorithms. In particular,
a cross validation strategy is used to make the best use of
the traffic data and to obtain accurate and stable results.
For each dataset, all instances are randomised and divided
into two subsets as training and testing sets. Consequently,
we evaluate the performance of each clustering algorithm
by building a model using training set and measuring and
using the testing set to evaluate the constructed model. To
assure that the five candidate clustering algorithms are not
exhibiting an order effect, the result of each clustering is aver-
aged over 10 runs on each datasets. The five candidate clus-
tering algorithms studied here employ different parameters.
However, the experimental evaluation does not correspond to
exhaustive search for the best parameters settings for each
algorithm. Given the datasets at hand, the main objective is
to use a default configuration for set the parameters of the
clustering algorithms. In general, finding an optimal number
of clusters is an ill-posed problem of crucial relevance in
clustering analysis [20]. Thus, we have chosen the number of
clusters with respect to the number of unique labels in each
dataset. However, the true number of clusters may not be the
optimal number for which a particular clustering algorithm
will determine, to its best potential, the structure in the data.
Following the procedure and the pseudo-code of each

clustering algorithm discussed in Section IV, the candidate
clustering algorithms were implemented in Matlab 2013a.
Our experiments were performed on a 64-bit Windows-based
system with an Intel core (i7), 2.80 GHz processor machine
with 8 Gbytes of RAM.

C. VALIDITY METRICS
In response to the growing necessity for an objective method
of comparing clustering algorithms, we present a complete
survey of performance metrics that covers all the properties
and issues related to the experimental study of clustering.
In particular, this survey of performance metrics will allow
researchers to compare different algorithms in an objective
way, to characterize their advantages and drawbacks in order
to choose a clustering from an empirical point of view.
The survey covers three measurements: Validity evalua-

tion, stability of the results and runtime performance.

VOLUME 2, NO. 3, SEPTEMBER 2014 273



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING FAHAD et al.: Survey of Clustering Algorithms for Big Data

Algorithm 1: Experimental Procedure
1 Input:

2 Parameter N := 10; M := 100;
3 Clustering Algorithms Cls:= {cl1, cl2, · · · , clm};
4 DATA= {D1, D2,· · · , Dn};
5 Output:

6 Validity & Stability;
7 foreach Clusteringi ∈ [1,Cls] do

8 foreach Di ∈ DATA do

9 foreach times ∈ [1,M ] do

10 randomise instance-order for Di;
11 generate N bins from the randomised Di;
12 foreach fold ∈ [1,N ] do

13 TestData = bin[fold];
14 TrainData = data− TestData;
15 Train′Data = select Subset from TrainData;
16 Test ′Data = select Subset from TestData;
17 ClsASGN=TestModel(Test ′Data);
18 Validity=CompuValidaty(ClsASGN , Testlbs);
19 Assignmentclsi = assignmentclsi ∪ ClsASGN ;

20 Stability=ComputeStability (Assignmentclsi );

1) Validity evaluation. Unsupervised learning techniques
required different evaluation criteria than supervised
learning techniques. In this section, we briefly sum-
marize the criteria used for performance evalua-
tion according to internal and external validation
indices. The former evaluation criteria is to evalu-
ate the goodness of a data partition using quantities
and feature inherited from the datasets, this includes
Compactness (CP) andDunn Validity Index (DVI). The
latter evaluation criteria is similar to the process of
cross-validation that is used in evaluating supervised
learning techniques. Such evaluation criteria include
Classification Accuracy (CA), Adjusted Rand Index
(ARI) and Normalized Mutual Information (NMI).
Given a dataset whose class labels are known, it is
possible to assess how accurately a clustering tech-
nique partitions the data relative to their correct class
labels. Note, some of clustering algorithms do not have
centroids, and therefore the internal indices are not
applicable to such an algorithms (e.g. OptiGrid and
DENCLUE). To address such as issue we get the cen-
troid of a cluster by using the measure in [26] and [27]
and Euclidean distance metric.
The following notation is used: X is the dataset formed
by xi flows;� is the set of flows that have been grouped
in a cluster; andW is the set of wj centroids of the clus-
ters in �. We will call node to each of the k elements
of the clustering method.
• Compactness (CP). It is one of the com-
monly measurements used to validate clusters by

employing only the information inherent to the
dataset. Thus, a good clustering will create clusters
with instances that are similar or closest to one
another. More precisely, CP measures the aver-
age distance between every pair of data points as
follows:

CPi =
1
|�i|

∑
xi∈�i

‖xi − wi‖ (8)

where � is the set of instances (xi) that have been
grouped into a cluster and W is the set of wi cen-
troids of clusters in�. As a global measure of com-
pactness, the average of all clusters is calculated as
follows:

CP =
1
K

K∑
k=1

CPk ,

where K denotes the number of clusters in the
clustering result. Ideally, themembers of each clus-
ter should be as close to each other as possible.
Therefore, a lower value of CP indicates better and
more compact clusters.

• Separation (SP). This measure quantifies the
degree of separation between individual clusters.
It measures the mean Euclidean distance between
cluster centroids as follows:

SP =
2

k2 − k

k∑
i=1

k∑
j=i+1

∥∥wi − wj∥∥2 (9)

where an SP close to 0 is an indication of closer
clusters.

• Davies-Bouldin Index (DB). This index can iden-
tify cluster overlap by measuring the ratio of the
sum of within-cluster scatters to between-cluster
separations. It is defined as:

DB =
1
k

k∑
i=1

max
j 6=i

(
Ci + Cj∥∥wi − wj∥∥2

)
(10)

where a DB close to 0 indicates that the clusters are
compact and far from each other.

• Dunn Validity Index (DVI). The DVI index quan-
tifies not only the degree of compactness of clusters
but also the degree of separation between individ-
ual clusters. DVI measures intercluster distances
(separation) over intracluster distances (compact-
ness). For a given number of clusters K , the
definition of such an index is given by the
following equation:

DVI =

min
0<m 6=n<K

 min
∀xi∈�m
∀xj∈�n

{∥∥xi − xj∥∥}


max
0<m≤K

max
∀xi,xj∈�m

{∥∥xi − xj∥∥} (11)
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If a dataset containing compact and well-separated
clusters, the distance between the clusters are usu-
ally large and their diameters are expected to be
small. Thus, a larger DVI value indicates compact
and well-separated clusters.

• Cluster Accuracy (CA). CA measures the per-
centage of correctly classified data points in the
clustering solution compared to pre-defined class
labels. The CA is defined as:

CA =
K∑
i=1

max(Ci|Li)
|�|

(12)

where Ci is the set of instances in the ith cluster;
Li is the class labels for all instances in the ith
cluster, and max(Ci|Li) is the number of instances
with themajority label in the ith cluster (e.g. if label
l appears in the ith clustermore often than any other
label, thenmax(Ci|Li) is the number of instances in
Ci with the label l).

• Adjusted Rand index (ARI). ARI takes into
account the number of instances that exist in the
same cluster and different clusters. The expected
value of such a validation measure is not zero when
comparing partitions.

ARI =
n11 + n00

n00 + n01 + n10 + n11
=
n11 + n00(n

2

)
(13)

where:
– n11: Number of pairs of instances that are in the

same cluster in both.
– n00: Number of pairs of instances that are in

different clusters.
– n10: Number of pairs of instances that are in the

same cluster in A, but in different clusters in B.
– n01: Number of pairs of instances that are in

different clusters in A, but in the same cluster
in B.

The value of ARI lies between 0 and 1, and the
higher value indicates that all data instances are
clustered correctly and the cluster contains only
pure instances.

• Normalized Mutual Information (NMI). This is
one of the common external clustering validation
metrics that estimate the quality of the clustering
with respect to a given class labeling of the data.
More formally, NMI can effectively measure the
amount of statistical information shared by random
variables representing the cluster assignments and
the pre-defined label assignments of the instances.
Thus, NMI is calculated as follows:

NMI =

∑
dh,l log

(
|�|.dh,l
dhcl

)
√(∑

h dh log
(
dh
d

)) (∑
l cl log

( cl
d

))
(14)

where dh is the number of flows in class h, cl is the
number of flows in cluster l and dh,l is the number
of flows in class h as well as in cluster l. The
NMI value is 1 when the clustering solution per-
fectly matches the pre-defined label assignments
and close to 0 for a low matching.

2) Stability of the results. Sincemost clustering algorithms
rely on a random component, stability of the results
across different runs is considered to be an asset for an
algorithm. Our experimental study examined the sta-
bility of the candidate clustering algorithms. In doing
so, we consider a pairwise approach to measuring
the stability of the candidate clusterers. In particular,
the match between each of the n(n − 1)/2 runs of
a single cluster is calculated and the stability index
is obtained as the averaged degree of match across
different runs. Let Sr (Ri,Rj) be the degree of match
between runs Ri and Rj. The cluster pairwise stability
index Sk is:

Sk =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

Sr (Ri,Rj). (15)

where:

Sr (Ri,Rj) =
{
1 if Ri(xi)= Rj(xj)
0 otherwise

(16)

Clearly, it can be seen that Sk (C) is the average stability
measure over all pairs of clustering across different
runs. It takes values from [0, 1], with 0 indicating the
results between all pairs of Ri, Rj are totally different
and 1 indicating that the results of all pairs across
different runs are identical.

3) Time requirements. A key motivation for selecting the
candidate clustering algorithms is to deal with big data.
Therefore, if a clustering algorithm takes too long,
it will be impractical for big data.

D. EXPERIMENTAL RESULTS AND COMPARISON
First of all, this section presents a comparison of the clustering
outputs with respect to both the external and internal validity
measures. After that, the candidate clustering algorithms are
analyzed from the perspective of stability, run-time perfor-
mance and scalability.

E. EVALUATING VALIDITY
The aim of this test is to determine how accurately a
clustering algorithm can group traffic records from two
different populations. Assessing the validity of clustering
algorithms based on a single measure only can lead to mis-
leading conclusions. Thus, we have conducted four types of
external tests: Cluster Accuracy (CA), Adjusted Rand index
(ARI), Rand index (RI) and Normalized Mutual Information
(NMI). Such measurements allow us to exploit prior knowl-
edge of known data partitions and cluster labels of the data.
Note the class labels of instances (e.g attack/normal) are used
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TABLE 3. External validity results for the candidate clustering algorithms.

TABLE 4. Internal validity results for the candidate clustering algorithms.

TABLE 5. Stability of the candidate clustering algorithms.

for evaluation purpose only and are not used in the cluster
formation process.

Table 3 shows the results of the candidate clustering with
respect to the external validity measures. It can be seen from
Table 3 that the EM algorithm provides the best clustering
output based on all external measures in comparison to the
remaining clustering algorithms. The second best clustering

TABLE 6. Runtime of the candidate clustering algorithms.

algorithm in terms of external validity is the FCM algorithm.
The analysis reveals that BIRCH, OptiGrid and DENCLUE
respectively yield the lowest quality of clustering output in
comparison to EM and FCM.
Table 4 reports the results of clustering algorithms accord-

ing to the internal validity measures. This is very important,
especially when there is no prior knowledge of the correct
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TABLE 7. Compliance summary of the clustering algorithms based on empirical evaluation metrics.

class labels of the datasets. Each of the validation measures
evaluates different aspects of a clustering output separately,
and based just on the raw data. None of them uses explicit
information from the domain of application to evaluate the
obtained cluster. Note that the best value for each measure
for each of the clustering algorithms is shown in bold. There
are several observations from Table 4. First. it can seen that
DENCLUE algorithm often produces compact clusters in
comparison to other clustering algorithms. The compactness
of the DENCLUE is only 37.26 percent of that of OptiGrid,
47.27 percent of that of EM, 47.48 percent of that FCM and
75.74 percent of that of BIRCH. Second, for the separation
measure, we observe that the EM algorithm often yields clus-
ters with higher mean separations among the considered clus-
tering algorithms. The separation results of the EM algorithm
are 42.27 percent of that of DENCLUE, 50.52 percent of that
of OptiGrid, 52.98 percent of that of FCM and 80.60 percent
of that of BIRCH. Third, according to the Davies-Bouldin
index (DB), it can be seen that EM, DENCLUE and OptiGrid
respectively were often able to produce not only compact
clusters, but also well-separated clusters.

F. EVALUATING STABILITY
The main focus of this section is to compare the stability
of the candidate clustering algorithms output for 10-fold on
all datasets. The stability would measure the variation in
the outputs of a particular clustering algorithm rather than
a general property of the dataset. Thus higher values indi-
cate lower output changes and are always preferable. For
comparison, Table 5 displays the stability results obtained
for each clustering algorithm on all datasets. Note that the
sequence roughly orders the candidate clustering algorithms
according to growing stability values. Let us point out some of
the most notable phenomena that can be observed regarding
the presented stability results. First, the overall stability level
in most cases only rarely approach 0.599, indicating that
clustering algorithms often suffer from stability issues and
frequently fail to produce stable output. Second, it can be
seen that in most cases the EM algorithm achieves the highest
stability value on all datasets except for ITD and WTR and
DARPA datasets. Third, it can be seen that the OptiGrid and
DENCLUE algorithms often yield the highest stability values
for ITD andWTR and DARPA datasets among all considered
clustering algorithms. This confirms their suitability for deal-
ing with high-dimensional datasets. Finally, Table 5 shows
that FCM scores the lowest stability values on datasets with
high problem dimensionality. Future work would investigate
the stability of clustering algorithms using different parameter
settings.

G. EVALUATING RUNTIME AND SCALABILITY
A key motivation for this section is to evaluate the abil-
ity of the candidate clustering algorithms to group similar
objects efficiently (i.e. with faster runtimes). This is partic-
ularly important when of the collected data is very large.
In order to compare the effectiveness of the candidate clus-
tering algorithms, we applied each clustering algorithm to the
ten datasets. We then measure the execution time required
by each algorithm on an Intel core i7 2.80 GHz processor
machine with 8 Gbytes of RAM. Table 6 records the runtime
of the five candidate clustering algorithms. First, we observe
that the DENCLUE is significantly faster than all other clus-
tering algorithms. The runtime of DENCLUE 0.1 percent
of that of EM, 2.89 percent of that of FCM, 3.71 percent
of that of BIRCH and 28.19 percent of that of OptiGrid.
This indicates that DENCLUE is more efficient than others
when choosing clustering to deal with big data. Second, the
EM algorithm had the slowest runtime of all, and was slower
than FCM, BIRCH, OptiGrid and DENCLUE by 20.40,
26.12, 198.70 and 704.94 percent, respectively. This indicates
that EM is less efficient, and thus it is not recommended for
big data.

VI. CONCLUSION
This survey provided a comprehensive study of the cluster-
ing algorithms proposed in the literature. In order to reveal
future directions for developing new algorithms and to guide
the selection of algorithms for big data, we proposed a
categorizing framework to classify a number of clustering
algorithms. The categorizing framework is developed from
a theoretical viewpoint that would automatically recommend
themost suitable algorithm(s) to network experts while hiding
all technical details irrelevant to an application. Thus, even
future clustering algorithms could be incorporated into the
framework according to the proposed criteria and properties.
Furthermore, the most representative clustering algorithms of
each category have been empirically analyzed over a vast
number of evaluation metrics and traffic datasets. In order
to support the conclusion drawn, we have added Table 7,
which provides a summary of the evaluation. In general, the
empirical study allows us to draw the following conclusions
for big data:

• No clustering algorithm performs well for all the eval-
uation criteria, and future work should be dedicated to
accordingly address the drawbacks of each clustering
algorithm for handling big data.

• EM and FCM clustering algorithms show excellent per-
formance with respect to the quality of the clustering
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outputs, except for high-dimensional data. However,
these algorithms suffer from high computational time
requirements. Hence, a possible solution is to rely on
programming language and advances hardware technol-
ogy which may allow such algorithms to be executed
more efficiently.

• All clustering algorithms suffer from stability problem.
To mitigate such an issue, ensemble clustering should be
considered.

• DENCLUE, OptiGrid and BIRCH are suitable cluster-
ing algorithms for dealing with large datasets, especially
DENCLUE and OptiGrid, which can also deal with high
dimensional data.

As future work, we would investigate the following ques-
tions:

• Are ensembles of single clustering algorithmmore stable
and accurate than individual clustering?

• Are ensembles of multi-clustering algorithms more sta-
ble and accurate than ensemble of a single clustering?

• How to incorporate the concept of distributed system
to improve the performance and efficiency of existing
algorithms on big data?

• How can the most suitable parameter settings be found
for each clustering algorithm?
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