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Abstract—Objective: ECG recordings often suffer from a
set of artifacts with varying types, severities, and durations,
and this makes an accurate diagnosis by machines or med-
ical doctors difficult and unreliable. Numerous studies have
proposed ECG denoising; however, they naturally fail to
restore the actual ECG signal corrupted with such artifacts
due to their simple and naive noise model. In this pilot
study, we propose a novel approach for blind ECG restora-
tion using cycle-consistent generative adversarial networks
(Cycle-GANs) where the quality of the signal can be im-
proved to a clinical level ECG regardless of the type and
severity of the artifacts corrupting the signal. Methods: To
further boost the restoration performance, we propose 1D
operational Cycle-GANs with the generative neuron model.
Results: The proposed approach has been evaluated exten-
sively using one of the largest benchmark ECG datasets
from the China Physiological Signal Challenge (CPSC-2020)
with more than one million beats. Besides the quantita-
tive and qualitative evaluations, a group of cardiologists
performed medical evaluations to validate the quality and
usability of the restored ECG, especially for an accurate
arrhythmia diagnosis. Significance: As a pioneer study in
ECG restoration, the corrupted ECG signals can be re-
stored to clinical level quality. Conclusion: By means of
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the proposed ECG restoration, the ECG diagnosis accuracy
and performance can significantly improve.

Index Terms—Generative adversarial networks, convolu-
tional neural networks, operational neural networks, ECG
restoration.

I. INTRODUCTION

HOLTER or wearable ECG monitoring has been increas-
ingly used to monitor heart activity for 12 to 48 hours

or even longer periods. The extended period of recording time
is beneficial for observing sporadic cardiac arrhythmias which
would not be possible to diagnose in a shorter time. Doctors rec-
ommend patients to avoid sudden movements and high-impact
workouts such as running while recording. Even if patients avoid
those movements, during their daily routine motion-related slip
of the sensor or other interference can induce severe artifacts
such as baseline wander, signal cuts, motion artifacts, dimin-
ished QRS amplitude, noise, and other interferences. Some
typical examples of such corrupted ECG recordings from the
benchmark China Physiological Signal Challenge (CPSC-2020)
dataset [1] are shown in Fig. 1. As can be seen in the fig-
ure, the severity of such blended artifacts makes some of the
ECG signals undiagnosable by machines or even experienced
doctors.

Even though noise is just one of the artifact types corrupting
the ECG signal, numerous studies in the literature address this
as the sole denoising problem, and many of which assumed a
certain type of (e.g., additive Gaussian) noise independent from
the signal. To date, several DSP methods from statistical filters
or transform-domain denoising [2]–[5] to recent denoising tech-
niques by deep learning have been proposed for ECG denoising.
Chiang et al. [6] proposed a denoising autoencoder architecture
using a fully convolutional network which can be applied to
reconstruct the clean data from its noisy version. A 13-layer
autoencoder model was applied to MIT-BIH Arrhythmia and
Noise Stress datasets corrupted with additive Gaussian noise,
yielding around 16%, 14%, and 11% SNR (dB) improvements
corresponding to the input −1 dB, 3 dB, and 7 dB SNR val-
ues, respectively. Hamad et al. [7] developed a deep learning
autoencoder to denoise ECG signals from the discrete wavelet
transform coefficients of the ECG signal. The proposed system
consists of two stages which are isolating the approximation and
thresholding the subband coefficients that will then be used as
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Fig. 1. Four 10-second segments from the CPSC-2020 dataset. Ar-
rows with different colors show some typical artifacts.

input to a 14-layer autoencoder to reconstruct a clean signal.
They obtained a 6.26 dB SNR improvement on the MIT-BIH
Arrhythmia database corrupted with additive Gaussian noise.
In [8], a deep recurrent neural network (DRNN) model which
is a specific hybrid of DRNN and denoising AE is applied to
denoising of ECG signal. Both real and synthetic data are used
to get improved performance. A new ECG denoising framework
based on the generative adversarial network (GAN) is proposed
in [9]. For adversarial training of the generative model, both the
clean and noisy ECG samples (additive Gaussian noise) from
the MIT-BIH Arrhythmia database are used. The improved per-
formance of the proposed system over the existing framework
is demonstrated through testing over multiple noise conditions
for 5 and 10 dB SNR levels.

It is straightforward to develop such supervised ML-based
denoising solutions when a clean ECG signal is corrupted by
artificial (additive) noise with a fixed type and variance, and
then turn this as a regression problem by using noisy/clean
signal as the input/output of the network, which will eventually
learn to suppress the noise. However, such denoising solutions
obviously will fail to restore any actual ECG signal corrupted
with a blend of artifacts, as typical samples shown in Fig. 1.
Even only for the “denoising” purpose, assuming an additive
and independent noise model with a fixed noise variance is far
from being realistic. As can be seen in the ECG segment at
the 1st row in Fig. 1, the noise level may vary in a short time,
and it may neither be additive nor independent from the signal.
Therefore, in this study, we address this problem as a blind
restoration approach thus avoiding any prior assumption over the
artifact types and severities. We neither turn it to be a supervised
regression problem since one cannot have the corrupted and
clean ECG signal at the same time in reality unless the artifacts
are artificially created. That is why, for training, we want to
use the real corrupted signals with any blend of artifacts, and
the network should be able to restore the clean signal while

preserving the main characteristics of the ECG patterns. The
proposed approach learns to perform transformations between
the “clean” (e.g., close to the clinical ECG quality) and the “cor-
rupted” ECG segments using 1D convolutional and operational
Cycle-GANs.

Since its first introduction in 2014, GANs [19] and their vari-
ations brought a new perspective to the machine learning com-
munities with their superiority in different image synthesis prob-
lems. Cycle-Consistent Adversarial Networks (Cycle-GANs)
[20] are developed and used for image-to-image translation on
unpaired datasets. To accomplish the aforementioned objective,
in this study, we first selected batches of clean and corrupted
ECG segments from the CPSC-2020 dataset. Then, we adapted
the 1D version of Cycle-GANs that can learn to transform the
ECG signals (segments) from different batches as the baseline
method. The Cycle-GANs can preserve major “patterns” of the
corrupted ECG segment transformed to the “other” category,
the clean segment. Therefore, the main ECG characteristics
(e.g., the interval and timing of R-peaks, QRS waveform of
ECG beats, etc.) will still be preserved whilst the quality will
be improved. To further boost the restoration performance and
reduce the complexity, operational Cycle-GANs are proposed
in this study. Derived from Generalized Operational Perceptrons
[10]–[15], Operational Neural Networks (ONNs) [16]–[18], and
their new variants, Self-Organized Operational Neural Networks
(Self-ONNs) [21], [22], [29]–[31], are heterogeneous network
models with a non-linear neuron model. Self-ONNs are hetero-
geneous network models with a non-linear neuron model which
have shown superior diversity and increased learning capabili-
ties. Recently, Self-ONNs have been shown to outperform their
predecessors, CNNs, in many regression and classification tasks.
To reflect this superiority in ECG restoration, the convolutional
layers/neurons of the native 1D Cycle-GANs are replaced by
operational/generative layers/neurons of the Self-ONNs. Once
a 1D operational Cycle-GAN is trained over the batches, the
generator Self-ONN trained for the “corrupted” to “clean”
ECG segment transformation can then be used for the ECG
restoration. The performance is evaluated over the SCPC-2020
dataset quantitatively by the performance comparisons using the
benchmark peak detectors, Pan and Tompkins [23] and Hamilton
[24], qualitatively (visually), and also by the medical doctors for
arrhythmia diagnosis.

We can enlist the novel and significant contributions of this
study as follows:

1) This is a pioneer study where ECG restoration is ad-
dressed as a “blind” approach thus avoiding any prior
assumption such as certain artifact types and severities.

2) This is the first study where 1D Cycle-GANs are proposed
in a biomedical signal restoration application. To the best
of our knowledge, this is actually the first study where
1D Cycle-GANs have ever been used for a 1D signal
processing application.

3) A novel GAN type, operational GANs, are proposed in
this study which outperform the conventional (convolu-
tional) model even with a reduced network complexity.

4) The proposed method has also been tested over the largest
ECG benchmark dataset, SPSC-2020 with more than one
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Fig. 2. Depiction of the 1D nodal operations with the 1D kernels of the ith neuron of CNN (left), ONN (middle), and Self-ONN (right).

million beats. Both the peak-labeled dataset, our results
and the source code are now publicly shared with the
research community.

The rest of the paper is organized as follows: a brief outline
of 1D Self-ONNs and the proposed approach with the opera-
tional Cycle-GANs are introduced in Section II. The results are
presented in Section III. Finally, Section IV concludes the paper
and suggests topics for future research.

II. PROPOSED APPROACH

In this section, we first briefly summarize Self-ONNs and their
main properties. Then we introduce the proposed approach by
1-D Self Operational Cycle GANs for ECG restoration.

A. 1D Self-Organized Operational Neural Networks

In this section, we introduce the main network characteristics
of 1D Self-ONNs1 with the formulation of forward propagation.
Fig. 2 shows 1D nodal operations of a CNN, ONN with fixed
(static) nodal operators, and Self-ONN with generative neuron
which can have any arbitrary nodal function, Ψ, (including pos-
sibly standard types such as linear and harmonic functions) for
each kernel element of each connection. Obviously, Self-ONN
has the potential to achieve greater operational diversity and
flexibility, allowing any nodal operator function to be formed
without the use of an operator set library or a prior search process
to select the best nodal operator.

The kernel elements of each generative neuron of a Self-ONN
perform any nonlinear transformation, ψ, the function of which
can be expressed by the Taylor-series near the origin (a = 0),

ψ (x) =

∞∑
n=0

ψ(n) (0)

n!
xn (1)

1The optimized PyTorch implementation of 1D Self-ONNs is publicly shared
in https://github.com/junaidmalik09/fastonn and also in https://github.com/
OzerCanDevecioglu/Blind-ECG-Restoration-by-Operational-Cycle-GANs.

The Qth order truncated approximation, formally known as
the Taylor polynomial, takes the form of the following finite
summation:

ψ (x)(Q) =

Q∑
n=0

ψ(n) (0)

n!
xn (2)

The above formulation can approximate any function
ψ(x) near 0. When the activation function bounds the neuron’s
input feature maps in the vicinity of 0 (e.g., tanh), the formulation
in (2) can be exploited to form a composite nodal operator where

the power coefficients, ψ(n)(0)
n! , can be the parameters of the

network learned during training.
It was shown in [21], [22], and [28] that the nodal operator of

the kth generative neuron in the lth layer can take the following
general form:

ψ̃lk

(
w
l(Q)
ik (r) , yl−1

i (m+ r)
)

=

Q∑
q=1

w
l(Q)
ik (r, q)

(
yl−1
i (m+ r)

)q
(3)

Let xlik ∈ RM be the contribution of the ith neuron’s at the
(l − 1)th layer to the input map of the lth layer. Therefore, it can
be expressed as,

x̃lik (m) =
K−1∑
r=0

Q∑
q=1

w
l(Q)
ik (r, q)

(
yl−1
i (m+ r)

)q
(4)

where yl−1
i ∈ RM is the output map of the ith neuron’s at the

(l − 1)th layer,wl(Q)
ik is a learnable kernel of the network, which

is aK ×Qmatrix, i.e.,wl(Q)
ik ∈ RK×Q, formed as,wl(Q)

ik (r) =

[w
l(Q)
ik (r, 1), w

l(Q)
ik (r, 2), . . . , w

l(Q)
ik (Q)]. By the commutativity

of the summation operations in (4), one can alternatively write:

x̃lik (m) =

Q∑
q=1

K−1∑
r=0

w
l(Q)
ik (r, q − 1) yl−1

i (m+ r)q (5)

https://github.com/junaidmalik09/fastonn
https://github.com/OzerCanDevecioglu/Blind-ECG-Restoration-by-Operational-Cycle-GANs
https://github.com/OzerCanDevecioglu/Blind-ECG-Restoration-by-Operational-Cycle-GANs
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Fig. 3. The proposed ECG restoration approach using operational Cycle-GANs.

One can simplify this as follows:

x̃lik =

Q∑
q=1

Conv1D
(
w
l(Q)
ik ,

(
yl−1
i

)q)
(6)

Hence, the formulation can be accomplished by applying Q
1D convolution operations. Finally, the output of this neuron can
be formulated as follows:

xlk = blk +

Nl−1∑
i=0

xlik (7)

where blk is the bias associated with this neuron. The 0th order
term, q = 0, the DC bias, is ignored as its additive effect can
be compensated by the learnable bias parameter of the neuron.
With the Q = 1 setting, a generative neuron reduces back to a
convolutional neuron.

The raw-vectorized formulations of the forward propagation,
and detailed formulations of the Back-Propagation (BP) training
in raw-vectorized form can be found in [22] and [28].

B. 1D Operational Cycle-GANs

The general framework of our proposed ECG restoration
scheme is shown in Fig. 3. We follow a segment-based restora-
tion scheme where each ECG segment has 10 seconds duration.
With the sampling frequency of 400 Hz, this corresponds to
m = 4000 samples per segment. By visual evaluation, we have
carefully selected the batches of 4000 clean and corrupted ECG
segments to establish the training dataset. A segment is “clean”
only when there is no visible sign of any artifact; otherwise, it is
a “corrupted” segment. CPCS-2020 dataset has supraventricular
ectopy (S) and ventricular ectopy (V) type beats. To ensure an
unbiased training on the type and severity of the corruption, such
corrupted segments with different (blend of) artifacts (e.g., dif-
ferent noise types/levels, baseline wander, cuts, QRS amplitude

shrinkage, etc.) and with different severity levels are selected.
In brief, the segment selection is performed to ensure that the
trained GAN will learn to transform a “corrupted” segment to
a “clean” segment regardless of, 1) its (arrhythmia) category
(normal, S or V), 2) the patient (e.g., the ECG pattern of a
particular patient), 3) artifact types, and 4) artifact severities.

Once the training dataset is formed, we adapted the 1D version
of Cycle-GANs that can learn to transform the ECG signals
(segments) from different batches as the baseline method. As
discussed earlier, Cycle-GANs can preserve the major character-
istics of the signal when it is transformed to the “other” category.
Therefore, one of the generators will learn to transform the cor-
rupted ECG segments to their “clean” version whilst preserving
the main ECG characteristics (e.g., the interval and timing of
R-peaks, QRS waveform of an ECG beat, etc.). The most critical
point is that the transformation of the arrhythmic beats should
be unaltered (temporally or morphologically) besides the quality
improvement. In other words, an arrhythmic beat in a corrupted
segment should not be transformed to a normal beat. This is
why the unbiased selection scheme for forming the training set
is crucial. This is one of the critical evaluation criteria that will
be assessed by a group of cardiologists.

As a new-generation ANN model, Self-ONNs outperform
conventional (deep) CNNs on many ML and CV tasks. To reflect
this superiority in ECG restoration, the proposed approach for
ECG restoration is to use Operational 1D Cycle-GANs where the
convolutional layers/neurons of native 1D Cycle-GANs (both
the generator and discriminator) are replaced by the operational
layers with generative neurons of the Self-ONNs. To reduce the
complexity, Operational GANs have four times fewer neurons
and around 5 times fewer network parameters than the baseline
model. This will also allow us to perform comparative evalua-
tions between CNNs and ONNs in the GAN domain for the first
time. As shown in Fig. 2, an ECG segment from each batch is
randomly selected as the input pair for the Cycle-GAN. They
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are first linearly normalized into the range of [−1 1], as follows:

XN (i) =
2 (X (i)−Xmin)

Xmax −Xmin
− 1 (8)

where X(i) is the original sample amplitude in the segment,
XN (i) is the normalized segment, Xmin and Xmax are the
minimum and maximum amplitudes within the segment, respec-
tively. The proposed approach consists of two Self-ONN based
models: Generator and Discriminator. As in [20], the proposed
approach consists of two sets of generators and discriminators.
While the generator “corrupted-to-clean” (GX2C) learns to
transform a corrupted segment to a clean one, the aim of the
generator “clean-to-corrupted” (GC2X) will learn the opposite
and will be discarded after the training. Both corresponding dis-
criminators, “corrupted” (DX) and clean (DC) aim to maximize
the adversarial loss functions so as to generate more realistic
transformations. The loss functions are expressed in (9) and
(10).

Lossadv1 (GX2C, DC,XX)

=
1

m

m∑
i=1

(1−DC (GX2C (XX (i))))2 (9)

Lossadv2 (GC2X,DX,XC)

=
1

m

m∑
i=1

(1−DX (GC2X (XC (i))))2 (10)

where XX and XC are the corresponding corrupted and clean
ECG segments, respectively. In order to improve the preserva-
tion of the ECG characteristics, unlike the traditional GANs, we
further use the cycle-consistency loss as expressed in (11).

Losscyc (GX2C,GC2X,XX , XC)

=
1

m

m∑
i=1

[GC2X (GX2C (XX (i)))−XX (i)]

+
1

m

m∑
i=1

[GX2C (GC2X (XC (i)))−XC (i)] (11)

In addition to adversarial and cycle consistency losses, the
identity loss as given in (12) is defined for reducing the level
of variation if the class of the input sample is the same as the
desired output.

Losside (GX2C,GC2X,XX , XC)

=
1

m

m∑
i=1

[(GX2C (XC (i)))−XC (i)]

+
1

m

m∑
i=1

[(GC2X (XX (i))) −XX (i)] (12)

The objective of any Cycle-GAN training is to minimize the
total loss in (13).

Losstotal = Lossadv1 + Lossadv2 + λLosscyc + β Losside
(13)

TABLE I
DATASET DETAILS

The experimental setup and network parameters will be pre-
sented in the next section.

III. EXPERIMENTAL RESULTS

In this section, the benchmark CPSC-2020 dataset will first be
introduced. Then, the experimental setup used for the evaluation
of the proposed ECG restoration approach will be presented. The
comparative evaluations and the overall results of the experi-
ments obtained over real Holter recordings will be presented in
the following step. The quantitative, qualitative, and medical
evaluations (by a group of cardiologists) are all performed.
Additionally, the computational complexity of the proposed
approach will be evaluated in detail.

A. CPSC-2020 Dataset

The China Physiological Signal Challenge 2020, (CPSC-
2020) dataset is not only one of the largest benchmark datasets
with more than 1M beats, but it also presents natural Holter ECG
recordings with actual artifacts discussed earlier and thus, it is
ideal for evaluating the proposed approach. The dataset consists
of 10 single-lead ECG recordings of 10 arrhythmia patients each
of which has a duration of around 24 hours. The details of the
dataset are presented in Table I.

B. Experimental Setup

For both generators GX2C and GC2X of both baseline (convo-
lutional) and operational Cycle-GANs, 10-layer U-Net config-
uration is used with 5 1-D convolutional/operational layers and
5 transposed convolutional/operational with skip connections.
The kernel sizes are set as 5 except that the last transposed layer
the kernel size 6 is used. The stride is set as 2 for both con-
volutional/operational and transposed convolutional/operational
layers. Both discriminators consist of 6 operational layers with
a kernel size of 4. The stride for layers is set as 2, 2, 2, 2,
1, and 2 respectively. As a loss function in the Discriminator,
MSE is computed between the discriminator output and label
vectors both of which have dimension 30. The architectures for
the generators and discriminators are shown in Fig. 4. For all
experiments, we employ a training scheme with a maximum
of 1000 BP iterations with batch size 8. The Adam optimizer
with the learning rate 10−5 is used for both generators and
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Fig. 4. The Generator and Discriminator architectures of the proposed approach.

TABLE II
PEAK DETECTION PERFORMANCE OF HAMILTON PEAK DETECTOR [24]

discriminators. The loss weights λ andβ in (9) are set as 10 and 5.
We implemented the proposed 1D Self ONN architectures using
the FastONN library [18] based on Python [25] and PyTorch
[26]. For the training dataset, 4000 clean and corrupted segments
with a duration of 10 seconds (4000 samples) are selected, and
the segments from the rest of the data are used for testing and
evaluation.

C. Quantitative Evaluations Over Peak Detection

For quantitative evaluation, we use the landmark Hamilton
[23], and Pan and Tompkins [24] peak detectors and evaluated
the performance gain achieved by the proposed ECG restoration
approach. Commonly used performance metrics Precision (Pre),
Sensitivity (Sen), F1-Score (F1), and the number of missed S
and V arrhythmia beats are used to compare performance. The
calculation of True Positives (TP), False Negatives (FN), and
False Positives (FP) were taken within a tolerance of ±75 msec
[27] of the truth peak location. Since this is an R-peak detection
operation, True Negatives (TN) do not exist as a performance
measure. The formulations for these performance metrics can
be expressed as follows:

Pre =
TP

TP + FP
, Sen =

TP

TP + FN
,

F1 =
2PreSen

Pre+ Sen
(14)

Table II and Table III present peak detection performances
of the landmark detectors over the original and restored ECG
segments by the baseline and operational Cycle-GANs. Besides
the baseline model, we also used a more complex Cycle-GAN
(Cycle-GANx4) with four times more neurons and around 5
times more network parameters than operational Cycle-GANs to
evaluate the gain achieved at the expense of higher complexity.
Finally, we present the peak detection results over the two-pass
restoration by the Self-ONN generator (the output of GX2C is
again restored by GX2C a second time).

Both peak detection results clearly show that the peak de-
tection errors (FP and FN) are both reduced over the restored
ECG by the proposed approach without exception. When the
same network configuration is used (with the same number of
neurons), operational Cycle-GANs significantly outperform the
baseline Cycle-GANs in all metrics. As expected, only when
the number of neurons is increased by four times, the complex
Cycle-GANx4 can achieve a slightly better performance in over-
all peak detection (around 0.3–0.4% difference in F1); however,
operational Cycle-GANs can still outperform the Cycle-GANx4
in the peak detection of the arrhythmia beats. In fact, the detec-
tion of the arrhythmia beats is the most important objective since
peak detectors are commonly used as a pre-processing step for
the arrhythmia diagnosis by both medical doctors and machines.
After the restoration by the operational Cycle-GANs, the number
of missing V beats can be reduced by more than 40%. With
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TABLE III
PEAK DETECTION PERFORMANCE OF PAN &TOMPKINS PEAK DETECTOR [23]

an additional restoration pass by the operational Cycle-GANs
(two-pass), this can be improved by more than 50% for the Pan
and Tompkins peak detector.

D. Medical Evaluation

There are two objectives of the medical evaluation:
� To find out the best ECG signal for arrhythmia diagnosis

with respect to the cardiologist’s perspective.
� To find out whether ECG restoration causes loss of any

arrhythmia beats or the creation of false arrhythmia beats.
The first objective is not only to evaluate original vs. restored

ECG for arrhythmia diagnosis, but it also serves the purpose to
determine which restoration approach will be the most prefer-
able by the cardiologists. The 2nd objective is especially critical
for arrhythmia diagnosis since arrhythmia beats are usually rare
and hence, they should not be removed, or no false arrhythmia
beats should be created by the restoration method.

To accomplish these evaluation objectives, we randomly
selected 2000 ECG segments from the test partition of the
CPSC-2020 dataset and restored them using the four Cycle-
GAN methodologies (baseline, Cycle-GANx4, Operational and
Operational two-pass). A group of cardiologists evaluated their
outputs and compared them along with the original signal. Their
responses are collected in a survey, and we got the following
medical evaluation results: Among all doctors’ responses, the
original and restored ECG signals are found as the best option
for arrhythmia detection with 4.49% and 95.51% of the time,
respectively. This clearly shows that ECG restoration is indeed
crucial for a better medical evaluation by doctors. Moreover,
they have found only 0.04% of the time where an arrhythmia
beat is restored as a normal beat and hence missed. No S beat
was missed, and no false arrhythmia beat has ever been created
by any of the restoration approaches. This fulfills the 2nd and the
most critical objective.

Among the three ECG restoration approaches, Cycle-GANx4,
operational Cycle-GAN, and operational Cycle-GAN with two-
pass, the doctors have found them the best for diagnosis 28.3%,
6.9%, and 64.8% of the time, respectively. The most favored
method is, therefore, operational Cycle-GAN with two-pass, as
expected. This outcome is mainly due to the superior restoration

quality achieved especially on the arrhythmia beats and the noise
suppression level.

E. Qualitative Evaluation

For the qualitative (visual) evaluation, Figs. 5 and 6 show
two original ECG segments from the records of patients 2 and
7 in the CPSC-2020 dataset along with the three restored ECG
segments by the Cycle-GANs (baseline Cycle-GAN output is
omitted since other networks almost always outperform it). 17
more visual results are shown in the Appendix. In the figures,
the beats annotated with green and yellow stars correspond to V
and S type arrhythmia beats, respectively.

The first and the foremost observation is that the quality of the
restored ECG segments has significantly been improved com-
pared to the original ECG segment regardless of the Cycle-GAN
type, e.g., the noise has been suppressed significantly or cleaned
entirely, the baseline wander or fluctuations are removed, the
QRS beat amplitudes are mostly enhanced, the abrupt signal
cuts are removed, etc. The proposed restoration approaches
succeed to create authentic QRS beats with the right timing with
respect to their original counterparts. On the other hand, when
the original ECG signal is sufficiently clean, it is kept intact after
the restoration without any artificial variations or degradations.
Moreover, the arrhythmia beats in the original ECG segment are
restored as to the arrhythmia beats with the corresponding type.
As discussed earlier, this is critical for arrhythmia diagnosis by
both machines and cardiologists.

A closer look at the figures reveals the fact that the best
restoration has been performed by the operational Cycle-GANs
with two-pass (on the bottom), i.e., the best noise suppression,
QRS amplitude restoration, and the removal of baseline wander
and cuts. This is in accordance with the medical evaluations
by the cardiologists. An interesting observation worth men-
tioning in Fig. 5 is that a possible V-beat was missed by the
Chinese cardiologists due to the excess noise; however, after
the restoration, it becomes quite straightforward to diagnose
this arrhythmia (as shown in the figure with a green arrow).
The opposite is also true; due to severe artifacts, the Chinese
cardiologists mislabeled a V beat (marked with a green star)
as shown in Fig. 6 by the red arrow. Only after the restoration,
did the cardiologists in this study confirm that it should not
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Fig. 5. Sample ECG segment from Patient 2 and its corresponding GAN output signals.

Fig. 6. Sample ECG segment from Patient 7 and its corresponding GAN output signals.
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TABLE IV
COMPUTATIONAL COMPLEXITY OF THE NETWORKS

be a V beat or any beat at all. We present 17 more sample
ECG segments and their restoration results in the Appendix
(see: Fig. 7–Fig. 23) and another 100 samples in [33]. Although
the Cycle-GANx4 has a significantly higher number of learning
units and complexity, operational Cycle-GANs usually outper-
form them, especially on QRS amplitude restoration (e.g., some
R-peaks could not be restored fully by the Cycle-GANx4 as
shown in Fig. 7 and Fig. 8 with blue arrows). Similarly, in Fig. 9,
the cut is not restored by the Cycle-GANx4 when compared with
the restorations by the operational GANs (shown by a purple
arrow). Finally, although quite rare, some restoration issues are
shown in Fig. 17 and Fig. 18. In Fig. 17, all GAN restorations
fail for the two V-beats due to their very low amplitude. In
fact, the cardiologists in this study also raise a concern about
their validity. In Fig. 18, the arrow on the left shows that all
GANs over-correct a cut to be restored as a somewhat distorted
ECG beat. The arrow on the right, however, shows a cut that
probably coincides with an ECG beat (based on the timing). The
Cycle-GANx4 removed it completely during restoration while
the operational Cycle-GANs restored an ECG beat instead. Once
again, it is hard to decide whether it is indeed an ECG beat
or not, and hence, this may be an over-correction or a valid
restoration.

F. Computational Complexity

For computational complexity analysis, the network size, total
number of parameters (PARs), and inference time (to restore an
ECG segment) for each network configuration are computed
and reported in Table IV. The detailed formulations of the
PARs calculations for Self-ONNs can be found in [18]. All
the experiments were carried out on a 2.2 GHz Intel Core i7
with 16 GB of RAM and NVIDIA GeForce RTX 3080 graphic
card. For the implementation of the Cycle-GANs and operational
Cycle-GANs, Python with PyTorch library is used. Both the
training and testing phases of the classifier were processed
using GPU cores. As the inference time and PARs indicate, the
operational Cycle-GAN is significantly faster and less complex
than the Cycle-GANx4.

IV. CONCLUSION

The major problem of Holter and wearable ECG sensors is
that the acquired ECG signal may severely be corrupted by a

blend of artifacts, and this makes it too difficult, if not infeasible,
to diagnose any heart abnormality by machines or humans. In
this study, we propose a novel approach to restore the ECG
signal to a clinical level quality regardless of the type or severity
of the artifacts. Therefore, we follow a different path from the
prior works, which approached this as a “denoising” problem
for additive (artificial) noise with a fixed type and power so
that they could propose a supervised solution. Such common
regression-based solutions are not useful in practice and that
is why this study addressed this problem with a blind restora-
tion approach without any prior assumption over the artifact
types and severity. As the baseline method, we proposed 1D
Cycle-GANs, and to further boost the performance, we proposed
operational Cycle-GANs. Once Cycle-GANs are trained over
the clean and corrupted batches, the generator, GX2C, learns
to transform the corrupted ECG segments to clean counterparts
while preserving the ECG characteristics. The optimized Py-
Torch code and the labeled CPSC-2020 dataset are publicly
shared in [32].

The quantitative, qualitative, and medical evaluations per-
formed over an extensive set of real Holter recordings demon-
strate that the corrupted ECG can indeed be restored with
a desired (clinical) quality level, which in turn improves the
efficiency and accuracy of ECG diagnosis by machines and
humans. In particular, the R-peak detection performances of
the two landmark detectors have been significantly improved
over the restored signal. During the medical evaluation, the
cardiologists confirmed that the restored ECG signal is more
useful for arrhythmia diagnosis 95.51% of the time. They fur-
ther note that the restoration has almost no side effects on
the arrhythmia beats, i.e., neither causing an arrhythmic beat
to turn to a normal beat nor transforming a normal beat into
an arrhythmic beat. Finally, besides the superior ECG qual-
ity achieved by the proposed restoration approach, the visual
evaluation further demonstrated that the hidden/undetected ar-
rhythmia events can possibly be diagnosed from the restored
ECG. A similar conclusion can also be made on the significant
peak detection performance gain of arrhythmia beats achieved
after the restoration. Among all proposed restoration approaches
by 1D Cycle-GANs, the novel operational Cycle-GANs have
a superior restoration performance and can even outperform
a more complex counterpart with convolutional neurons. This
is not surprising considering the superiority of Self-ONNs in
many challenging ML and CV tasks over the (deep) CNN
models [28]–[30].

Despite the elegant restoration performance, we note that
very occasionally some potential arrhythmia beats with very
low amplitudes may not be distinguished from the background
noise, and hence not restored. Moreover, few over-corrections
were encountered yielding artificial beats. Such minority cases
can be addressed by designing a cost function that incorporates
the class information (normal, S, and V type beats). Finally, the
depth and complexity of the operational Cycle-GANs can further
be reduced while boosting the restoration performance by using
the super neuron model recently proposed in [31]. These will be
the topics of our future research.
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