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Abstract: Water, an essential resource for crop production, is becoming increasingly scarce, while
cropland continues to expand due to the world’s population growth. Proper irrigation scheduling
has been shown to help farmers improve crop yield and quality, resulting in more sustainable water
consumption. Soil Moisture (SM), which indicates the amount of water in the soil, is one of the most
important crop irrigation parameters. In terms of water usage optimization and crop yield, estimating
future soil moisture (forecasting) is an essentially valuable task for crop irrigation. As a result, farmers
can base crop irrigation decisions on this parameter. Sensors can be used to estimate this value
in real time, which may assist farmers in deciding whether or not to irrigate. The soil moisture
value provided by the sensors, on the other hand, is instantaneous and cannot be used to directly
compute irrigation parameters such as the best timing or the required water quantity to irrigate.
The soil moisture value can, in fact, vary greatly depending on factors such as humidity, weather,
and time. Using machine learning methods, these parameters can be used to predict soil moisture
levels in the near future. This paper proposes a new Long-Short Term Memory (LSTM)-based model
to forecast soil moisture values in the future based on parameters collected from various sensors
as a potential solution. To train and validate this model, a real-world dataset containing a set of
parameters related to weather forecasting, soil moisture, and other related parameters was collected
using smart sensors installed in a greenhouse in Chiang Mai province, Thailand. Preliminary results
show that our LSTM-based model performs well in predicting soil moisture with a 0.72% RMSE
error and a 0.52% cross-validation error (LSTM), and our Bi-LSTM model with a 0.76% RMSE error
and a 0.57% cross-validation error. In the future, we aim to test and validate this model on other
similar datasets.
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1. Introduction

‘Water’ is one of the most important resources required for crop production. In differ-
ent stages of crops life cycles, they require different amounts of water. Water influences,
among other things, respiration, photosynthesis, mineral nutrient translocation, absorption,
mineral nutrient utilization, and cell division. Water scarcity has a huge impact on crop
quality and yield. As a result, water has an impact on nutrient availability, operation
timing, and other factors, in addition to having a direct impact on crop production [1].
As a result, crops require watering in order to grow and develop. Crop watering, also
known as ‘irrigation,’ is a method used to help crops grow as an alternative to rain-fed
farming. Canals, sprinklers, pipes, sprays, drips, pumps, and other man-made devices
provide irrigation [2,3].

According to the report of AQUASTAT [4], water withdrawal ratios of the Earth’s
freshwater are 70% in the agricultural sector for crop irrigation, 11% in municipal, and
19% in industrial, indicating that agriculture is by far the largest consumer of the Earth’s
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available freshwater. Meanwhile, freshwater accounts for only 0.5% of the world’s water,
with seawater accounting for the majority (97%) and frozen water accounting for the
remaining 2.5% [5]. Irrigation needs are expected to increase agriculture’s global water
demand by 15% by 2050 [6]. Currently, artificially irrigated areas produce approximately
40% of the world’s food [7]. Agriculture’s water needs, on the other hand, already compete
with people’s and the environment’s daily needs, particularly in areas where irrigation
is required, threatening ecosystem survival. According to an OECD report, agriculture
production is heavily reliant on water, and water threats are becoming more prevalent
as agricultural regions around the world have faced water issues in recent years [7].
Furthermore, agriculture is both the primary user of water for agricultural production
and the primary polluter of water due to the use of chemical pesticides and fertilizers.
Moreover, in the coming years, climate change will have a significant and uncertain impact
on water supply [7]. As a result, agricultural water management must be improved in
order to make agriculture more sustainable, contributing to global food and water security.

Irrigation scheduling is the process by which irrigators determine and manage crop
watering frequency and duration. Farmers benefit from irrigation scheduling by increasing
crop yield and quality while reducing water loss due to deep precipitation and runoff,
lowering pumping costs, increasing water efficiency, and ensuring long-term sustainable
water usage. Four parameters are required to successfully schedule irrigation: soil moisture
content, soil water holding capacity, soil texture, and crop water use at various growing
stages [8]. It is also necessary to consider the irrigation system’s capacity. During the grow-
ing season, different crop types consume varying amounts of water. For example, canola
consumes water at a rate of seven mm/day during pod fill, but consumes water at only two
mm/day during the rosette stage. Peas, for example, can consume water at a maximum of
six mm/day and no more than two mm/day during pod development [9,10]. In this paper,
we focus on soil-based methods because we are predicting water requirements before
drought stress occurs. Based on soil moisture measurements, the soil-based approach
calculates the amount of water currently available to the crop. Smart irrigation technolo-
gies are now being used to assist irrigators with on-site field moisture measurement in
order to predict soil moisture values for optimal water usage [10,11]. This prediction
will be used to estimate and schedule irrigation in order to improve irrigation controls
by tracking moisture-related conditions on the field and performing watering at optimal
levels automatically [12]. The smart irrigation technology that this paper focuses on is soil
moisture-based smart irrigation. This technology employs sensors to determine the actual
moisture content of the soil. It adjusts the time of water irrigation based on this information.
However, one of soil moisture sensors current limitations is their inability to report on or
represent the entire farm. Farmers must install a large number of soil moisture sensors
in each area of the farm to monitor soil moisture, which raises their costs. As a result,
soil moisture value forecasting is a low-cost but promising software-based alternative that
requires fewer sensors and can produce accurate predictions when given the right set of
input data.

There are significant advantages to combining technological advances and farmer
experience, such as improved crop quality and yield, as well as water savings through
effective irrigation mechanisms. Our ultimate goal is to develop an automated water
irrigation management system that uses a variety of technologies and tools to aid farmers’
decision-making and automate the water management process. The Internet of Things
(IoT) makes use of various types of sensors and wireless communication technologies to
provide an efficient and effective information collection and management infrastructure.
Furthermore, with the massive amounts of data that are frequently generated by such IoT
devices, there must be an efficient way to analyze the collected data and use it for decision
support via machine learning (ML) methods. ML methods are widely used in agriculture,
for example, to predict or identify soil.

In this paper, we primarily focus on methods for forecasting soil moisture. Several
machine learning methods, including Artificial Neural Networks (ANN), Random Forests
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(RF), Support Vector Machines (SVM), and elastic net regression, were used to predict soil
moisture using satellite imagery (EN). A method proposed in [13] used Landsat 8 satellite
imagery as well as some geospatial data of land-use types on previously untested conditions
in an Iranian semi-arid region. The authors use satellite optical and thermal sensors to
calculate soil reflectance and estimate soil moisture. One study [14] proposed a soil
moisture prediction model based on deep learning regression networks. Further, Ref. [15]
describes a novel soil moisture prediction method in vineyards based on digital images
and a multilayer perceptron (MLP) and support vector regression (SVR) implementation.
Both methods presented by the authors were successful in soil moisture forecasting, with
high correlation values between the predicted and measured soil moisture value when
tested on unseen data. A soil moisture prediction method using a Convolutional Neural
Network (CNN) is presented in [16]. The authors of [14] proposed a soil moisture prediction
model based on a deep learning regression network (DNNR) using meteorological and soil
moisture data. In [17], a relevance vector machine (RVM) model for content estimation was
presented. Predicting soil moisture content is described using a variety of machine learning
models, including Support Vector Machines (SVM), Adaptive Neuro-Fuzzy Inference
Systems (ANFIS), and Multiple Linear Regressions (MLR). The authors of [18] conclude
that the ANFIS and SVM models are more suitable for predicting soil water con-tent
under water stress conditions. A new soil moisture prediction method in vineyards using
digital images with a support vector regression (SVR) and multilayer perceptron (MLP)
implementation was presented in [16]. Both methods were successful in forecasting soil
moisture and produced high correlation values between measured and predicted moisture
when tested on unknown data. A new ResBiLSTM model to predict soil water content was
proposed by [19]. The authors of [20–22] all investigated soil moisture estimation using
satellite-based data soil moisture content prediction in fields using a CNN-based method,
which was presented in [23].

Following our review of the literature, we concluded that, due to the lack of a real-
world testbed, most of the methods do not leverage data acquired from IoT sensors, and
instead focus on using imaging data as input.

Consequently, this paper proposes a new LSTM-based approach to predict soil mois-
ture and efficiently manage crop irrigation to provide intelligent irrigation while leveraging
smart technologies such as the Internet of Things (IoT) to collect and manage data from var-
ious types of sensors. The paper is structured as follows. Section 2 discusses data collection
and the methodology used to design our soil moisture forecasting model. Section 3 presents
the results of our model, which was tested and validated using a real-world dataset that
we collected. Section 4 discusses the performance and usability of our approach, as well
as our approach’s conclusions, and highlights potential areas for improvement to our
proposed model.

2. Materials and Methods

In this section, we present the methodology for our new approach to predicting future
soil moisture, which is based on deep learning LSTM models and uses a low-cost setup.

The LSTM was invented in 1997 by Hochreiter and Schimdhuber, however, it has
gained popularity as an RNN architecture in recent years for a variety of applications [24].
The LSTM deviated from traditional neuron-based neural network architectures by intro-
ducing the concept of a memory cell. Based on its inputs, the memory cell can remember
an important value rather than just the most recently computed value. Recent CNN and
LSTM applications have resulted in image and video captioning systems that use natural
language to caption an image or video. The CNN processes images or videos, and the
LSTM is trained to translate the output of CNN to natural language [24,25].

The memory cell of LSTM has three gates (input, forgot, and output gate). They are
used to control the flow from the input to the output of the cell. The input gate will control
the new information when it can enter the memory. The forgot gate will check the existance
of information in the memory and determines whether or not the cell can remember new
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data. Finally, the information in the cell is determined to be used in the output cell by the
output gate. Each cell contains weights to control each gate. These weights are optimized
by a training algorithm based on an error resulting of network output [25,26]. In contrast,
the LSTM approach is not used for crop irrigation systems or soil moisture prediction using
real-time datasets from smart sensors.

Data are the most valuable asset in any machine learning approach. We collected a
large amount of data from a testbed located in our university’s Innovative Village (see
de-tails in Section 3.1). The data were then thoroughly preprocessed before we started the
LSTM model design lifecycle to test and validate it on our data. The plan shown in Figure 1
highlights the steps in our methodology. It depicts the five steps in creating our pro-posed
soil moisture forecasting model.

1. Step 1—Data Collection: the relevant data are measured using sensors and collected on
a cloud database;

2. Step 2—Data Preprocessing: the missing data and irrelevant data will be processed in
this step. A new clean dataset is the most important outcome;

3. Step 3—Modeling and Pattern Selection: both LSTM and Bi-LSTM forecasting models are
created. Moreover, a set of hyperparameters is tuned to obtain the best performance
from the model. the hyperparameters in our case are the parameters that affect the
performance of the proposed model comprising time step, batch size, epoch, learning
rate, and split ratio;

4. Step 4—Evaluation and Interpretation: the proposed model will be trained, tested, and
validated based on the collected data.
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Figure 1. Methodology of the proposed soil moisture forecasting model.

2.1. Data Collection (Study Area)

Our data were collected using a testbed at Innovative Village in Pa Daet Sub-district,
Mueang, Chiang Mai, Thailand (GPS coordinates: 18.7453356, 98.9801823). The sensors are
installed in the greenhouse and include a soil sensor, an air indoor sensor, and an outdoor
weather station (see Figure 2). The data collection list and proposals are explained in
Table 1. Every five minutes, data are collected and stored on a Google Cloud IoT database.

1. Soil sensor: used to monitor the real-time soil moisture, soil temperature, soil pH, and
soil electrical conductivity (EC) which impact crops growth and health;

2. Air indoor sensor: used to monitor the real-time air temperature, relative humidity, UV
index, and light intensity, which help to control the crops environment and maintain
it as suitable to crop production inside the greenhouse;

3. Outdoor weather station: used to monitor the weather parameters outside the green-
house comprising air temperature, relative humidity, UV, light intensity, rainfall or pre-
cipitation, and wind speed, which also impact the environment inside the greenhouse
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Figure 2. Multiple sensors installed for data collection (1 set of soil moisture sensors, 1 set of air indoor sensors, 1 weather
station, and 1 set of water sensors).

Table 1. Collected data and their purpose.

No. Data Field Purpose

1 Soil Moisture The historical collected soil moisture value will be used for retraining the
proposed forecasting model.

2 Soil Temperature
The historical collected soil temperature value will be used to train/retrain the
proposed model. And the real-time soil temperature value will be used to
predict the future value of soil moisture.

3 Indoor: Air Temperature The air indoor temperature indicates the air temperature inside the
greenhouse.

4 Indoor: Relative Humidity The indoor relative humidity indicates the air moisture inside the greenhouse
that helps in making a decision for irrigation.

5 Indoor: Light Intensity The indoor light intensity indicates the temperature and relative humidity
inside the greenhouse.

6 Indoor: UV index The UV index value impacts the temperature and relative humidity inside the
greenhouse.

7 Outdoor: Air Temperature The air outdoor temperature indicates the air temperature outside the
greenhouse.

8 Outdoor: Relative Humidity The outdoor relative humidity indicates the air moisture outside the
greenhouse.
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Table 1. Cont.

No. Data Field Purpose

9 Outdoor: Light Intensity The outdoor light intensity impacts the temperature and relative humidity
outside the greenhouse.

10 Outdoor: UV index The UV index value also impacts the temperature and relative humidity
outside the greenhouse.

11 Outdoor: Wind Speed The wind speed value indicates the speed of wind outside the greenhouse that
may impact the wind flow inside the greenhouse.

12 Outdoor: Wind Direction The wind direction indicates the direction of wind outside the greenhouse.

13 Outdoor: Precipitation Rate The precipitation rate indicates the rate of rainfall at that time.

14 Outdoor: Precipitation Total The precipitation total indicates the total amount of rainfall in one day.

2.2. Data Preprocessing

Following the collection of the data from multiple sensors (see Table 2) and the
descriptive statistics for the dataset (see Table 3), we undertook an extensive preprocessing
step to clean up the missing data. Several parameters were also scaled. The missing
values from the dataset’s other training samples were estimated using the mean imputation
technique. The Imputer class from the scikit-learn Python library [27] was used to replace
a missing value with the mean value of the entire feature column.

Table 2. Sample of the collected raw data.

Date Time

Indoor Data Outdoor Data Output

Temp

(◦C)

Humid

(%)
UV lux CO2

Temp

(◦C)

Humid

(%)

Wind

Speed

(mph)

Wind

Gust

(mph)

Air

Pres-

sure

(in)

Precop.

Rate

(in)

Precip.

Accum.

(in)

UV
Solar

(w/m2)

Soil

Mois-

ture

(%)

6/3/2020 9:05:30 28.11 37.81 0.36 63 599 31.39 36 0 0 29.88 0 0 0 0 63.1

6/3/2020 9:06:44 27.92 37.56 0.36 70 599 31.39 36 0 0 29.89 0 0 0 0 62.2

6/3/2020 9:11:45 27.3 35.38 0.36 10230 599 31.28 36 0 0 29.89 0 0 0 0 62.7

6/3/2020 9:19:16 28.38 70.19 0.07 1000 475 31.28 36 0 0 29.89 0 0 0 0 62.6

6/3/2020 9:24:16 32.81 55.13 1.87 35140 475 31.22 36 0 0 29.89 0 0 0 0 62.2

6/3/2020 9:29:17 34.41 52.34 3.78 54612 463 31.22 36 0 0 29.89 0 0 0 0 62.2

6/3/2020 9:34:17 34.65 48.95 4.14 54612 435 31.11 37 0 0 29.89 0 0 0 0 62.3

6/3/2020 9:44:19 35.64 45.96 4.46 54612 414 31.06 37 0 0 29.89 0 0 0 0 62

6/3/2020 9:49:20 34.79 50.78 1.3 17800 404 31 37 0 0 29.9 0 0 0 0 61.5

6/3/2020 9:54:20 35.54 46.95 1.91 30443 414 30.94 37 0 0 29.9 0 0 0 0 61.5

6/3/2020 9:59:21 35.16 48.93 1.31 23483 460 30.89 37 0 0 29.9 0 0 0 0 62.5

6/3/2020 10:04:21 35.52 47.37 1.19 14576 470 30.78 37 0 0 29.9 0 0 0 0 62.5

6/3/2020 10:09:22 35.93 46.12 1.33 17226 475 30.78 37 0 0 29.89 0 0 0 0 62.9

6/3/2020 10:14:22 36.13 46.72 1.67 32000 461 30.72 37 0 0 29.89 0 0 0 0 62.6

6/3/2020 10:19:23 36.38 45.48 2.53 31360 457 30.67 37 0 0 29.89 0 0 0 0 63

6/3/2020 10:24:23 36.67 45.08 2 24000 444 30.61 37 0 0 29.89 0 0 0 0 62.7

6/3/2020 10:29:24 36.45 46.15 1.43 16883 465 30.56 37 0 0 29.89 0 0 0 0 62.7

6/3/2020 10:34:24 36.54 47.52 1.61 21673 447 30.5 37 0 0 29.89 0 0 0 0 62.6

6/3/2020 10:39:25 36.28 45.84 2.41 29500 455 30.39 37 0 0 29.89 0 0 0 0 62.4

6/3/2020 10:44:25 36.36 46.36 2.4 37270 474 30.39 37 0 0 29.89 0 0 0 0 62.8

6/3/2020 10:49:26 36.51 46.17 2.87 29493 447 30.28 38 0 0 29.88 0 0 0 0 62.3

6/3/2020 10:54:26 37 46.31 3.83 48133 458 30.22 38 0 0 29.88 0 0 0 0 63.4

6/3/2020 10:59:27 37.05 45.83 2.07 30206 452 30.22 38 0 0 29.88 0 0 0 0 62.9

6/3/2020 11:04:28 36.73 46.13 3.59 43353 413 30.11 38 0 0 29.88 0 0 0 0 62.3
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Table 3. Descriptive statistics for the dataset.

Variable Mean Standard Error Median
Standard

Deviation
Variance Minimum Maximum Valid Missing

Date 44017.05313 0.140655674 44017 18.73890461 351.146546 43985 44049 17749 0

Time 0.495631904 0.002184724 0.494050926 0.291060621 0.084716285 4.63E-05 0.999930556 17749 0

Indoor temp 29.83309539 0.037799753 27.93 5.035886181 25.36014962 23.27 47.41 17749 0

Indoor humid 75.64751197 0.144849823 79.96 19.29767169 372.4001327 25.64 100 17749 0

Indoor UV 0.905835822 0.010987166 0.08 1.463769292 2.142620539 0 7.72 17749 0

Indoor lux 11568.96558 130.4046691 933 17373.21068 301828449.3 0 54612 17749 0

CO2 indoor 533.2625409 0.384002603 536 51.14880081 2616.199824 309 715 17749 0

Outdoor temp 27.80067384 0.016361451 27.39 2.179760373 4.751355282 23.89 39.22 17742 7

Outdoor

humid
50.68223562 0.114157858 47 15.20872326 231.3052631 33 99 17749 0

Outdoor wind

speed
0.011347118 0.000578974 0 0.077134085 0.005949667 0 1.4 17749 0

Outdoor wind

gust
0.022722407 0.001031529 0 0.137425796 0.018885849 0 2.4 17749 0

Outdoor

Pressure
29.8581768 0.000524754 29.87 0.069910597 0.004887492 29.6 30.01 17749 0

Outdoor

Precip. Rate
0.0057068 0.000665134 0 0.088612771 0.007852223 0 3.78 17749 0

Outdoor

Precip. Accum
0.044142205 0.002202212 0 0.293390479 0.086077973 0 2.7 17749 0

Outdoor UV 0.085356922 0.004644671 0 0.618788005 0.382898595 0 10 17749 0

Outdoor Solar 11.27086596 0.527558327 0 70.28415491 4939.862431 0 1102.3 17749 0

Soil moisture 56.21100907 0.020181385 56.1 2.688672606 7.22896038 50.7 87.9 17749 0

Regarding time, we encoded this parameter using one-hot encoding where we divided a day into 4 different periods
being (see Table 4).

Table 4. Sample of the processed data.

Indoor
Temp

Indoor
Humid

Indoor
UV

Indoor
lux

Indoor
CO2

Outdoor
Temp

Outdoor
Humid

Outdoor
UV

Outdoor
Solar

Soil
Moisture

cos_Times sin_Times

0 28.11 37.81 0.36 63 599.0 31.39 36 0 0.0 63.1 −0.723871 0.689935
1 27.92 37.56 0.36 70 599.0 31.39 36 0 0.0 62.2 −0.727573 0.686030
2 27.30 35.38 0.36 10230 599.0 31.28 36 0 0.0 62.7 −0.742414 0.669941
3 28.38 70.19 0.07 1000 475.0 31.28 36 0 0.0 62.6 −0.763984 0.645235
4 32.81 55.13 1.87 35140 475.0 31.22 36 0 0.0 62.2 −0.777878 0.628416

2.3. Modeling and Pattern Selection
2.3.1. Proposed model

In this section, we describe the design methodology of our LSTM-based soil moisture
forecasting model. Both LSTM and Bi-LSTM are used in our model. Our design (see
Figure 3) was developed through a trial phase in which we tested various model archi-
tecture settings such as layer count, size, and so on. Our model has 14 inputs, which are
the environmental parameters. Following the first layer is a stack of 4 pairs of LSTM and
Dropout layers. A dense layer of 12 units is used to encode the feature pattern of the input
data and an output prediction unit is the prediction of the soil moisture.

It is worth noting that some the outcomes of the SupplyLedger Project (The Sup-
plyLedger Project www.supplyledger.qa, accessed on 6 December 2021) were used in the
development of the LSTM model.

2.3.2. Hyperparameters Selection

Following our preliminary tests, we concluded that a good selection of hyperparame-
ters is related to the model’s performance. In order to achieve the best results in terms of
prediction accuracy and error value, we went through an extensive model hyperparameters
tuning step for our model. According to our tests, the most significant hyperparameters
are the model Learning Rate (LR) while training, a split ratio of training and testing data,

www.supplyledger.qa
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batch size of training and testing data, time steps, and the validation model’s time interval.
Table 5 reports the values of the best hyperparameters based on our empirical study.
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Table 5. The best hyperparameters based on our empirical study.

Hyperparameters LR SR Epoch Input Time Steps Future Steps Batch Size

Value 0.01 80% Train
20% Test 100 300 12 72

Value 0.001 70% Train
30% Test 100 300 12 72

Value 0.0001 80% Train
20% Test 100 300 12 72

Based on our empirical study, the learning rate has a significant impact on the model’s
performance and results. As a result, we conducted a more detailed analysis to determine
the best values for this parameter based on various training/testing data split ratios.

During the model’s training phase, the learning rate is a ratio that is applied to the
model error. Selecting the learning rate is difficult because a too-low value may impact
the long process of training, which becomes stuck, whereas a too-high value may result
in a suboptimal set of weights learning too quickly or in an unstable process of training.
The split ratio specifies how the dataset was split into training and testing. To select the
appropriate case of the forecast model, 12 cases with different values of learning rate and
split ratio are shown in Table 6.

Table 6. List of 12 different cases of learning rates and split ratios to define the suitable values of the proposed model.

Case Learning Rate (LR) Split Ratio (SR) Case Learning Rate (LR) Split Ratio (SR)

1 0.1 70% (train), 30% (test) 7 0.0001 70% (train), 30% (test)

2 0.1 80% (train), 20% (test) 8 0.0001 80% (train), 20% (test)

3 0.01 70% (train), 30% (test) 9 0.00001 70% (train), 30% (test)

4 0.01 80% (train), 20% (test) 10 0.00001 80% (train), 20% (test)

5 0.001 70% (train), 30% (test) 11 0.000001 70% (train), 30% (test)

6 0.001 80% (train), 20% (test) 12 0.000001 80% (train), 20% (test)
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There are, however, a number of hyperparameters that are critical to the performance
of the proposed forecasting model. This paper will focus on optimizing the learning rate
(LR) and split ratio (SR) to improve the proposed model performance.

1. The learning rate (LR) is one of the hyperparameters that controls the change in the
model in response to the estimated error each time the weights of model are updated;

2. The split ratio (SR) is the split interval of the dataset for training and testing.

Table 6 divides the various learning rates and split ratios into 12 cases. The model’s
performance is compared using these numerous cases. The total number of dataset samples
used to test and train the forecasting model is 17,749 samples. The split ratios are divided
into two categories. The first case is composed of 70% training data, which equates to
12,424 samples of the total dataset, and 30% testing data, which equates to 5325 samples of
the total dataset. The second case involves 80% training data equaling 14,200 samples of
the total dataset and 20% testing data equaling 3549 samples of the total dataset.

Table 6 displays the values for the learning rate and split ratio. To determine the
appropriate values of learning rate and split ratio for the proposed model, we must test and
compare these cases. The learning rate ranges from 0.1 to 0.000001, and its value influences
the training error of the proposed model. Furthermore, the split ratios are divided into two
groups: 70% for training and 30% for testing in one setup, and 80% for training and 20%
for testing in the other. The next hyperparameters that we tweaked were the number of
time steps and the time interval. The number of time steps is a critical hyperparameter for
LSTM models. It is the number of observations required by the model as input to make
a future prediction. The time interval is the amount of time that elapses between the last
time step in the input and the predicted future.

Table 7 shows the effect of time steps and time interval values on the soil moisture
validation graph. The appropriate time interval for the proposed forecasting model is also
chosen when defining the appropriate time interval to forecast the next soil moisture value.
In our experiments, time intervals of 12 h, 8 h, 6 h, 4 h, 3 h, 2 h, 1 h, and 30 min were used.
We used 144 time steps, 96 time steps, 72 time steps, 48 time steps, 36 time steps, 24 time
steps, 12 time steps, and 6 time steps. To minimize the combination, we first tested the
various time intervals, and once the optimal model for a time interval was found, we tested
the model with the various time steps for that interval.

Table 7. Prediction in different time steps and time intervals.

Time Interval Time Steps
Soil Moisture Value (%) RSME Validation

(%)Measure Forecast Static Error

12 h 144 57.80 55.70 2.10 2.595

8 h 96 57.00 54.90 2.10 2.466

6 h 72 56.20 54.50 1.70 2.380

4 h 48 55.90 54.70 1.20 2.216

3 h 36 54.90 54.70 0.20 2.096

2 h 24 55.70 55.85 0.15 2.009

1 h 12 55.40 54.53 0.13 1.779

30 min 6 55.70 55.65 0.05 1.637

3. Results
3.1. Test Setup

To undertake our experiments, we used a machine with an intel® core™ i7-6700HQ,
CPU 2.60 GHz, RAM 16 GB, and GPU intel® HD Graphics 530. Our model was imple-
mented in Python (Jupyter Notebook 6.0.3 web-based) using the Keras deep learning
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library [27], having Tensorflow as backend. Our mode takes 30 min to train for 100 epochs,
a 0.001 learning rate, a split ratio of 70% for training and 30% for testing, and a 72 batch size.

To increase confidence in the proposed model’s results, a cross-validation step is
re-quired. This entails dividing the datasets into K subsets and rotating the validation and
training subsets. Finally, the model average performance is calculated by averaging the
K-folds’ performance. In this paper, we use K-Fold coding to divide our data into five
subsets, which means that the holdout method is repeated five times, with one of the five
subsets serving as the test set and the other four serving as the training set, each time.

3.2. Results and Discussion

The performance of our model was assessed using the Sklearn Python library [28], as
well as the Root Mean Square Error (RMSE) and K-Fold cross-validation score after dividing
the data into five subsets, as described in Section 2.1. We trained our model with 100 epochs
of various settings and hyperparameters. In this section, we report the forecasting model’s
training and validation results based on the data we collected and preprocessed.

The different learning rates and split ratios are divided into 12 cases, as shown in
Table 5. Figures 4 and 5 show the comparison results for the different cases (LSTM model
and Bi-LSTM model) in order to compare the best results.
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Figure 5. Error results comparison of the Soil Moisture value forecasting in different cases of learning
rate (LR) and split ratio (SR)—Bi-LSTM model.

Figures 4 and 5 compare error results for our LSTM and Bi-LSTM models at different
learning rates and split ratios. In cases 5 to 10 (the red box in Figure 4), the values of
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training error, test error, and RMSE validation error are quite low, indicating that the
models perform well. When the LSTM model is compared to six cases (cases 5–10), case 5
has a lower train error, test error, and RMSE validation than the others, indicating that the
LSTM model’s training performance is a 0.03% error, a 0.08% error, and a 1.057% RMSE
error. A comparison of the Bi-LSTM model across six cases shows that case 7 (the yellow
box in Figure 5) has a lower train error, test error, and RMSE validation than the others
(cases 5 to case 10). This means that the Bi-LSTM model has a training error of 0.03%,
a testing error of 0.04%, and a model validation error of 0.783%. As shown in Case 5,
the appropriate learning rate and split ratio values for the LSTM model are 0.001, 70%
(for training), and 30%, respectively (for testing); see the yellow box in Figure 4. The
appropriate learning rate and split ratio values for the Bi-LSTM model are 0.0001 and 70%
(for training) and 30% (for testing), respectively, as shown in case 7 (see the yellow box in
Figure 5).

Following the selection of appropriate learning rate and split ratio values, the predic-
tion model is tested with different time intervals that include forecasting for the next 12 h,
8 h, 6 h, 4 h, 3 h, 2 h, 1 h, and 30 min, with the error results shown in Figures 6 and 7.
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Figures 6 and 7 show the error results of forecasting soil moisture values over different
time intervals using the LSTM and Bi-LSTM models, respectively. The LSTM model is
expected to perform well in the next hour, with a training error rate of 0.03%, a testing
error rate of 0.06%, and a validation error rate of 0.024% (see the red box in Figure 6). In
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contrast, the Bi-LSTM model is expected to perform well in the next 30 min, with a training
error of 0.01%, a testing error of 0.02%, and a validation error of 0.515% RMSE (see the red
box in Figure 7).

As a result, the soil moisture forecasting model with LSTM and Bi-LSTM models is
chosen for the next 1 h and 30 min, as shown in Figures 8 and 9.
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Figures 8 and 9 illustrate the results of forecasting soil moisture values for the next
hour (LSTM model) and 30 min (Bi-LSTM approach). When compared to measurements
and soil moisture value forecasting, the results in Figures 8 and 9, both models perform
well in predicting soil moisture value, with approximately 0.06% and 0.15% of soil moisture
value error predicted using the LSTM and Bi-LSTM models, respectively. To estimate
validity of the performance of the models, K-fold cross-validation is used, and the total
effectiveness of our LSTM and Bi-LSTM models is calculated by averaging the results of all
five folds, as shown in Table 8.

Table 7 compares measured and predicted soil moisture values, as well as error
estimation results from our LSTM and Bi-LSTM models using K-Fold cross-validation.
In both the LSTM and Bi-LSTM models, the error discrepancy between measured and
predicted soil moisture values is quite small, according to the results. The LSTM model, on
the other hand, has a larger error between predicted and measured soil moisture values
than the Bi-LSTM model. In terms of cross-validation error, the LSTM results in all five
trials, as well as the averaged overall error estimation, are lower than Bi-LSTM, which is
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a 0.72% RMSE error and a 0.52% cross-validation error. The RMSE error for Bi-LSTM is
0.76%, and the cross-validation error is 0.57%.

Table 8. Comparison of cross-validation result of soil moisture forecasting model (LSTM and Bi-LSTM).

Next 1 h
(LSTM)

Next 30 min
(Bidirectional LSTM)

1. Soil moisture value: Measure 55.64% 55.70%

2. Soil moisture value: Forecast 55.70% 55.55%

3. Cross Validation (CV) results
3.1. Round 1

-RSME loss 0.62% 0.66%
-CV loss 0.38% 0.42%

3.2. Round 2
-RSME loss 0.75% 0.79%
-CV loss 0.56% 0.60%

3.3. Round 3
-RSME loss 0.78% 0.82%
-CV loss 0.61% 0.65%

3.4. Round 4
-RSME loss 0.77% 0.81%
-CV loss 0.60% 0.66%

3.5. Round 5
-RSME loss 0.69% 0.73%
-CV loss 0.48% 0.54%

3.6. Averaged overall error estimation
-RSME loss 0.72% (+/−0,06%) 0.76% (+/−0,06%)
-CV loss 0.52% (+/−0,08%) 0.57% (+/−0,08%)

The proposed soil moisture forecasting using LSTM and Bi-LSTM models accurately
predicts soil moisture value, according to the results. However, while modeling the
proposed model, we had to test the learning rate in each case individually using the Adam
optimizer, which took some time. The Adam optimizer is, even still, working on the
proposed model’s construction; however, the Adam optimizer works best on different
datasets and requires drastically different learning rate schedules. Furthermore, these two
models use a small dataset for training, testing, and validation, which may have an impact
on model performance, and they use data from a single location.

4. Conclusions and Future Works

Water management for crop production is a difficult subject with implications for
water sustainability. However, managing this resource is costly, requiring the use of
numerous hardware tools, such as soil sensors, to effectively manage crop irrigation. In
this paper, we proposed a novel method for estimating soil moisture in the context of crop
production water management. We use machine learning to forecast soil moisture in the
future using the output of low-cost IoT sensors. We propose a soil moisture forecasting
model with Long-Short Term Memory based on our deep learning approach (LSTM). The
data we use to train and validate our model were collected on a testbed in the Thai province
of Chiang Mai. An array of IoT sensors, including a soil sensor, a water sensor, an air
sensor, and a weather station, is used to collect data. An extensive data preprocessing step
is performed to clean the collected data. The LSTM model we propose uses environmental
indicators to predict future soil moisture based on farm environmental data. Our model
was extensively tuned, and we tested various setups and architectures. In the future, more
datasets will be used to estimate the performance of our models. In addition, we will put
our model through its paces in various locations to see how well it performs. The data we
used are available at https://github.com/SFDataset/DataSet.git (accessed on 6 December
2021) (see an Appendix A).

https://github.com/SFDataset/DataSet.git
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