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Satisfying consistency requirements of pairwise comparison matrix (PCM) is a critical step in decision making methodologies.
An algorithm has been proposed to find a new modified consistent PCM in which it can replace the original inconsistent PCM in
analytic hierarchy process (AHP) or in fuzzy AHP. This paper defines the modified consistent PCM by the original inconsistent
PCM and an adjustable consistent PCM combined. The algorithm adopts a segment tree to gradually approach the greatest lower
bound of the distance with the original PCM to obtain the middle value of an adjustable PCM. It also proposes a theorem to obtain
the lower value and the upper value of an adjustable PCM based on two constraints. The experiments for crisp elements show
that the proposed approach can preserve more of the original information than previous works of the same consistent value. The
convergence rate of our algorithm is significantly faster than previous works with respect to different parameters. The experiments
for fuzzy elements show that our method could obtain suitable modified fuzzy PCMs.

1. Introduction

Analytic Hierarchy Process (AHP) is developed by Saaty
[1], which is a multicriterion decision-making methodology
widely used in many real problems [2, 3]. The AHP method-
ology expresses the relative importance of criteria by pairwise
comparisons and converts the values of pairwise comparisons
to priorities. Fuzzy AHP methodology [4] is an advanced
AHP methodology, which is used to tackle the uncertainty
and inaccurate problems in multicriteria decision-making
process. Fuzzy AHP derives the fuzzy priorities of criteria
from pairwise comparisons matrix with triangular (or trape-
zoidal) fuzzy elements. To make sure the priorities of each
criterion are accurate and sensible, consistency of pairwise
comparison matrix (PCM) with crisp or fuzzy elements must
be achieved.

Several works [5–8] focus on reducing inconsistent
PCMswith crisp numbers. Karapetrovic and Rosenbloom [5]
revised the single entry of a ratio’s value till the consistency
of relative matrix was at an acceptable level. Xu and Wei [6]

preserved the initial ratios’ value in the pairwise compari-
son matrix while obtaining satisfactory consistency require-
ments. Cao et al. [7] developed a heuristic approach, which
can preserve more of the original information compared to
Xu and Wei [6]. However, for these three works, when the
consistency requirement is increased, the computing times
will be largely increased and the information on the original
matrix cannot be well preserved. Anholcer’s [8] work is used
to minimize the distance between inconsistent PCMs and
their corresponding consistent PCM.The aim of this work is
to find out a new modified PCM which is consistent and has
the closest resemblance to the optimal one. But the modified
new matrix has a long distance with the original matrix
according to the analysis of the parameters given in [6, 7].

Someworks used to solve the inconsistency of PCMswith
fuzzy elements are given in [9–12]. Xu andWang [9] repaired
incomplete and inconsistent fuzzy preference relations by
finding out the unusual and false element until the consis-
tency ratio was at a satisfactory level. Leung and Cao [10]
proposed a new definition of fuzzy positive reciprocal matrix
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by setting deviation tolerances based on an idea of allowing
inconsistent information. Morteza and Bafandeh [11] further
discussed Leung and Cao’s work and proposed a newmethod
of fuzzy consistency tests by direct fuzzification of a QR
(quick response) algorithm, which is one of the methods
for the eigenvalues calculation of an arbitrary matrix. Wang
and Chen [12] applied fuzzy linguistic preference relations
to construct consistent PCMs by considering reducing the
number of pairwise comparisons. However, these works do
not have standard parameters to verify the reliability of their
theory so far. Therefore, it is very important to prove the
feasibility of amethodology that can reduce the inconsistency
of the original matrix and preserve the original matrix’s
information as much as possible.

In this research work, we propose a modified consistent
PCM as a combination of original inconsistent PCM and an
adjustable consistent PCM. In order to achieve the modified
PCM, this paper is structured in the following way: Section 2
and Section 3 give the basic concepts of the PCM with
fuzzy and crisp elements, consistency indices for crisp and
fuzzy elements, and parameters to judge the effectiveness
of the modified matrix. Section 4 and Section 5 propose an
algorithm to obtain the middle value, upper value, and lower
value of the adjustablematrix.Themain idea of our algorithm
is to find the optimum priority vector by solving a linear
programming problem and use the eigenvector method to
obtain the adjustable matrix based on the optimum priority
vector. In Section 6, the algorithm was applied to obtain the
adjustable PCM by adopting the same illustrating PCM in
[6, 7]; the comparison results show that our algorithm can
preserve more original information than Cao et al. [7] and
Xu and Wei [6]. In Section 7, the algorithm was used to
find the sensible and the closest consistent modified PCM
with fuzzy elements. The experiments show that the new
modified matrix can satisfy consistent indices’ requirements
ofNI [13] andCCI [14, 15] and also can preservemore original
information under parameters of 𝜎fuzzy and 𝛿fuzzy. Section 8
concludeswith effective and efficient analysis to show that our
algorithm can be performed easily.

2. State of the Art

2.1. Notations andDefinitions. The𝑚×𝑛 pairwise comparison
matrix 𝐴 with triangular fuzzy elements can be described in
the following:
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Definition 1. Asit was proposed by Buckley [16], a fuzzy
positive reciprocal matrix 𝐴 = [𝑎

𝑖𝑗
]
𝑛×𝑛

is consistent if and
only if 𝑎
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, {∀𝑖, 𝑗, 𝑘 | 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛}.

Where the operator ⊙ is one of the operation rules of
triangular fuzzy elements, this operation can be calculated by
the following equation:
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When positive reciprocal matrix 𝐴 is crisp numbers 𝐴,
then the consistent condition is 𝑎

𝑖𝑘
⋅ 𝑎
𝑘𝑗

= 𝑎
𝑖𝑗
, {∀𝑖, 𝑗, 𝑘 | 1 ≤

𝑖, 𝑗, 𝑘 ≤ 𝑛}.
However, this definition is too strict, because it is unre-

alistic to reach perfect consistency of a PCM (crisp or
fuzzy elements). Some works [10, 13, 17–23] have developed
consistency indices to accept a certain level of deviations.
We will adopt consistency indices in Section 2.2 to determine
whether the current PCM matrix is at an acceptable consis-
tency level.

2.2. Consistency Indices. Several consistency indices have
been proposed for crisp numbers: for instance, geometric
consistency index [17], singular value decompositionmethod
[18], and harmonic consistency index [19]. However, it was
proven that all these consistency indices are linear or non-
linear transformations of Satty’s CR [20]. Therefore, we use
Satty’s CR in this paper for measuring consistency of crisp
numbers.

The consistency index of CR [20] is defined as follows:

CR =

𝜆max − 𝑛

𝑛 − 1

⋅

1

RI
, (4)

where 𝜆max is the principle eigenvalue of 𝐴. RI is random
index,which can be gotten by searching a defined table.When
the value of 0 < CR < 0.1, the consistency can be accepted.

Several important works focus on the consistency of
pairwise comparison matrix with fuzzy elements. The first
one is Leung and Cao [10], who proposed a notion with
consideration of a tolerance deviation. However, the notion
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is strongly related to Satty’s CR and it has shortcomings to
calculate consistency of pairwise comparison matrix with
fuzzy elements [11]. The second one is Ramı́k and Korviny’s
[13] work, which proposes a new consistency index NI to
examine fuzzy elements based on the distance of the matrix
to a special ratio matrix and compare the properties with
CR. This work has been further studied and has been used
by several important works [21–23]. We have tested this
work’s performance. The results indicated that it can satisfy
reasonable results with fuzzy elements, although it has some
shortcomings [23].

The consistency index of NI [13] is defined as follows:
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Another successful index that can be extracted from [14,
15] is that they extendGCI (geometric consistency index) [24]
to CCI (centric consistency index) to deal with PCM with
triangle fuzzy elements.The consistency index CCI is defined
as follows:
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) is a priority vector derived by logarithmic least

squares. When CCI(𝐴) = 0, 𝐴 is considered fully consistent.
Thresholds remain identical with index GCI as CCI being
a fuzzy extension of GCI. The thresholds are provided as
follows: CCI = 0.3147 for 𝑛 = 3, CCI = 0.3526 for 𝑛 = 4,
and CCI = 0.370 for 𝑛 > 4 based on Aguarón and Moreno-
Jiménez [24].

In conclusion, we will adopt CR to examine the consis-
tency of crisp elements and use NI and CCI to examine the
consistency of fuzzy elements.

2.3. Parameters to Judge the Effectiveness of Modified Matrix.
Next, we are going to describe the necessary parameters
which can be used to measure the effectiveness of modified

PCM 𝐵. Xu and Wei [6] have given two parameters in the
following:
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𝜎 and 𝛿 are used as the parameters of modificatory effec-
tiveness. The authors of [6, 7] argue that a modified matrix
that preserves the most information of the original one must
satisfy the following condition: 0 < 𝛿 < 2 and 0 < 𝜎 <

1. Extending these two parameters to be suitable to judge
modificatory effectiveness of fuzzy elements so the range is
identical with 𝜎 and 𝛿, 𝜎fuzzy and 𝛿fuzzy are
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Besides 𝜎 and 𝛿, two parameters proposed by Xu andWei
[6], we propose a third parameter should be added, which is
Condition of Order Preservation (COP) (Table 3) [25]. For
example, suppose the original matrix 𝐴 has alternatives (𝑎

1
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2
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3. Main Theories to Obtain Modified PCM

3.1. Distance Analysis between Original Matrix and Modified
Matrix. To measure the distance from original PCM 𝐴 (or
𝐴), several methods can be used [26–30]. The PCM 𝐴 can
be considered as the combination of three matrixes of PCM
𝐴. If the measuring distance methodologies for crisp 𝐴 have
been properly handled, then they can be suitable for fuzzy
𝐴 as well. We will first discuss the distance methods for
crisp numbers.Themeasurement has logarithmic least square
method (LSM) [26, 31], eigenvectormethod [27, 28], and least
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squares method [29, 30].The optimum eigenvector should be
as close as possible to the original eigenvector (derived from
the original matrix). The adjustable matrix could strongly
resemble the original matrix once the optimum eigenvector
has been determined. Therefore, eigenvector can be used to
calculate adjustable PCM 𝐵
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󸀠
).

According to [27, 28, 32], if matrix 𝐴 is consistent, then
we could find positive weights 𝜔 = {𝜔
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The issue of finding the optimal modified matrix can be
portrayed as resolving the minimum value of function 𝑓,
which can be expressed in the following equation:
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This equation can reach the absolute minimum value
(lowest point) when even the worst situation of proportion
of 𝜔
𝑖
/𝜔
𝑗
is closest to 𝑎

𝑖𝑗
. The method to obtain the optimum

positive eigenvector 𝜔 is to find out all possible constraints
and obtain feasible solutions by selecting a suitable linear
programming pattern.

3.2. Constraints Analysis for Achieving Modified Matrix. The
new modified PCM 𝐵 (or 𝐵) should satisfy three conditions:
(1) the consistent value should be at an acceptable level;
(2) the farthest distance between new PCM 𝐵 (or 𝐵) and
orginal PCM 𝐴 (or 𝐴) should be as small as possible; (3) the
obtained newmatrix should have a strong similarity with the
original matrix. These three conditions can guarantee a new
consistent PCM 𝐵 (or 𝐵) which has the closest and maximal
similarity with the orginal inconsistent PCM 𝐴 (or 𝐴). To
suit these conditions, we provide an adjustable PCM which
can reduce the inconsistency of original PCM as much as
possible. On the basis of the adjustable matrix, we propose
the definition of the modified matrix.

Definition 2. The new modified PCM 𝐵 is defined as a
combination of the original PCM𝐴 and an adjustable matrix
called 𝐵
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For fuzzy elements, the new modified PCM 𝐵 is defined
as follows:
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𝐿

𝑖𝑗
)

𝛽

⋅ (𝑏
𝐿

𝑖𝑗

󸀠

)

1−𝛽

) , ((𝑎
𝑀

𝑖𝑗
)

𝛽

⋅ (𝑏
𝑀

𝑖𝑗

󸀠

)

1−𝛽

) ,

((𝑎
𝑈

𝑖𝑗
)

𝛽

⋅ (𝑏
𝑈

𝑖𝑗

󸀠

)

1−𝛽

)} .

(13)

Theproperties of the adjustable PCM𝐵 (or𝐵) and theway
to obtain them will be studied in Section 4.

4. Calculation Processes of Obtaining
Adjustable Matrix

4.1. Problem Statement. The aim of this paper is to find out
a consistent matrix 𝐵 = [

̃
𝑏
𝑖𝑗
]
𝑛×𝑛

which can preserve the most
information of the original matrix 𝐴 = [𝑎

𝑖𝑗
]
𝑛×𝑛

and be the
closest to 𝐴. One method to achieve this aim is that setting
one element of 𝐵 is ̃

𝑏
𝑖𝑗

= (𝑏
𝐿

𝑖𝑗
, 𝑏
𝑀

𝑖𝑗
, 𝑏
𝑈

𝑖𝑗
) and one element of 𝐴

is 𝑎
𝑖𝑗

= (𝑎
𝐿

𝑖𝑗
, 𝑎
𝑀

𝑖𝑗
, 𝑎
𝑈

𝑖𝑗
), by making every element of 𝐵 closely

resemble the elements of 𝐴, which is 𝑏
𝐿

𝑖𝑗
≐ 𝑎
𝐿

𝑖𝑗
, 𝑏𝑀
𝑖𝑗

≐ 𝑎
𝑀

𝑖𝑗
, and

𝑏
𝑈

𝑖𝑗
≐ 𝑎
𝑈

𝑖𝑗
. Therefore, we go to find 𝑏

𝐿

𝑖𝑗
, 𝑏
𝑀

𝑖𝑗
, 𝑏
𝑈

𝑖𝑗
separately. After

finding out 𝑏𝐿
𝑖𝑗
, 𝑏
𝑀

𝑖𝑗
, 𝑏
𝑈

𝑖𝑗
, combine them together to get the new

matrix 𝐵.
On the basis of this idea, we build an adjustable matrix

𝐵
󸀠

= [
̃
𝑏
󸀠

𝑖𝑗
]
𝑛×𝑛

which can reduce the inconsistency of the
original matrix. The new modified matrix is constructed by
two parts. (1) One is the original matrix. The function of
this matrix is to keep the original information and make
sure the two matrixes are in an acceptable distance. (2) One
is the adjustable matrix. The function of this matrix is to
modify the inconsistency level tomake sure the newmodified
matrix’s consistency is based on consistency indexes. The
mathematical expression objective is as follows:

𝐵 = 𝐴 ⊙ 𝐵
󸀠
. (14)

The mathematical expression objective can be developed
as

𝐵 = {((𝑎
𝐿

𝑖𝑗
)

𝛽

⋅ (𝑏
𝐿

𝑖𝑗

󸀠

)

1−𝛽

) , ((𝑎
𝑀

𝑖𝑗
)

𝛽

⋅ (𝑏
𝑀

𝑖𝑗

󸀠

)

1−𝛽

) ,

((𝑎
𝑈

𝑖𝑗
)

𝛽

⋅ (𝑏
𝑈

𝑖𝑗

󸀠

)

1−𝛽

)} .

(15)

This equation is also suitable when 𝑎
𝐿

𝑖𝑗
= 𝑎
𝑀

𝑖𝑗
= 𝑎
𝑈

𝑖𝑗
, which

is for crisp elements.

4.2. Stage 1: Specify Formulas to Obtain the Middle Value 𝑏
𝑀

𝑖𝑗

󸀠

of the Adjustable Matrix 𝐵
󸀠. First, we go to calculate 𝑏

𝑀

𝑖𝑗

󸀠 of
adjustable matrix 𝐵

󸀠. 𝑏𝑀
𝑖𝑗

󸀠 should have a strong relationship
with 𝑎

𝑀

𝑖𝑗
. 𝜔̃
𝑀 is the eigenvector matrix of 𝑎

𝑀

𝑖𝑗
. 𝑏
𝑀

𝑖𝑗

󸀠 can be
gotten in the following equation:

𝑏
𝑀

𝑖𝑗

󸀠

≈

𝜔
𝑀

𝑖

𝜔
𝑀

𝑗

. (16)

The value can be gotten when the proportion is closest
to 𝑎
𝑀

𝑖𝑗
. Equation (17) has feasible solutions which means the

following equation reaches the minimum based value on (11):

𝐺(𝑎
𝑀

𝑖𝑗
, 𝜔̃
𝑀
) = min(max(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑎
𝑀

𝑖𝑗
−

𝜔
𝑀

𝑖

𝜔
𝑀

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

)) . (17)
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We can simply write the variable by introducing an
additional variable 𝑍 = 𝐺(𝑎

𝑀

𝑖𝑗
, 𝜔̃
𝑀
). Then, the problem is as

follows:

min 𝑍

s.t.

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑎
𝑀

𝑖𝑗
−

𝜔
𝑀

𝑖

𝜔
𝑀

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑍, ∀𝑖, 𝑗 ∈ (1, 2, ..., 𝑛) (18)

1

𝜎

≤ 𝜔
𝑀

𝑖
, 𝜔
𝑀

𝑗
≤ 𝜎, 𝑗 = 1, 2, ..., 𝑛. (19)

(The calculation steps of (19) are given in the appendix.)
Assume the value of 𝑍 is given, and then the constraint

(18) can be rewritten as follows:

−𝑍 ≤ (𝑎
𝑀

𝑖𝑗
−

𝜔
𝑀

𝑖

𝜔
𝑀

𝑗

) ≤ 𝑍, (20)

(𝑎
𝑀

𝑖𝑗
− 𝑍) ⋅ 𝜔

𝑀

𝑗
− 𝜔
𝑀

𝑖
≤ 0, (21)

𝜔
𝑀

𝑖
≤ (𝑎
𝑀

𝑖𝑗
+ 𝑍) ⋅ 𝜔

𝑀

𝑗
. (22)

Take the reciprocal of constraint (22); then the new
constraints (23), (24), and (25) can be gotten:

𝜔
𝑀

𝑗

𝜔
𝑀

𝑖

≥

1

(𝑎
𝑀

𝑖𝑗
+ 𝑍)

, (23)

1

(𝑎
𝑀

𝑖𝑗
+ 𝑍)

⋅ 𝜔
𝑀

𝑖
− 𝜔
𝑀

𝑗
≤ 0, (24)

1

(𝑎
𝑀

𝑗𝑖
+ 𝑍)

⋅ 𝜔
𝑀

𝑗
− 𝜔
𝑀

𝑖
≤ 0. (25)

Combine constraint (21) and constraint (25) and remove
one of the inequalities, and then the new inequality can be
gotten:

−𝜔
𝑀

𝑖
+ (max

{

{

{

(𝑎
𝑀

𝑖𝑗
− 𝑍) ,

1

(𝑎
𝑀

𝑗𝑖
+ 𝑍)

}

}

}

)𝜔
𝑀

𝑗
≤ 0. (26)

Analogously, a similar inequality can be gotten:

−𝜔
𝑀

𝑗
+ (max

{

{

{

(𝑎
𝑀

𝑗𝑖
− 𝑍) ,

1

(𝑎
𝑀

𝑖𝑗
+ 𝑍)

}

}

}

)𝜔
𝑀

𝑖
≤ 0. (27)

Next, we add slack variable 𝑆, 𝑇, and objective function
𝐻 = 𝑆 + 𝑇, to change the constraints (26)-(27) to equality
constraints

−𝜔
𝑀

𝑖
+ (max

{

{

{

(𝑎
𝑀

𝑖𝑗
− 𝑍) ,

1

(𝑎
𝑀

𝑗𝑖
+ 𝑍)

}

}

}

)𝜔
𝑀

𝑗
+ 𝑆 = 0,

−𝜔
𝑀

𝑗
+ (max

{

{

{

(𝑎
𝑀

𝑗𝑖
− 𝑍) ,

1

(𝑎
𝑀

𝑖𝑗
+ 𝑍)

}

}

}

)𝜔
𝑀

𝑖
+ 𝑇 = 0,

𝐻 = 𝑆 + 𝑇,

0 ≤ 𝑆, 𝑇,𝐻.

(28)

Nowwe specify constraints, propose formulas to calculate
𝜔
𝑀

𝑖
, 𝜔
𝑀

𝑗
, and add additional stopping parameter 𝑋. Then

constraints (28) correspond to the following linear program-
ming problem:

min 𝑋

s.t.

−𝜔
𝑀

𝑖
+ (max

{

{

{

(𝑎
𝑀

𝑖𝑗
− 𝑍) ,

1

(𝑎
𝑀

𝑗𝑖
+ 𝑍)

}

}

}

)𝜔
𝑀

𝑗
+ 𝑆 = 0

(29)

−𝜔
𝑀

𝑗
+ (max

{

{

{

(𝑎
𝑀

𝑗𝑖
− 𝑍) ,

1

(𝑎
𝑀

𝑖𝑗
+ 𝑍)

}

}

}

)𝜔
𝑀

𝑖
+ 𝑇 = 0

(30)

𝐻 = 𝑆 + 𝑇 (31)

𝜔
𝑀

1
+ 𝑋 = 1 (32)

1

𝜎

≤ 𝜔
𝑀

𝑖
, 𝜔
𝑀

𝑗
≤ 𝜎𝑖, 𝑗 = 1, 2, . . . , 𝑛 (33)

0 ≤ 𝑍, 𝑆, 𝑇,𝐻. (34)

Note 1. (1) In constraint (29), we define 𝜔
𝑀

1
= 1 to normalize

vector 𝜔̃
𝑀. If the stopping parameter 𝑋 = 0, then it means

constraint (29) has a solution, and the problem (29)–(34) has
a feasible solution; the value of 𝜔

𝑀

𝑖
is the optimal solution.

If the stopping parameter is 𝑋 = 1 which contradicts with
constraint (32), then the problem (29)–(34) is inconsistent;
then the value of 𝜔𝑀

𝑖
is not the optimal solution.

(2) The equalities (29)–(34) can be solved by simplex
algorithm [33]. The main idea of this algorithm is to walk
along edges of the polytope to find out extreme points with
lower and lower objective values till the minimum value is
reached or an unbounded edge is visited. If the extreme point
is reached, then the problem (29)–(34) has feasible solutions.

(3) If 𝑍 = 𝑍
󸀠 can make problem (29)–(34) have a feasible

solution, then it must have 𝑍 ≥ 𝑍
󸀠 that can also make the

problem (29)–(34) have a feasible solution. In order to find
the greatest lower bound of 𝑍, we investigate it in Section 4.3.
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{[0, Z/2], X}

{[0, Z], X}

{[0, Z/4], X}

{[Z/2, Z], X}

{[Z/4, Z/2], X} {[Z/2, Z/4], X} {[3Z/4Z], X}

P1
P2 P3 P4

Figure 1: The structure of the segment tree.

(4) If 𝑖 = 𝑗, then 𝑎
𝑀

𝑖𝑖
= 1; then constraint (29) can be

rewritten as follows: −𝜔
𝑀

𝑖
+ (max{(𝑎𝑀

𝑖𝑖
− 𝑍), 1/(𝑎

𝑀

𝑖𝑖
+ 𝑍)}) +

𝑆 = 0. This equality must always be satisfied. Analogously,
constraint (30) is always satisfied. Then the equalities (29)–
(34) can be used to find adjustable PCM 𝐵

󸀠 for original PCM
𝐴.

(5) In this section, we aim to find out the least absolute
worst distance by setting a more precise priority weights
range and adding slack variables, and an iterative way to
obtain feasible solutions will be proposed in Section 4.3.

4.3. Stage 2: Find Feasible Solutions to Obtain the Middle
Value 𝑏

𝑀

𝑖𝑗

󸀠 of Adjustable Matrix 𝐵
󸀠. Next, we focus on how

to find out the greatest lower bound of 𝑍. The problem can
be described as storing intervals of [0, 𝑍max], analyzing the
corresponding 𝑋 value, and finding the greatest lower bound
of 𝑍 thatmakes𝑋 = 0.This problem can be solved by segment
tree.

Substep 1 (sets the initial value). Assume the accuracy level is
𝜉; let the initial value of 𝜔𝑀

𝑖
be (∏

𝑛

𝑗=1
𝑎
𝑀

𝑖𝑗
)

1/𝑛, and 𝜔
𝑀

1
= 1; let

𝑍max = 𝑍 = 𝐺(𝑎
𝑀

𝑖𝑗
, 𝜔̃
𝑀
), and 𝑍min = 𝑍 = 0.

Substep 2 (builds a segment tree by using interval [0, 𝑍]). For
example, in Figure 1, [0, 𝑍] is the interval, and P1, P2, P3, P4
is the list of distinct interval endpoints. We separate intervals
into two parts in every division and terminate this process
till the value of the interval is less than the accuracy level (𝜉).
Then obtain the 𝑋 value in problem (29)–(34) by setting the
current𝑍 value. If𝑋 = 0, then the next𝑍 value is equal to the
lower bound of the current node. The calculation steps will
end till it reaches endpoints (P1; P2; P3; P4) based on accuracy
level 𝜉.

Substep 3. Select the greatest lower value of 𝑍 when 𝑋 = 0;
obtain the feasible solution of 𝜔𝑀

𝑖
, 𝜔𝑀
𝑗
to achieve 𝑏

𝑀

𝑖𝑗

󸀠.

Note 2. The segment tree is special for storing intervals. The
built time is 𝑂(𝑛 log 𝑛) for 𝑛 intervals, and it uses 𝑂(𝑛 log 𝑛)

storage. The reason we adapted to the segment tree is because
the segments can be stored in any arbitrary manner, it can

easily be adapted to counting queries, and it helps us to query
the number of segments that contain a given point.

4.4. Stage 3: Obtain the 𝑏
𝐿

𝑖𝑗

󸀠 and 𝑏
𝑈

𝑖𝑗

󸀠 of the Adjustable Matrix
𝐵
󸀠. Once the optimal solution (𝑏𝑀

𝑖𝑗

󸀠) has been obtained, next,
we focus on obtaining the value of 𝑏𝐿

𝑖𝑗

󸀠 and 𝑏
𝑈

𝑖𝑗

󸀠. The modified
matrix is a combination of the adjustable matrix and the
original matrix based on Definition 2; then the adjustable
matrix should have the minimum fuzziness and maximum
preservation of the originalmatrix’s pattern. If 𝐵̃󸀠 isminimum
fuzziness, then fuzziness of 𝐵will mostly come from𝐴, and 𝐵

will be more similar with 𝐴. In fact, the minimum fuzziness
of 𝐵
󸀠 could reduce uncertainty factors of 𝐵. If 𝐵

󸀠 could
maximally preserve the pattern of 𝐴, then the combination
of 𝐵󸀠 and 𝐴 could reach the most potential of similarity with
𝐴. We propose Theorem 3 to obtain the value of 𝑏𝐿

𝑖𝑗

󸀠 and 𝑏
𝑈

𝑖𝑗

󸀠

based on the above theory.

Theorem 3. The optimal solution vector is 𝜔
𝑀

𝑖
; then 𝐵

𝑀

𝑖𝑗

󸀠

=

𝜔
𝑀

𝑖
/𝜔
𝑀

𝑗
, 𝑖 = 1, 2, . . . , 𝑛. Set 𝐶

𝐿
, 𝐶
𝑈

as arbitrary positive
constants. Define the value of𝜔𝐿

𝑖
,𝜔𝑈
𝑖
in the following formulas:

𝜔
𝐿

𝑖
= 𝐶
𝐿
⋅ 𝜔
𝑀

𝑖
,

𝑤ℎ𝑒𝑟𝑒 𝐶
𝐿
= min

{

{

{

∑
𝑛

𝑗=1
𝑎
𝑀

𝑖𝑗

∑
𝑛

𝑗=1
𝑎
𝐿

𝑖𝑗

,

(∏
𝑛

𝑗=1
𝑎
𝑀

𝑖𝑗
)

1/𝑛

(∏
𝑛

𝑗=1
𝑎
𝐿

𝑖𝑗
)

1/𝑛

}

}

}

,

𝜔
𝑈

𝑖
= 𝐶
𝑈

⋅ 𝜔
𝑀

𝑖
,

𝑤ℎ𝑒𝑟𝑒 𝐶
𝑈

= max
{

{

{

∑
𝑛

𝑗=1
𝑎
𝑀

𝑖𝑗

∑
𝑛

𝑗=1
𝑎
𝑈

𝑖𝑗

,

(∏
𝑛

𝑗=1
𝑎
𝑀

𝑖𝑗
)

1/𝑛

(∏
𝑛

𝑗=1
𝑎
𝑈

𝑖𝑗
)

1/𝑛

}

}

}

(35)

Then the value of 𝑏𝐿
𝑖𝑗

󸀠 and 𝑏
𝑈

𝑖𝑗

󸀠 is defined as follows:

𝑏
𝐿

𝑖𝑗

󸀠

=

𝜔
𝐿

𝑖

𝜔
𝐿

𝑗

, 𝑏
𝑈

𝑖𝑗

󸀠

=

𝜔
𝑈

𝑖

𝜔
𝑈

𝑗

. (36)

Proof. The value of 𝐶
𝐿
and 𝐶

𝑈
should satisfy two conditions:

one is minimum fuzziness of 𝜔
𝑀

𝑖
, and the other one is

maximally maintaining similarity of original matrix 𝐴.
By the first condition, we can get

𝜔
𝐿

𝑖
≤ 𝜔
𝑀

𝑖
≤ 𝜔
𝑈

𝑖
,

𝜔
𝐿

𝑖
= 𝐶min𝜔

𝑀

𝑖
,

𝜔
𝑈

𝑖
= 𝐶max𝜔

𝑀

𝑖
.

(37)

By the second condition, we need to consider the distance
between 𝑎

𝐿

𝑖𝑗
, 𝑎𝑀
𝑖𝑗
, and 𝑎

𝑈

𝑖𝑗
, maintain the relationship among

the original matrix, and make the new matrix closest to the
original matrix’s pattern. It means to find out the smallest
coefficient between 𝑎

𝐿

𝑖𝑗
and 𝑎

𝑀

𝑖𝑗
and the smallest coefficient
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Table 1: The values of parameters for each iterative time.

Iterative
time 𝑍max 𝑍min 𝑍 𝜉 𝑋 𝜔

1 10.0725 0 5.0362 10.0725 0 𝜔1
2 5.0362 2.5181 2.5181 2.5181 1 —
3 3.7772 2.5181 3.7772 1.2591 0 𝜔2
4 3.7772 3.1476 3.1476 0.6296 1 —
5 3.7772 3.4624 3.4624 0.3148 1 —
6 3.7772 3.6198 3.6198 0.1574 1 —
7 3.7772 3.6985 3.6985 0.0787 0 𝜔3

between 𝑎
𝑀

𝑖𝑗
and 𝑎
𝑈

𝑖𝑗
. We can get the following formulas based

on the second condition:

𝐶min = min
{

{

{

∑
𝑛

𝑗=1
𝑎
𝑀

𝑖𝑗

∑
𝑛

𝑗=1
𝑎
𝐿

𝑖𝑗

,

(∏
𝑛

𝑗=1
𝑎
𝑀

𝑖𝑗
)

1/𝑛

(∏
𝑛

𝑗=1
𝑎
𝐿

𝑖𝑗
)

1/𝑛

}

}

}

,

𝐶max = max
{

{

{

∑
𝑛

𝑗=1
𝑎
𝑀

𝑖𝑗

∑
𝑛

𝑗=1
𝑎
𝑈

𝑖𝑗

,

(∏
𝑛

𝑗=1
𝑎
𝑀

𝑖𝑗
)

1/𝑛

(∏
𝑛

𝑗=1
𝑎
𝑈

𝑖𝑗
)

1/𝑛

}

}

}

.

(38)

Therefore, we can prove formula (35) exists and prove
that it is correct by (38). To be more precise, for instance, in
Figure 2, (̃𝑏

𝑖𝑗
)
󸀠

2
is not satisfied with condition 1, and then it is

not the minimum fuzziness of associated weights. If (̃𝑏
𝑖𝑗
)
󸀠

1
is

not satisfied with condition 2, then it does not have the same
pattern with matrix 𝐴. (̃𝑏

𝑖𝑗
)
󸀠

3
is the optimal solution.

5. An Algorithm to Obtain Modified PCM 𝐵

After analysis in Sections 4.2, 4.3, and 4.4, we propose an
algorithm to conclude how to obtain the modified PCM 𝐵

(see Algorithm 1).

6. Numerical Illustration and Comparison
with Crisp Numbers

6.1. Calculation of an Illustration byUsing ProposedAlgorithm.
We run the experiments by software Matlab (R2009a) on a
personal computer with Intel Core 2.2GHZ and 4G RAM.
First we test crisp numbers by using Algorithm 1 and then
compare them with [6, 7].

The inconsistent matrix in [6, 7] is the following matrix:

𝐴 =

(
(
(
(
(
(
(
(
(
(
(

(

1.0000 5.0000 3.0000 7.0000 6.0000 6.0000 0.3333 0.2500

0.2000 1.0000 0.3333 5.0000 3.0000 3.0000 0.2000 0.1429

0.3333 3.0000 1.0000 6.0000 3.0000 4.0000 6.0000 0.2000

0.1429 0.2000 0.1667 1.0000 0.3333 0.2500 0.1429 0.1250

0.1667 0.3333 0.3333 3.0000 1.0000 0.5000 0.2000 0.1667

0.1667 0.3333 0.2500 4.0000 2.0000 1.0000 0.2000 0.1667

3.0000 5.0000 0.1667 7.0000 5.0000 5.0000 1.0000 0.5000

4.0000 7.0000 5.0000 8.0000 6.0000 6.0000 2.0000 1.0000

)
)
)
)
)
)
)
)
)
)
)

)

. (39)

For matrix 𝐴, 𝜆max = 9.669, CR = 0.161 > 0.1, and
the principal eigenvector is 𝜔 = (0.1730 0.0540 0.1881 0.0175
0.0310 0.0363 0.1668 0.3332)T.

The value of CR is more than 0.1.Therefore, we will adopt
Algorithm 1 to obtain the new consistency matrix.

Calculation Step 1. Input of the initial value of 𝐴 and initial
value of 𝜉.

(1) The original matrix 𝐴 = (𝑎
𝐿

𝑖𝑗
, 𝑎
𝑀

𝑖𝑗
, 𝑎
𝑈

𝑖𝑗
); here, crisp

number is a specific case of fuzzy number in our
model. Set 𝑎𝐿

𝑖𝑗
= 𝑎
𝑀

𝑖𝑗
= 𝑎
𝑈

𝑖𝑗
= 𝐴.

(2) The acceptable precise degree 𝜉 = 0.1. (Here, we adopt
0.1 as an example.)

Calculation Step 2. Calculation process.

(1) Calculate the initial value of 𝑍 by (17).

(2) First time𝑍 = 10.0725; substitute𝑍 into Algorithm 1;
𝑍max = 10.075, 𝑍min = 0, and 𝑍max − 𝑍min > 𝜉; set
new 𝑍 = (𝑍max − 𝑍min)/2.

(3) The second time, 𝑍 = (10.0725 − 0)/2 = 5.0362;
substitute new 𝑍 into Algorithm 1; solve the problem
(29)–(34); the result is𝑋 = 0 and𝑤 = (1.0000 0.3469
4.0000 0.5262 0.2902 0.1346 0.9375 1.4637). We put
the following calculation in Table 1.

Calculation Step 3. Description parameters’ meaning. The
value of 𝜉 is a stopping sign. If current value of 𝜉 is less than
0.1, stop the calculation process.

The value of 𝑋 can determine how to change the current
𝑍 value. If 𝑋 = 0, it means there is a solution for problem
(29)–(34); then save the value of vector 𝜔 and set 𝑍max = 𝑍;
else 𝑋 = 1; it means there is not a solution for problem (29)–
(34); then set 𝑍min = 𝑍, 𝑍 = 𝑍max.
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𝜇
)

)

1/𝜎 ãLij ãMij ãUij 𝜎

ij

Ã

ã

b̃ij

(a)

𝜇
)

)

1/𝜎 ãMij 𝜎

)󳰀2

(b )󳰀1

)󳰀3

ij

b̃󳰀Mij

ã

ĩj

(b̃ij

(b̃ij

B̃

(b)

Figure 2: Choosing optimal matrix 𝐵
󸀠 which is closest to matrix 𝐴.

Algorithm Find Modified Matrix(𝑍max, 𝑍min, 𝜉, 𝐴)
Input: 𝑍max, 𝑍min, 𝜉, original matrix 𝐴

Output: 𝑍max, 𝑍min, optimal matrix 𝐵

BEGIN
(1) If (𝑍max − 𝑍min < 𝜉) & (𝑋 = 0)

Then
The current 𝜔𝑀

𝑖
is the desired optimal solution of weight vector.

Adopt (16) to get 𝑏𝑀
𝑖𝑗

󸀠.
Use Theorem 3 to obtain 𝑏

𝐿

𝑖𝑗

󸀠 and 𝑏
𝑈

𝑖𝑗

󸀠.

Adjustable PCM 𝐵
󸀠
= (𝑏
𝐿

𝑖𝑗

󸀠

, 𝑏
𝑀

𝑖𝑗

󸀠

, 𝑏
𝑈

𝑖𝑗

󸀠

).
Obtain Modified PCM 𝐵 by Definition 2.
Stop.

(2) Else Search segment tree
Find the greatest lower value of 𝑍 when 𝑋 = 0

𝑍max = upper bound of the interval; 𝑍min = lower bound of the interval
Solve the problem (29)–(34),
Save the new value of 𝜔𝑀

𝑖

END

Algorithm 1: Find modified PCM.

Note 3. Consider

𝜔1 = (1.0000 0.3469 4.0000 0.5262 0.2902 0.1346 0.9375 1.4637)
𝑇

,

𝜔2 = (1.0000 0.4499 1.2228 0.1259 0.4499 0.4499 0.5501 1.4953)
𝑇

,

𝜔3 = (1.0000 0.9097 2.6082 0.2677 0.4345 0.4345 1.1620 3.3244)
𝑇

.

(40)

Now, we go to discuss the results. When in the 7th
iterative time, the gap between𝑍min and𝑍max is 0.0787, which
is less than 0.1; the process stops at this point. In order to
better understand, we use the segment tree to express the
changing process in Figure 3.

In Figure 3, the current 𝑍 value is colored with red and
bold. The first 𝑍 value is 10.0725, and 𝑋 = 0, which means

there is a solution for inequalities (29)–(34); the second 𝑍

value is 5.0362, and 𝑋 = 0; by combining the first result,
it must have a solution when Z value is between 5.0362
and 10.0725. Therefore, the program goes to search the left
subtree of the node; the third 𝑍 value is 2.5181, and 𝑋 = 1,
which means there is not a solution for inequalities (29)–
(34); the program needs to search the right subtree of this
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node, because the right child node is bigger than 2.5181.
We continue the process till the gap between two child nodes
is less than 𝜉.

The final result of positive vector is 𝜔3 = (1.0000 0.9097
2.6082 0.2677 0.4345 0.4345 1.1620 3.3244)T.

On the basis of 𝜔3, we construct the new consistency
matrix 𝐵

󸀠 as in the following:

𝐵
󸀠
=

(
(
(
(

(

1.0000 1.0993 0.3834 3.7354 2.3015 2.3015 0.8606 0.3008

0.9097 1.0000 0.3488 3.3979 2.0936 2.0936 0.7828 0.2736

2.6082 2.8672 1.0000 9.7424 6.0027 6.0027 2.2445 0.7845

0.2677 0.2943 0.1026 1.0000 0.6161 0.6161 0.2304 0.0805

0.4345 0.4777 0.1666 1.6230 1.0000 1.0000 0.3739 0.1307

0.4345 0.4777 0.1666 1.6230 1.0000 1.0000 0.3739 0.1307

1.1620 1.2775 0.4455 4.3406 2.6745 2.6745 1.0000 0.3495

3.3244 3.6546 1.2746 12.4179 7.6512 7.6512 2.8609 1.0000

)
)
)
)

)

. (41)

Here, we adopt 𝛽 = 0.8 as an e xample in Definition 2.
The new matrix 𝐵 is as follows:

𝐵 =

(
(
(
(

(

1.0000 3.6932 1.9881 6.1737 4.9536 4.9536 0.4030 0.2594

0.2708 1.0000 0.3364 4.6283 2.7917 2.7917 0.2628 0.1627

0.5030 2.9730 1.0000 6.6108 3.4464 4.3383 4.9288 0.2629

0.1620 0.2161 0.1513 1.0000 0.3769 0.2994 0.1572 0.1145

0.2019 0.3582 0.2902 2.6531 1.0000 0.5743 0.2267 0.1588

0.2019 0.3582 0.2305 3.3397 1.7411 1.0000 0.2267 0.1588

2.4817 3.8058 0.2029 6.3619 4.4119 4.4119 1.0000 0.4655

3.8547 6.1468 3.8041 8.7354 6.2989 6.2989 2.1484 1.0000

)
)
)
)

)

. (42)

6.2. Comparison with References. Xu andWei [6] defined the
original matrix 𝐴 (the elements are 𝑎

𝑖𝑗
) that can be replaced

by the new matrix 𝐵 (the elements are 𝑏
𝑖𝑗
), which is showed

in the following equation:

𝑏
𝑖𝑗

= 𝑎
𝛼

𝑖𝑗
(

𝜔
𝑖

𝜔
𝑗

)

1−𝛼

, (43)

where 𝛼 is the positive value which is less than, but approach-
ing to, 1.

Cao et al. [7] proposed an equation to obtain the new
matrix 𝐵, which is showed by the following:

𝑏
𝑖𝑗

= (

𝜔
𝑖

𝜔
𝑗

) ∘ 𝐷
󸀠
, (44)

where ∘ is the symbol of Hadamard product. For example,
𝐴 = 𝐵 ∘ 𝐶 means 𝑎

𝑖𝑗
= 𝑏
𝑖𝑗
× 𝑐
𝑖𝑗
, ∀𝑖, 𝑗 = 1, . . . , 𝑛, and 𝐷

󸀠 is the
modified deviation matrix, which is showed in the following
equation:

𝐷
󸀠
= [𝑑
󸀠

𝑖𝑗
] = 𝛾𝐷 ⊕ (1 − 𝛾)DI, (45)

where 𝐷 is the deviation matrix and DI is a zero deviation
matrix when [𝑑

𝑖𝑗
] = 1. The value of 𝛾 is between 0 and 1.

𝛼 and 𝛾 has differentmeanings for two papers, but the two
parameters should be as close to 1 as possible. In two papers,
theymentioned that 𝛼 = 𝛾 = 0.98 is themost suitable value to
get the optimal new matrix. We will discuss 𝛽’s meaning and
the relationship with 𝛼 and 𝛾 in Section 8. We compare with
two references in two situations: one is the required critical
ratio (CR) less than 0.1 (Table 2); the other one is the required
critical ratio (CR) close to 0 (Table 4).

From Table 2, we reach the outcome that the CR value is
lower than [6, 7]; at the same time, the method could achieve
lower values of 𝛿 and 𝜎 in short iterative times. It means
that our method can preserve more original information and
obtain a more consistent new matrix in short iterative times.
When we rank the priority weight 𝜔 derived from 𝐴, the
ranking results are the same except when 𝜉 = 0.1 in two
similar weights, which means the priority weight 𝜔 which is
derived from our method is acceptable.

On the basis of Table 2, we go to discover the difference
of COP parameter in our method and two references. The
preference value between every two alternatives is gotten
from priority weight 𝜔 of the column “priority weight” in
Table 2. For example, the value of {𝑎

1
, 𝑎
2
} is obtained in

𝜔XU = (1.0000 0.3241 1.0329 0.1034 0.1843 0.2172 0.9804
1.9353), which is 1/0.3241 = 3.0855.

The modified new matrix 𝐵XU, 𝐵Cao, 𝐵Our(0.05),
𝐵Our(0.1), and 𝐵Our(0.2) is in the following:
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𝐵Xu =

(
(
(
(
(
(

(

1.0000 2.9597 1.0501 9.4467 5.2285 4.4066 1.0207 0.5116

0.3379 1.0000 0.3548 3.1918 1.7666 1.4889 0.3449 0.1729

0.9523 2.8185 1.0000 8.9961 4.9791 4.1964 0.9720 0.4872

0.1059 0.3133 0.1112 1.0000 0.5535 0.4665 0.1080 0.0542

0.1913 0.5661 0.2008 1.8068 1.0000 0.8428 0.1952 0.0978

0.2269 0.6717 0.2383 2.1438 1.1865 1.0000 0.2316 0.1161

0.9797 2.8997 1.0288 9.2553 5.1226 4.3173 1.0000 0.5012

1.9546 5.7851 2.0525 18.4648 10.2197 8.6133 1.9950 1.0000

)
)
)
)
)
)

)

,

𝐵Cao =

(
(
(
(

(

1.0000 3.2055 0.9198 9.8822 5.5733 4.7634 1.0371 0.5193

0.3120 1.0000 0.2869 3.0829 1.7387 1.4860 0.3235 0.1620

1.0872 3.4851 1.0000 10.7443 6.0595 5.1789 1.1275 0.5646

0.1012 0.3244 0.0931 1.0000 0.5640 0.4820 0.1049 0.0525

0.1794 0.5751 0.1650 1.7731 1.0000 0.8547 0.1861 0.0932

0.2099 0.6729 0.1931 2.0746 1.1700 1.0000 0.2177 0.1090

0.9643 3.0909 0.8869 9.5290 5.3741 4.5932 1.0000 0.5007

1.9258 6.1729 1.7712 19.0308 10.7329 9.1731 1.9971 1.0000

)
)
)
)

)

,

𝐵Our (0.05) =

(
(
(
(

(

1.0000 4.2959 2.2710 6.7491 4.9705 4.9705 0.4642 0.2934

0.2328 1.0000 0.3303 4.3498 2.4082 2.4082 0.2602 0.1582

0.4403 3.0273 1.0000 6.3266 3.0273 3.8107 4.9705 0.2602

0.1482 0.2299 0.1581 1.0000 0.3459 0.2748 0.1656 0.1184

0.2012 0.4152 0.3303 2.8906 1.0000 0.5743 0.2602 0.1789

0.2012 0.4152 0.2624 3.6387 1.7411 1.0000 0.2602 0.1789

2.1543 3.8428 0.2012 6.0374 3.8428 3.8428 1.0000 0.4569

3.4088 6.3228 3.8428 8.4449 5.5892 5.5892 2.1886 1.0000

)
)
)
)

)

,

𝐵Our (0.1) =

(
(
(
(

(

1.0000 3.6932 1.9881 6.1737 4.9536 4.9536 0.4030 0.2594

0.2708 1.0000 0.3364 4.6283 2.7917 2.7917 0.2628 0.1627

0.5030 2.9730 1.0000 6.6108 3.4464 4.3383 4.9288 0.2629

0.1620 0.2161 0.1513 1.0000 0.3769 0.2994 0.1572 0.1145

0.2019 0.3582 0.2902 2.6531 1.0000 0.5743 0.2267 0.1588

0.2019 0.3582 0.2305 3.3397 1.7411 1.0000 0.2267 0.1588

2.4817 3.8058 0.2029 6.3619 4.4119 4.4119 1.0000 0.4655

3.8547 6.1468 3.8041 8.7354 6.2989 6.2989 2.1484 1.0000

)
)
)
)

)

,

𝐵Our (0.2) =

(
(
(
(

(

1.0000 4.2516 2.3133 7.1790 4.9193 4.9193 0.4680 0.3044

0.2352 1.0000 0.3400 4.6750 2.4082 2.4082 0.2651 0.1658

0.4323 2.9414 1.0000 6.6066 2.9414 3.7026 4.9193 0.2651

0.1393 0.2139 0.1514 1.0000 0.3219 0.2557 0.1570 0.1155

0.2033 0.4152 0.3400 3.1067 1.0000 0.5743 0.2651 0.1876

0.2033 0.4152 0.2701 3.9107 1.7411 1.0000 0.2651 0.1876

2.1369 3.7727 0.2033 6.3702 3.7727 3.7727 1.0000 0.4702

3.2854 6.0312 3.7727 8.6577 5.3315 5.3315 2.1266 1.0000

)
)
)
)

)

.

(46)

Thegap of elements in every twonewmatrixes (𝐵XU,𝐵Cao,
𝐵Our(0.05), 𝐵Our(0.1) and 𝐵Our(0.2)) is less than 1.5 < 2,
which proves these five matrixes are considerably close with
each other; but, in Table 2, the CR value of our method is
less than the other two methods, which means 𝐵Our(0.05),

𝐵Our(0.1), and 𝐵Our(0.2) are more consistent than 𝐵XU and
𝐵Cao. Meanwhile, the value of 𝛿 and 𝜎 for 𝐵Our(0.05) is
the lowest, which means 𝐵Our(0.05) is the best solution for
original matrix𝐴. Next, we go to discuss the second situation
when CR is close to 0. The analysis results are in Table 4.
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The iterative times for [6, 7] 820 and 1619 are quite large,
whichwill cost the running time.The value of 𝛿 and𝜎 in these
two references is far away from the acceptable value, which
means the priority weight of 𝜔XU and 𝜔Cao is not acceptable
at all; but the iterative times of our method are less than 10
times, the value of 𝛿 is less than 4, and the value of 𝜎 is
less than 2, which means our result is acceptable to some
extent.

7. Numerical Illustration and Comparison
with Fuzzy Numbers

To judge the effectiveness of Algorithm 1 for fuzzy PCMs, we
analyze several parameters including the inconsistency index
NI [13], consistency index CCI [14, 15], 𝛿fuzzy, 𝜎fuzzy, COP,
iteration times, and running time.

We adopt the same inconsistent matrix with Ramı́k and
Korviny [13], which is

𝐴 = (

(1, 1, 1) (2, 3, 4) (4, 5, 6)

(

1

4

,

1

3

,

1

3

) (1, 1, 1) (3, 4, 5)

(

1

6

,

1

5

,

1

4

) (

1

5

,

1

4

,

1

3

) (1, 1, 1)

). (47)

For matrix 𝐴, NI9
3
(𝐴) = 0.219. It is an inconsistent PCM

with fuzzy elements. We adopt Algorithm 1 to obtain the
modified new matrix under different parameters. The results
are shown in Table 5.

For this matrix, the modified matrices 𝐵 are quite similar
when the accurate degrees are 𝜉 = 0.1 and 𝜉 = 0.01, and,
therefore, we only give the modified matrix 𝐵 when 𝜉 = 0.1

and 𝜉 = 0.001 under 𝛽 = 0.5 and 𝛽 = 0.6:

𝐵 (𝜉 = 0.1, 𝛽 = 0.5) = (

[1, 1, 1] [2.021, 2.453, 2.718] [5.284, 5.480, 5.800]

[0.350, 0.407, 0.424] [1, 1, 1] [3.202, 3.460, 3.895]

[0.154, 0.182, 0.211] [0.241, 0.288, 0.331] [1, 1, 1]

) ,

𝐵 (𝜉 = 0.001, 𝛽 = 0.5) = (

[1, 1, 1] [2.017, 2.449, 2.714] [5.281, 5.477, 5.797]

[0.350, 0.408, 0.425] [1, 1, 1] [3.205, 3.463, 3.899]

[0.154, 0.182, 0.211] [0.241, 0.288, 0.331] [1, 1, 1]

) ,

𝐵 (𝜉 = 0.1, 𝛽 = 0.6) = (

[1, 1, 1] [2.016, 2.553, 2.936] [4.997, 5.380, 5.839]

[0.327, 0.391, 0.404] [1, 1, 1] [3.1608, 3.562, 4.094]

[0.156, 0.185, 0.218] [0.232, 0.280, 0.331] [1, 1, 1]

) ,

𝐵 (𝜉 = 0.001, 𝛽 = 0.6) = (

[1, 1, 1] [2.014, 2.550, 2.933] [4.995, 5.378, 5.837]

[0.327, 0.392, 0.405] [1, 1, 1] [3.163, 3.565, 4.098]

[0.156, 0.185, 0.218] [0.232, 0.280, 0.331] [1, 1, 1]

) .

(48)

In Table 5, the inconsistency index NI is less than 0.1 and
consistency index CCI is less than 0.3147, which indicates the
modified matrix can reach a consistent requirement; 𝛿fuzzy
satisfies 0 < 𝛿fuzzy < 2 and 𝜎fuzzy satisfies 0 < 𝜎fuzzy < 1, which
shows the obtained new matrix is in an acceptable distance
with𝐴; the value of COP, which is gotten from priority vector
𝜔̃ of𝐵, can preserve order of preference and order of intensity
preference, which presents 𝐵 can maintain the pattern of 𝐴
(similarity). Meanwhile, Algorithm 1 has high convergence
speed based on the less iteration times and running time.
The gap among these four matrixes is quite narrow; 𝐵 (𝜉 =

0.1, 𝛽 = 0.5) is the best choice when we select the smallest
value of the consistency index (NI, CCI), 𝛿fuzzy, and 𝜎fuzzy.

8. Discussion

Tables 2 and 4 conclude the effectiveness of Algorithm 1 by
comparing with Cao et al. [7] and Xu and Wei [6] based
on PCMs with crisp elements. Algorithm 1 can retain more
original information and achieve lower value of 𝛿 and 𝜎when
both 𝛼 [6] and 𝛾 [7] approach 1. Table 5 summarizes the

effectiveness of Algorithm 1 for PCMs with fuzzy elements.
The modified PCMs with fuzzy elements can maintain
original information and reach acceptable consistency level
as well.

In Algorithm 1, 𝛽 has different meaning with 𝛼 and 𝛾. In
Cao et al. [7] and Xu andWei [6], the results gotten by using 𝛼

and 𝛾 equal to 0.98 are significantly better than those by using
𝛼 and 𝛾 less than 0.98. Yet, it is not always the case for 𝛽. The
true meaning of 𝛽 is the proportion of the original matrix to
adjustablematrix.The approximate prefect range of𝛽 is [0.25,
0.8] based on the experiments’ results, and there is no clue
which value is the best one for 𝛽 as the inconsistency level of
PCMs is different. As a matter of fact, changing 𝛽’s value will
not add running time, because this operation runs in constant
time. As a future research, it would be interesting to figure
out the exact prefect range of 𝛽. In this section, we focus on
efficiency analysis of Algorithm 1 as effective analysis is done
in Sections 6 and 7.

8.1. Efficiency Analysis: Algorithm Running Time. To demon-
strate the overall efficiency of Algorithm 1, we measure
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{[0, 10.0725], 0}

{[0, 5.0362], 0} {[5.0362, 10.0725], 0}

{[0, 2.5181], 1} {[2.5181, 5.0362], 0} {[5.0362, 7.5543], 0} {[7.5543, 10.0725], 0}

{[2.5181, 3.7772], 0} {[3.7772, 5.0362], 0}

{[2.5181, 3.1476], 1} {[3.1476, 3.7772], 1}

{[3.1476, 3.4624], 1} {[3.4624, 3.7772], 0}

{[3.4624, 3.6198], 1} {[3.6198, 3.7772], 0}

{[3.6198, 3.6985], 0} {[3.6985, 3.7772], 0}

Figure 3: An example of iterative times in segment tree structure.
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Figure 4: Average running time with fuzzy and crisp elements (in seconds).

the average running time and iteration times for crisp
and fuzzy elements. The elements of crisp matrix 𝐴 and
fuzzy 𝐴 are gotten from randomly generated numbers by
programming. The size (𝑛) of matrix 𝐴 and 𝐴 varies from 3
to 10 (in real life problems, the size is usually no more than
10). We adopt twenty matrixes for each size.

The assumed accuracy level 𝜉 is the following three
numbers: 0.1, 0.01, and 0.001. The value of 𝛽 in the final step
(𝐵 = 𝑎

𝛽

𝑖𝑗
(𝑏
󸀠

𝑖𝑗
)
1−𝛽) will not affect the running time. The average

running time of crisp elements is shown in Figure 4(a).
The average running time of fuzzy elements is shown in
Figure 4(b). In all cases, the running times are less than half a
second, which is acceptable in real experiments. As expected,
the higher the accuracy degree, the longer the running time
in the same matrix size. The figure shows the growth rate
of fuzzy matrixes’ running time is more irregular than crisp
matrixes.

8.2. Efficiency Analysis: Convergence Rate. The speed of
convergence is one important factor of the efficiency for an
iterative method. In Algorithm 1, the only parameter that
can influence iteration times is the accuracy degree (𝜉). 𝛼

and 𝛾 are the parameters which can influence the number of
iterations for [6, 7], respectively. According to the numerical
illustration in Section 6, we study the convergence rate with
respect to the values of 𝜉, 𝛼, and 𝛾, by using Algorithm 1 and
[6, 7], respectively. Meanwhile, we examine the convergence
rate for fuzzy elements based on the data in Section 7.
Figure 5 shows the results.

The convergence rate of Cao et al. [7] is slower than Xu
and Wei [6] when 𝛾 = 𝛼. For these two methods, the lower
the parameters value, the higher the rate of convergence.
Algorithm 1 can approach its limits faster than Cao et al.
[7] and Xu and Wei [6]. The maximum iteration time for
Algorithm 1 is less than twenty when 𝜉 = 0.0001, while the
maximum iteration times forCao et al. [7] andXu andWei [6]
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Figure 5: Convergence rate of Cao et al. [7], Xu and Wei [6], and Algorithm 1.

are 1619 and 820, respectively. For fuzzy elements, the conver-
gence rate of Algorithm 1 has low growth rate as well.

9. Conclusions

In this work, an algorithm has been proposed to derive
a consistent PCM with crisp or fuzzy elements from an
inconsistent one. The presented approach used the same
numerical example used by [6, 7, 13]. The experiments
reveal that the proposed approach could retain more original
information and the convergence rate is faster than Cao et al.
[7] andXu andWei [6] in different values of CR. Two effective
criteria, 𝛿 and 𝜎, show that the distance between modified
PCM and original PCM is acceptable for both crisp and fuzzy
elements. A new effectiveness criterion COP reflects that the
modified PCM resembles the original PCM (crisp and fuzzy
elements). In conclusion, this approach could enhance the
quality of vague and inaccuracy data for decision makers and

also could better handle the inconsistency problem of AHP
and fuzzy AHP.

In the futurework, wewill apply this approach to different
applications. Meanwhile, efforts should be made to explore
the prefect range of 𝛽 and study the issue of selecting the
situation where we can supply a consistency PCM to an
inconsistency one based on real-life meaning.

Appendix

The Calculation Steps of (19)
Before we go to find these elements, define the range of
every value of 𝑏

𝐿

𝑖𝑗
, 𝑏𝑀
𝑖𝑗
, 𝑏𝑈
𝑖𝑗
. Given fuzzy reciprocal matrix 𝐴

= {𝑎
𝑖𝑗
}
𝑛×𝑛

= {𝑎
𝐿

𝑖𝑗
, 𝑎
𝑀

𝑖𝑗
, 𝑎
𝑈

𝑖𝑗
}
𝑛×𝑛

, it has the support SUPP(𝑎
𝑖𝑗
) ⊆

𝑆 = [1/𝜎, 𝜎], where 𝜎 > 1, ∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}. This means
1/𝜎 ≤ 𝑎

𝐿

𝑖𝑗
≤ 𝑎
𝑀

𝑖𝑗
≤ 𝑎
𝐿

𝑖𝑗
≤ 𝜎.
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Table 2: 𝛼 = 𝛾 = 0.98. Iteration times, CR ≤ 0.1, 𝛿, 𝜎, 𝜆max, and priority weight results.

Methods Iteration needed
for CR ≤ 0.1 CR 𝛿 𝜎 𝜆max Priority weight

Xu and Wei [6] 12 0.0972 1.845 0.589 8.955 𝜔XU, 𝑅XU

Cao et al. [7] 18 0.0997 1.713 0.448 8.9844 𝜔Cao, 𝑅Cao

Our method (𝜉 = 0.05, 𝛽 = 0.8) 8 0.0964 1.1572 0.4710 8.9017 𝜔Our(0.05)

𝑅Our(0.05)

Our method (𝜉 = 0.1, 𝛽 = 0.8) 7 0.0964 0.7354 0.4689 8.9017 𝜔Our(0.1)

𝑅Our(0.1)

Our method (𝜉 = 0.2, 𝛽 = 0.8) 6 0.0964 1.2273 0.4993 8.9017 𝜔Our(0.2)

𝑅Our(0.2)

𝜔XU, 𝑅XU
𝜔XU = (1.0000 0.3241 1.0329 0.1034 0.1843 0.2172 0.9804 1.9353)

𝑅XU = (8 3 1 7 2 6 5 4)

𝜔Cao, 𝑅Cao
𝜔Cao = (1.0000 0.3191 1.0695 0.1019 0.1824 0.2142 0.9699 1.9340)

𝑅Cao = (8 3 1 7 2 6 5 4)
𝜔Our(0.05)

𝑅Our(0.05)

𝜔Our(0.05) = (1.0000 0.3430 1.0856 0.1143 0.2182 0.2493 0.8808 1.9064)
𝑅Our(0.05) = (8 3 1 7 2 6 5 4)

𝜔Our(0.1)

𝑅Our(0.1)

𝜔Our(0.1) = (1.0000 0.3990 1.2401 0.1249 0.2189 0.2501 1.0147 2.1558)
𝑅Our(0.1) = (8 3 7 1 2 6 5 4)

𝜔Our(0.2)

𝑅Our(0.2)

𝜔Our(0.2) = (1.0000 0.3466 1.0657 0.1074 0.2205 0.2518 0.8737 1.8375)
𝑅Our(0.2) = (8 3 1 7 2 6 5 4)

Table 3: COP (condition of order preservation) parameter value.
Original
matrix 𝜔

𝜔XU 𝜔Cao 𝜔Our(0.05) 𝜔Our(0.1) 𝜔Our(0.2)

{𝑎
1
, 𝑎
2
} 3.2055 3.0855 3.2037 2.9152 2.5062 2.8852

{𝑎
1
, 𝑎
3
} 0.9198 0.9681 0.9197 0.9212 0.8064 0.9383

{𝑎
1
, 𝑎
4
} 9.8822 9.6712 9.8857 8.7519 8.0060 9.3096

{𝑎
1
, 𝑎
5
} 5.5733 5.4259 5.5806 4.5830 4.5674 4.5358

{𝑎
1
, 𝑎
6
} 4.7634 4.6041 4.7658 4.0119 3.9984 3.9706

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Conclusion
Cao et al. [7] are closer to the original matrix 𝜔, but the gap among Cao et al. [7], Xu and Wei [6], and our method is very

narrow (less than 1), the three methods almost in the same extends to close to original 𝜔. Thus, our method is acceptable in
this parameter.

Given a vector of fuzzy weights 𝜔̃ = (𝜔̃
1
, 𝜔̃
2
, . . . , 𝜔̃

𝑛
),

which is the corresponding eigenvector matrix 𝜔̃ closest to
original matrix 𝐴, the value of eigenvector matrix 𝜔̃ should
satisfy the following formula:

𝜔
𝑖
≈

{

{

{

(

𝑛

∏

𝑗=1

𝑎
𝐿

𝑖𝑗
)

1/𝑛

, (

𝑛

∏

𝑗=1

𝑎
𝑀

𝑖𝑗
)

1/𝑛

, (

𝑛

∏

𝑗=1

𝑎
𝐿

𝑖𝑗
)

1/𝑛

}

}

}

≤ {(𝜎 ⋅ 𝜎 ⋅ ⋅ ⋅ 𝜎⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

)

1/𝑛

, (𝜎 ⋅ 𝜎 ⋅ ⋅ ⋅ 𝜎⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

)

1/𝑛

, (𝜎 ⋅ 𝜎 ⋅ ⋅ ⋅ 𝜎⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

)

1/𝑛

}

= {𝜎, 𝜎, 𝜎} ,

𝜔
𝑖
≈

{

{

{

(

𝑛

∏

𝑗=1

𝑎
𝐿

𝑖𝑗
)

1/𝑛

, (

𝑛

∏

𝑗=1

𝑎
𝑀

𝑖𝑗
)

1/𝑛

, (

𝑛

∏

𝑗=1

𝑎
𝑈

𝑖𝑗
)

1/𝑛

}

}

}

≥

{
{

{
{

{

(

1

𝜎

⋅

1

𝜎

⋅ ⋅ ⋅

1

𝜎⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

)

1/𝑛

, (

1

𝜎

⋅

1

𝜎

⋅ ⋅ ⋅

1

𝜎⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

)

1/𝑛

,

(

1

𝜎

⋅

1

𝜎

⋅ ⋅ ⋅

1

𝜎⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

)

1/𝑛

}
}

}
}

}

= {

1

𝜎

,

1

𝜎

,

1

𝜎

} .

(A.1)

The eigenvector of modified matrix 𝐵 and the adjustable
matrix 𝐵

󸀠 should also be in this range; to be clearer, the range
of eigenvector is

{

1

𝜎

,

1

𝜎

,

1

𝜎

} ≤ 𝜔
𝑖
≤ {𝜎, 𝜎, 𝜎} {∀𝑖𝑖 ∈ (1, 2, ⋅ ⋅ ⋅ , 𝑛) , 𝑛 ∈ R} ,

{

1

𝜎

,

1

𝜎

,

1

𝜎

} ≤ 𝜔
𝑖

󸀠
≤ {𝜎, 𝜎, 𝜎} {∀𝑖𝑖 ∈ (1, 2, ⋅ ⋅ ⋅ , 𝑛) , 𝑛 ∈ R} .

(A.2)
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Table 4: 𝛼 = 𝛾 = 0.98. Iteration times, CR = 0, 𝛿, 𝜎, 𝜆max, and priority weight results.

Methods Iteration needed
for CR = 0 CR 𝛿 𝜎 𝜆max Priority weight

Xu and Wei [6] 820 0 10.4648 1.9069 8 𝜔XU, 𝑅XU

Cao et al. [7] 1619 0 11.0308 2.0714 8 𝜔Cao, 𝑅Cao

Our method (𝜉 = 0.05, 𝛽 = 0.2) 8 0 3.2554 1.4458 8 𝜔Our(0.05), 𝑅Our(0.05)

Our method (𝜉 = 0.1, 𝛽 = 0.2) 7 0 3.5117 1.5088 8 𝜔Our(0.1), 𝑅Our(0.1)

Our method (𝜉 = 0.2, 𝛽 = 0.2) 6 0 3.6985 1.7867 8 𝜔Our(0.2), 𝑅Our(0.2)

𝜔XU, 𝑅XU
𝜔XU = (1.0000 0.3120 1.0873 0.1012 0.1794 0.2100 0.9644 1.9259)

𝑅XU = (8 3 1 7 2 6 5 4)

𝜔Cao, 𝑅Cao
𝜔Cao = (1.0000 0.3121 1.0873 0.1012 0.1792 0.2098 0.9642 1.9260)

𝑅Cao = (8 3 1 7 2 6 5 4)
𝜔Our(0.05)

𝑅Our(0.05)

𝜔Our(0.05) = (1.0000 0.4109 1.2324 0.1565 0.3665 0.3796 0.6374 1.8322)
𝑅Our(0.05) = (8 3 1 7 2 6 5 4)

𝜔Our(0.1)

𝑅Our(0.1)

𝜔Our(0.1) = (1.0000 0.7522 2.0985 0.2235 0.3715 0.3848 1.1224 2.9959)
𝑅Our(0.1) = (8 3 7 1 2 6 5 4)

𝜔Our(0.2)

𝑅Our(0.2)

𝜔Our(0.2) = (1.0000 0.4499 1.2228 0.1259 0.4499 0.4499 0.5501 1.4953)
𝑅Our(0.2) = (8 3 1 7 2 6 5 4)

Table 5: Effective analysis for Algorithm 1 based on nine parameters.

𝛽 = 0.5 NI [13] CCI [14, 15] 𝛿fuzzy 𝜎fuzzy COP Iteration times Running time (seconds)
𝜉 = 0.1 0.0887 0.1378 1.2841 0.5688 Keep 5 0.033
𝜉 = 0.01 0.0887 0.1378 1.2841 0.5688 Keep 8 0.031
𝜉 = 0.001 0.0886 0.1378 1.2815 0.5691 Keep 11 0.042
𝛽 = 0.6 NI CCI 𝛿fuzzy 𝜎fuzzy COP Iteration times Running time (seconds)
𝜉 = 0.1 0.1007 0.1991 0.9979 0.4692 Keep 5 0.021
𝜉 = 0.01 0.1007 0.1991 0.9979 0.4692 Keep 8 0.034
𝜉 = 0.001 0.1007 0.1991 0.9960 0.4695 Keep 11 0.046
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