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Abstract: Diabetic sensorimotor polyneuropathy (DSPN) is a serious long-term complication of dia-
betes, which may lead to foot ulceration and amputation. Among the screening tools for DSPN, the
Michigan neuropathy screening instrument (MNSI) is frequently deployed, but it lacks a straightfor-
ward rating of severity. A DSPN severity grading system has been built and simulated for the MNSI,
utilizing longitudinal data captured over 19 years from the Epidemiology of Diabetes Interventions
and Complications (EDIC) trial. Machine learning algorithms were used to establish the MNSI factors
and patient outcomes to characterise the features with the best ability to detect DSPN severity. A
nomogram based on multivariable logistic regression was designed, developed and validated. The
extra tree model was applied to identify the top seven ranked MNSI features that identified DSPN,
namely vibration perception (R), 10-gm filament, previous diabetic neuropathy, vibration perception
(L), presence of callus, deformities and fissure. The nomogram’s area under the curve (AUC) was
0.9421 and 0.946 for the internal and external datasets, respectively. The probability of DSPN was
predicted from the nomogram and a DSPN severity grading system for MNSI was created using
the probability score. An independent dataset was used to validate the model’s performance. The
patients were divided into four different severity levels, i.e., absent, mild, moderate, and severe,
with cut-off values of 10.50, 12.70 and 15.00 for a DSPN probability of less than 50, 75 and 100%,
respectively. We provide an easy-to-use, straightforward and reproducible approach to determine
prognosis in patients with DSPN.

Keywords: DSPN; severity grading; nomogram; MNSI; machine learning

1. Introduction

Diabetic sensorimotor polyneuropathy (DSPN) leads to ulceration and amputation
which are independently associated with increased mortality [1]. Early identification of
DSPN is key to improve risk factors that may prevent the progression of DSPN [2–5].
The American Diabetic Association (ADA) [1] and Toronto consensus statements [6] rec-
ommended that the diagnosis of DSPN should be based on an assessment of symptoms
and signs and nerve conduction studies (NCS). A number of diagnostic techniques are
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available for DSPN [1,7–10], alongside several composite scoring methods for severity
stratification [11–13]. The Toronto consensus endorsed the use of a composite screening
technique for defining the severity of DSPN [6].

The Michigan neuropathy screening instrument (MNSI) is a commonly utilized com-
posite scoring technique recommended in the ADA position statement [1] for the clinical
diagnosis of DSPN. It is a simple, inexpensive, reliable, and accurate assessment [13,14]
that has been used to identify DSPN in many studies and clinical trials [14–20]. Neuropathy
symptoms are assessed from 15 yes/no questions and neuropathy signs are assessed from
five simple clinical tests. A patient is considered to have DSPN if the total score is ≥7 or ≥2
on the MNSI questionnaire or clinical tests, respectively [13]. However, there is controversy
on the optimal cut-off value for identifying DSPN, with studies suggesting different cut-offs
ranging from 2 to 1.5 [18], 2.5 [18–20], 3 [18] and 4 [21]. Moghtaderi et al. [18] reported an
MNSI cut-off of 2 with a reliability of 0.81. Other studies have reported 80% sensitivity and
95% specificity and good repeatability for an MNSI examination cut-off ≥2.0 [13]. Herman
et al. [19] suggested the use of MNSI in clinical trials due to its ease of use compared to
NCS. However, the MNSI lacks a standardized grading system for severity classification.

Recently, machine learning (ML) approaches have been successfully used to solve
different disease prediction and classification problems [22–24], because of their ability
and reliability in extracting information from complex, non-linear, or incomplete data,
supporting healthcare professionals in decision-making [25,26]. The fuzzy inference system
(FIS) [27,28], multi-category support vector machine (SVM) learning [29], and adaptive
fuzzy inference system (ANFIS) [30], have been reported to aid in the identification and
stratification of diabetic neuropathy (DN). However, fuzzy systems-based classifiers do not
appear to be reliable because they make use of the if-then rule-based set. Kazemi et al. [29],
put forward a DSPN severity classifier based on a multiclass SVM, utilizing the neuropathy
disability score (NDS), and reported an accuracy of 76%. Haque et al. [30] used ANFIS to
report an accuracy of 91% for DSPN severity classification based on three MNSI variables
(vibration perception, questionnaire, and tactile sensitivity). Reddy et al. [31] identified
various risk factors for DN and proposed a Radial basis function (RBF) network for DN
prediction, but only achieved 68.18% accuracy. Chen et al. [32] developed a prediction
model to identify diabetic peripheral neuropathy (DPN) using MNSI by applying logistic
regression (LR) and reported the value of the concordance index (c-index) to be 0.75.

We have deployed ML to develop a DSPN severity grading system from MNSI data.
Initially, the most appropriate MNSI features were identified from a nomogram based on
multivariable logistic regression and this was then developed and validated for classifying
the severity of DSPN.

2. Materials and Methods
2.1. Database Description

Two different Michigan neuropathy screening instrument datasets were collected. The
first dataset was sourced from the Epidemiology of Diabetes Interventions and Compli-
cations (EDIC) study [33,34]. In EDIC, the MNSI was used annually to assess DSPN in
patients with type 1 diabetes [33,34]. A detailed description of the EDIC trial procedures
and baseline characteristics of the patients have been reported previously [33–35].

Validation of our model was achieved in an independent MNSI dataset made available
by Watari et al. [28] and is comprised of 102 patients with 21 MNSI variables: 15 ques-
tionnaires, vibration perception (L), vibration perception (R), 10-gm filament (combined
results from both legs), the appearance of deformities (combined results from both legs), the
appearance of callus (combined results from both legs), the appearance of fissure (combined
results from both legs). For consistency we considered 21 variables from both data sets to
design our prediction model.
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2.2. Data Imputation

In practice, missing values in clinical data from larger clinical trials such as EDIC are
quite a common phenomenon. Because the training of ML models depends highly on the
dataset provided, missing data can be misleading for ML model training. To overcome this
issue, data imputation techniques were applied [36]. MNSI data from 19 years of EDIC
trials with 14,166 samples were collected. Many duplicate responses were removed, and
3754 unique samples were retrieved. In this study, missing data were calculated by the
multiple imputations by chained equations (MICE) technique [37,38].

2.3. Feature Ranking

To ascertain the best possible combination of MNSI features to identify DSPN, three
different feature ranking techniques, namely random forest (RF), [39] multi-tree extreme
gradient boost (XGBoost) [40], and extremely randomized trees (extra tree) [41] techniques
were used, and the best-performing algorithm was identified and reported. The in-house
code for data imputation and feature ranking was written using Python 3.7.

2.4. Logistic Regression Classifiers

A supervised logistic regression classifier was utilized [42] for validating the perfor-
mance of the top entries of the feature ranking. Logistic regression is commonly used
for biomedical classification tasks [42,43], and in this case could assess the association of
multiple variables with an outcome, e.g., DSPN or non-DSPN. The dataset was partitioned
into a 70/30 ratio for the train and test set. The LR model was trained using five-fold
cross-validation. Different performance parameters were calculated for evaluating the
model’s performance.

2.5. Development and Validation of Logistic Regression-Based Nomogram

A diagnostic nomogram was constructed by Zlotnik and Abraira [44] using multivari-
ate logistic regression analysis in Stata/MP software (StataCorp LLC, College Station, TX,
USA). The multivariate logistic regression model was developed for two classes: DSPN
and non-DSPN. The coefficients calculated from the LR model were used to calculate
linear prediction as shown in Equations (1) and (2). Using Equation (2), we calculated the
probability of having DSPN, as shown in Equation (3).

coe f f icients =
p

1 − p
(1)

Linear Prediction (LP) = ln
(

p
1 − p

)
(2)

p =
eLP

1 − eLP (3)

The top-ranked features (i.e., the independent variables) exhibiting the best perfor-
mance with the LR classifier were used to create the logistic regression-based nomogram.
Calibration curves were plotted for evaluating the performance of the model. Utilizing
the Stata tool, we also performed the decision curve analysis (DCA) for identifying the
threshold values for clinically useful nomograms.

2.6. Development and Validation of Severity Grading Score

From the nomogram, a four-class DSPN severity scoring technique was proposed
based on the probable cut-off values. The performance of the proposed grading system
was validated with EDIC ground truth and the grading system proposed in [28].
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3. Results
3.1. Patients’ Characteristics and Clinical Outcomes

The EDIC patients’ baseline demographic variables are presented in Table 1. More
details on EDIC patients can be found in other studies [33–35]. From the collected dataset,
3754 unique data samples were retrieved after removing duplicate responses. Among the
3754 unique samples, 2177 samples were from non-DSPN and the remaining 1577 samples
were from DSPN patients. Figure 1 demonstrates the top-10 ranked MNSI features, as
identified by the extra tree feature ranking technique. These are sensitivity to the 10-
gm filament, vibration perception (L), vibration perception (R), the appearance of callus,
appearance of deformities, previous diabetic neuropathy, the appearance of fissure, numb
leg, burning leg, and response to bed cover touch. The results of the Xgboost and RF feature
ranking techniques are shown in Supplementary Figures S1 and S2. There is no difference
in the ranked features by the extra tree and RF technique. Therefore, we studied the extra
tree and Xgboost technique to find the combination of features with the best performance.

Table 1. EDIC patient baseline characteristics.

N: 1341
M: 658 (52.39%)
F: 598 (47.61%)

Mean Std. Error of Mean Minimum Maximum

Age (years) 35.98 ± 6.95 0.19 20.16 50.99
HbA1C (%) 8.23 ± 1.39 0.04 0.00 14.00

BMI (kg/m2) 26.24 ± 4.16 0.11 0.00 49.82
Diabetes duration (years) 14.55 ± 4.91 0.13 0.00 27.00

HDL Cholesterol (mg/dL) 52.69 ± 16.05 0.44 0.00 121.00
LDL Cholesterol (mg/dL) 110.75 ± 36.33 0.99 0.00 280.00
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Figure 1. Top-10 ranked features identified using Extra Tree algorithms from the data imputed
utilizing the MICE algorithm.

3.2. Univariate Logistic Regression Model for Identifying Variables Significantly Associated with
DSPN

Both the top 9 and top 10 features had an AUC of 0.96 for the data imputed utilizing
MICE and the extra tree feature-ranking technique (Figure 2). Visually, it seems that model
performance was saturated after the top 9 features. To confirm and identify the best
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possible combination of the features, we used logistic regression classifiers for performance
evaluation. In order to determine how the ranked features performed for identifying DSPN,
the logistic regression classifier was trained with the top-1 to top-15 feature combination.
Table 2 demonstrates the weighted average performance and the overall accuracies of
other matrices for different models, utilizing the top-1 to top-15 features for the five-fold
cross-validation through a logistic regression classifier, together with the confusion matrices
for each of the cases. With more than the top-10 features, there was no major change in the
performance of the logistic regression classifier. The results from the LR classifier using the
top-10 ranked features for the Xgboost technique are reported in Supplementary Table S1.
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MICE data imputation and logistic regression classification techniques for extra tree feature selection
algorithms.

The top-10-ranked features utilizing the extra tree technique have the best performance
for the diagnosis of DSPN and non-DSPN patients compared to the Xgboost technique.
The top-10 feature combinations provide the best performance accuracy of 92% for DSPN
identification (Table 2). Although, the top-7 feature exhibits a reasonable performance
in identifying DSPN and non-DSPN classes with 90% sensitivity and specificity; hence,
balanced performance in identifying both classes. To establish the best feature combination
between the two we considered both the top 7 and top 10 feature models.
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Table 2. Average performance matrix vs. confusion matrix from five-fold cross-validation for top-15-
ranked features utilizing the MICE data imputation and logistic regression classification techniques
for extra tree feature selection algorithms.

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Precision
(%)

F1 Score
(%)

Non-DSPN DSPN
TN FP FN TP

Top 1 Feature 72 ± 0.02 80 ± 0.04 76 ± 0.02 78 ± 0.03 75 ± 0.02 1732 445 619 1558
Top 2 Features 73 ± 0.05 85 ± 0.05 79 ± 0.02 83 ± 0.04 77 ± 0.02 1845 332 591 1586
Top 3 Features 75 ± 0.03 86 ± 0.04 80 ± 0.01 84 ± 0.03 79 ± 0.01 1869 308 548 1629
Top 4 Features 77 ± 0.04 86 ± 0.02 82 ± 0.03 85 ± 0.03 81 ± 0.03 1877 300 496 1681
Top 5 Features 86 ± 0.02 92 ± 0.03 89 ± 0.02 91 ± 0.03 88 ± 0.02 1994 183 315 1862
Top 6 Features 88 ± 0.03 86 ± 0.04 87 ± 0.03 87 ± 0.03 87 ± 0.03 1879 298 260 1917
Top 7 Features 90 ± 0.02 90 ± 0.03 90 ± 0.02 90 ± 0.02 90 ± 0.02 1954 223 220 1957
Top 8 Features 89 ± 0.02 92 ± 0.04 90 ± 0.02 91 ± 0.04 90 ± 0.02 1995 182 238 1939
Top 9 Features 89 ± 0.03 90 ± 0.07 89 ± 0.03 90 ± 0.06 89 ± 0.03 1949 228 233 1944

Top 10 Features 92 ± 0.01 93 ± 0.05 92 ± 0.02 93 ± 0.05 92 ± 0.02 2019 158 185 1992
Top 11 Features 91 ± 0.01 92 ± 0.05 92 ± 0.03 92 ± 0.05 91 ± 0.03 2001 176 194 1983
Top 12 Features 91 ± 0.02 92 ± 0.05 92 ± 0.03 92 ± 0.05 91 ± 0.03 2003 174 195 1982
Top 13 Features 91 ± 0.02 92 ± 0.04 92 ± 0.02 92 ± 0.03 91 ± 0.02 2012 165 204 1973
Top 14 Features 90 ± 0.02 92 ± 0.05 91 ± 0.03 92 ± 0.05 91 ± 0.02 2007 170 210 1967
Top 15 Features 90 ± 0.02 92 ± 0.06 91 ± 0.04 92 ± 0.06 91 ± 0.04 2008 169 209 1968

3.3. Development and Evaluation of a Nomogram to Predict DSPN

Tables 3 and 4 show the LR models for the top 7 and top 10 features, respectively. In
LR models, the z-value indicates the contribution of each variable used in the model to
predict the output. As seen in Tables 3 and 4 all the features were statistically significant
with a p-value less than 0.05. To choose the best performing model, between the top 10 and
top 7 feature LR models, both models were implemented on the EDIC and independent
test set from Watari et al. [28]. Table 5 shows the performance evaluation metrics for both
models. The top-10 features model has an accuracy of 91% on the EDIC dataset and an
accuracy of 86% on the independent dataset from Watari et al. [28] (Table 5). However,
the top-7 features model exhibited consistently high and comparable performance on the
EDIC and Watari et al. [28] data sets with an accuracy of 90% and 91%, respectively. Given
that the LR model with the top-7 feature combination has reliable performance on both
datasets we developed the nomogram and the severity grading system from the top-7
feature combinations: 10-gm filament, vibration perception (L), vibration perception (R),
appearance of callus, appearance of deformities, previous diabetic neuropathy, appearance
of fissure.

Table 3. Logistic regression analysis for constructing the nomogram to predict DSPN utilizing the
top 7 variables by the extra tree feature ranking technique.

Outcome Coef. Std. Err. z P > z [95% Conf. Interval]

10-gm filament 2.514831 0.137814 18.25 0.00 2.24472 2.784941
Vibration perception (R) 2.399316 0.249416 9.62 0.00 1.91047 2.888162
Vibration perception (L) 1.932473 0.247976 7.79 0.00 1.446448 2.418498

Appearance of Deformities 2.413763 0.142204 16.97 0.00 2.135049 2.692477
Appearance of Callus 2.064003 0.13319 15.5 0.00 1.802955 2.325051

Previous Diabetic Neuropathy 1.053302 0.125036 8.42 0.00 0.808235 1.298369
Appearance of Fissure 2.602008 0.272765 9.54 0.00 2.067398 3.136619

_cons −5.31948 0.207402 −25.65 0.00 −5.72598 −4.91298
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Table 4. Logistic regression analysis for constructing the nomogram for predicting DSPN utilizing
the top 10 variables by the extra tree feature ranking technique.

Outcome Coef. Std. Err. z P > z [95% Conf. Interval]

10-gm filament 3.084504 0.1696 18.19 0.00 2.752094 3.416913
Vibration perception (R) 3.003988 0.285598 10.52 0.00 2.444225 3.56375
Vibration perception (L) 2.326558 0.282243 8.24 0.00 1.773372 2.879744

Appearance of Deformities 3.202711 0.176598 18.14 0.00 2.856585 3.548837
Appearance of Callus 2.886776 0.169801 17 0.00 2.553974 3.219579

Previous Diabetic Neuropathy 0.634693 0.140511 4.52 0.00 0.359297 0.910089
Appearance of Fissure 3.52151 0.309166 11.39 0.00 2.915556 4.127464

Numb Leg 0.941649 0.149556 6.3 0.00 0.648525 1.234772
Burning Leg 1.235312 0.153058 8.07 0.00 0.935324 1.535301

Bed Cover Touch 2.655393 0.244644 10.85 0.00 2.175899 3.134887
_cons −7.49854 0.306272 −24.48 0.00 −8.09883 −6.89826

Table 5. Evaluation of the performance for the top 7 and 10 features using a logistic regression model
to construct the nomogram for DSPN prediction.

Prediction Model Test Sets Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Precision
(%)

F1 Score
(%)

Confusion Matrix
Non-DSPN DSPN

TN FP FN TP

Top 7 Variable model EDIC Test Set 91 89 90 86 88 583 71 44 429
Independent Test Set 91 92 91 89 90 54 5 4 39

Top 10 Variable model EDIC Test Set 91 92 91 89 90 598 56 42 431
Independent Test Set 93 81 86 78 85 48 11 3 40

True positive (TP): True DSPN patients. True negative (TN): True Non-DSPN. False-positive (FP): Non-DSPN
patients, classified as DSPN patients. False-negative (FN): DSPN patients, classified as non-DSPN patients.

Figure 3 shows the calibration plot of the training set for internal validation and
the test set for external validation, with an area under the curve (AUC) of 0.94 for both,
indicating good reliability of the LR model. Figure 4 illustrates the decision curve analysis
comparing the net benefit of all the different models created from individual features for
DSPN probability prediction. It additionally shows the performance of the overall model
(all features) for DSPN probability prediction.
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Figure 5 shows the nomogram generated using multivariate logistic regression for
DSPN probability prediction utilizing the top-7 MNSI features. The nomogram spreads
over 10 rows. The top 1–7 rows represent seven MNSI variables, together with a scale
indicating the corresponding responses. The eighth row is the score scale for the responses
of the seven variables. Row 9 is the probability axis indicating the probability of DSPN
in patients based on the MNSI responses. Row 10 is the total score scale, where all the
scores for each MNSI response are added to calculate the final score. Figure 6 demonstrates
an example scoring system based on a nomogram, for a DSPN patient who possesses the
variable values at baseline. Individual scores for each predictor were computed and added
to calculate the total score. The calculated DSPN probability is 98% and according to Table 6
the patient has severe DSPN. The DSPN probability of a patient can also be calculated
using Equations (4) and (5), which were derived from the LR model for the top 7 features
(Table 3).

Linear prediction (LP) = (−5.31948)
+(2.514831 ∗ 10 − gm filaments)

+(2.399316 ∗ Vibration perception (R))
+(1.932473 ∗ Vibration perception (L))

+(2.413763 ∗ Appearance of Deformities)
+(2.064003 ∗ Appearance of Callus)

+(1.053302 ∗ Previous Diabetic Neuropathy)
+(2.602008 ∗ Appearance of Fissure)

(4)

DSPN Probability =
1

1 + e−LP (5)
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For each MNSI response, a score was generated by the nomogram. Supplementary
Table S2 (Supplementary Materials) shows the MNSI responses and their corresponding
score. All the scores corresponding to the MNSI responses were added together to obtain
the total score. The total score was then used to calculate the DSPN probability from the
nomogram. Using the total score and corresponding probability, we developed a four-class
severity grading system as shown in Table 6. The probability values less than 50%, between
50% and 75 %, between 75% and 90%, and more than 90% were categorized into absent,
mild, moderate, and severe groups, respectively.
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Figure 5. Nomogram based on multivariate logistic regression-based for probability prediction
of DSPN severity. Nomogram for predicting DSPN severity was formed utilizing seven different
predictors, namely 10-gm filament, Vibration perception (L), Vibration perception (R), Appearance of
Callus, Appearance of Deformities, Previous Diabetic Neuropathy, Appearance of Fissure.

Table 6. MNSI severity score from the nomogram and the corresponding severity probability of the
DSPN patient.

Patient Group Absent Mild Moderate Severe
MNSI Severity score 0 1 6.2 10.5 10.6 11.4 11.8 12.3 12.7 12.8 13.3 14 15 15.1 16.5 19 >28

DSPN Severity probability 0.5 1 10 49 50 60 65 70 74 75 80 85 90 91 95 99 99.99

3.4. Evaluation of Performance of the Nomogram Model

We applied the developed grading system on the train, test and independent test set
and classified patients into four different classes of DSPN severity, namely absent (non-
DSPN), mild, moderate and severe DSPN. For the EDIC train and test set, the patient’s
severity classes were cross correlated with the EDIC binary ground truth (Tables 7 and 8).
For the EDIC training set (Table 7), out of the 1526 patients classified by the proposed
grading system as absent, 89.2% were non-DSPN while the remaining 10.8% had DSPN as
per the EDIC ground truth. In 292 mild DSPN patients, 55.5% were non-DSPN while the
remaining 44.5% were DSPN. For patients classified as either moderate or severe, all had
DSPN. With regard to the EDIC test set (Table 8), among the 635 patients classified as absent,
91.8% were non-DSPN while the remaining 8.2% had DSPN. Of the 145 patients classified
as mild, 48.97% were non-DSPN while 51.03% had DSPN. Of the patients classified as either
moderate or severe, all had DSPN, based on the EDIC ground truth. Finally, with regard to
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the independent test set (Table 9), 93.1% of the patients classified as absent were non-DSPN
while the remaining 6.9% had DSPN. In patients classified as mild, there was an equal
number of both DSPN and non-DSPN patients (i.e., 50% of each). For both the moderate and
severe DSPN; no patient was mis-classified. Watari et al. [28] put forward a DSPN severity
grading system by utilizing a fuzzy inference system (FIS) using three MNSI variables
(questionnaire, vibration perception, and 10-gm monofilament) and a patient severity class
using their grading system was available. In Table 10, we compare their results with
our prediction models on the same MNSI data set. According to Watari et al. [28], among
102 patients, 29, 25, 27, and 21 had absent, mild, moderate, and severe DSPN, whereas based
on our proposed model, 59, 10, 9 and 25 patients had absent, mild, moderate and severe
DSPN (Table 10) showing a lack of agreement between the grading systems. Furthermore,
according to the EDIC definition of DSPN [14,34], there were 59 non-DSPN patients and
43 DSPN patients in the study by Watari et al. [28] (Table 11). However, the fuzzy system
classified 29 as non-DSPN and 73 as DSPN and as per our proposed grading system, the
dataset had 58 non-DSPN and 44 DSPN patients, indicating that the proposed grading
system agrees with the EDIC definition of DSPN [14,34]. However, because Watari et al. [28]
selected only three variables, i.e., questionnaire, vibration perception, and tactile sensitivity
for input, because the fuzzy inference system is an if/then rule-based system, there is the
possibility of bias due to an inadequate number of variables for the identification of DSPN.
Our prediction model could detect the moderate and severe DSPN groups accurately
without any misclassification of the training, test, and independent test datasets, and
additionally demonstrated better accuracy in identifying the absent DSPN class patients
(Tables 7–9).
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Table 7. The association among different DSPN severity groups and the actual outcomes in the EDIC
training dataset, utilizing the Fisher exact probability test.

DSPN Severity Class Outcome
TotalNon-DSPN DSPN

Absent 1361 (89.2%) 165(10.8%) 1526 (100%)
Mild 162 (55.5%) 130 (44.5%) 292 (100%)

Moderate 0 (0%) 282 (100%) 282 (100%)
Severe 0 (0%) 947 (100%) 947 (100%)
Total 1523 (50%) 1524 (50%) 3047 (100%)

Table 8. The association among different DSPN severity groups and the actual outcomes in the EDIC
testing dataset, utilizing the Fisher exact probability test.

DSPN Severity Class Outcome
TotalNon-DSPN DSPN

Absent 583 (91.8%) 52 (8.2%) 635
Mild 71(48.97%) 74 (51.03%) 145

Moderate 0 (0%) 120 (100%) 120
Severe 0 (0%) 407 (100%) 407
Total 654 (50%) 653 (50%) 1307

Table 9. The association among different DSPN severity groups and actual outcomes in the indepen-
dent test dataset from Watari et al. [28], using Fisher exact probability test.

DSPN Severity Class Outcome
TotalNon-DSPN DSPN

Absent 54 (93.1%) 4 (6.9%) 58 (100%)
Mild 5 (50%) 5 (50%) 10 (100%)

Moderate 0 (0%) 9 (100%) 9 (100%)
Severe 0 (0%) 25 (100%) 25 (100%)
Total 59 (57.8%) 43 (42.2%) 102 (100%)

Table 10. The association among different DSPN severity groups and severity grading by Watari et al.
[28] in the independent test dataset using Fisher exact probability test.

DSPN Severity Grading by Our Model DSPN Severity Grading by Watari et al., 2014 [28]
TotalAbsent Mild Moderate Severe

Absent 28 18 12 0 59
Mild 0 2 5 3 10

Moderate 1 3 3 2 9
Severe 0 2 7 16 25
Total 29 25 27 21 102

Table 11. Performance comparison of our proposed MNSI cut-offs for binary classification on an
independent test cohort (Watari et al., 2014 [28]).

MNSI Cut-Off Non-DSPN DSPN

Feldman et al. [10] 59 43
Watari et al. [28] 29 73

Our Prediction Model 58 44

The difference in DSPN identification as per the EDIC definition and fuzzy model
suggests a need to improve the latter. There was an association between different DSPN
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severity classes in the independent test set and the grading by Watari et al. [28]. Watari
et al. [28] had 29 absent, 25 mild, 27 moderate, and 21 severe patients, whereas our model
predicted 59 absent, 10 mild, 9 moderate, and 25 severe cases (Table 10) in the same groups
as Watari et al. [28]. Our nomogram-based model is more robust because it considers all the
important MNSI parameters in DSPN prediction and severity grading compared to only
a few parameters in the fuzzy model. This scoring technique based on a nomogram can
diagnose and infer the DSPN severity of patients into absent, mild, moderate, and severe
(please refer to Table 6).

4. Discussion

Diabetic neuropathy may be classified as sensorimotor polyneuropathy or autonomic
neuropathy. This research has focused on sensorimotor polyneuropathy as it has significant
consequences in relation to foot ulceration, amputation and increased mortality. Whilst the
ADA position statement advocates the use of symptoms, signs, and electrophysiology [1],
other guidelines have suggested the use of quantitative sensory testing and intraepidermal
nerve fibre density (IENFD) for diagnosing DSPN [6–10]. However, neurophysiology
and IENFD are expensive, require specialized personnel, and are not suitable for large
clinical trials. Composite screening methods that assess symptoms and signs of DSPN
have been used widely [12] and include the MNSI which has been used in epidemiological
studies [13–17], large clinical trials such as DCCT⁄EDIC [33–35] and the Action to Control
Cardiovascular Disease in Diabetes (ACCORD) [45].

The MNSI questionnaire and examination can identify the presence of clinical neu-
ropathy but have not been validated to grade the severity of DSPN as per the neuropathy
disability score (NDS) or the neuropathy symptom score (NSS) [11,12]. Feldman et al. [13]
advised that patients with a positive MNSI should undergo assessment of the Michi-
gan diabetic neuropathy score (MDNS), which includes a clinical examination and nerve
conduction studies (NCS). However, NCS have a large inter-individual variability and
moderate reproducibility and are therefore not suitable for large clinical trials, unless the
outcome is standardised using a central reading facility. A simple and reliable DPSN sever-
ity scoring system is highly desirable to identify patients with mild disease, in addition to
those at high risk of foot ulceration.

Using a state-of-the-art machine learning model, we have designed and deployed a
prediction scoring system utilizing MNSI to classify patients in the DCCT/EDIC clinical
trial into absent, mild, moderate and severe DSPN. Of note, the original dataset from the
EDIC clinical trial had missing and duplicate responses for many patients and therefore
after eliminating duplicate samples, we imputed the dataset utilizing the MICE algorithm to
predict the missing values. The MNSI variables were ranked after taking into consideration
their importance index for DSPN identification using various feature ranking techniques.
The extra tree algorithm was found to be the best-performing algorithm for identifying
the best combination of MNSI variables. The logistic regression classifier was trained for
the top 1 to 15 feature combinations using five-fold cross-validation for identifying the
best combination of features. Two models with the top 7 and top 10 variables showed
promising results with AUCs of 94% and 96%, respectively. The top 10 models showed
better AUC, sensitivity, and accuracy compared to the top 7 ranked features model when
validated on an external independent dataset by Watari et al. [28]. However, only marginal
improvements were achieved by using the top-10 ranked features model from the top 7
feature model, therefore the top 7 ranked features were selected to develop the nomogram
using a multivariant logistic regression model. On the basis of this nomogram, the DSPN
severity grading system was proposed based on the predicted DSPN probability and total
score on MNSI.

A major strength of our study is that it was undertaken using data from a large number
of patients in the established DCCT/EDIC trials. Our model could infer moderate and
severe DSPN without any misclassification for the train, test, and independent test set, and
also exhibited high accuracy for absent DSPN. Although, misclassification was evident
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for those with mild DSPN, using MNSI as ground truth may not be adequate as it relies
primarily on identifying large fibre damage with the possibility of missing earlier small
fibre damage evident in mild DSPN. Furthermore, the model performed well in patients
with either type 1 or type 2 diabetes. However, this model has only been validated with
the performance of the FIS model used by Watari et al. [28]. In the future, we plan to
validate the model performance utilising NCS and NDS to improve reproducibility and
robustness of the model. In conclusion, we have designed, implemented and validate a
DSPN severity scoring system based on a machine learning model, utilizing MNSI which
could aid researchers and clinicians as an auxiliary decision-making system. This study
highlights the potential for machine learning-based applications to diagnose and stage
DSPN severity.

5. Conclusions

The detection of early DSPN is key to preventing foot ulceration, amputation and
increased mortality in patients with diabetes. MNSI, originally developed to screen for
DSPN, has been used widely in epidemiological studies and even in clinical trials, even
though it lacks a severity grading system. In this study, we have applied ML-based
approaches to develop a DSPN severity grading system for MNSI. Using the extra tree
feature ranking technique, we have identified the seven best MNSI features i.e., vibration
perception (R), 10-gm monofilament, presence of diabetic neuropathy, vibration perception
(L), the appearance of callus, deformities and fissure for identifying DSPN. These features
were used to develop a nomogram-based probability model, and from the probability
model, a severity scoring technique was proposed and validated in three data sets. MNSI
could therefore be easily used to detect DSPN severity in large clinical trials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics13020264/s1. Figure S1. Top-ranked 10 features
identified using Random Forest algorithm from data imputed using MICE algorithm. Figure S2.
Top-ranked 10 features identified using Xgboost algorithm from data imputed using MICE algorithm.
Table S1. Comparison of the average performance matrix and confusion matrix from five-fold cross-
validation for top 1 to 10 features using MICE data imputation and logistic regression classification
techniques for XGBoost feature selection algorithms. Table S2. MNSI variables score from the
generated nomogram.
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