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Abstract: This study constructs a machine learning method to simultaneously analyze the thermo-
dynamic behavior of many polymer–drug systems. The solubility temperature of Acetaminophen,
Celecoxib, Chloramphenicol, D-Mannitol, Felodipine, Ibuprofen, Ibuprofen Sodium, Indomethacin,
Itraconazole, Naproxen, Nifedipine, Paracetamol, Sulfadiazine, Sulfadimidine, Sulfamerazine, and
Sulfathiazole in 1,3-bis[2-pyrrolidone-1-yl] butane, Polyvinyl Acetate, Polyvinylpyrrolidone (PVP),
PVP K12, PVP K15, PVP K17, PVP K25, PVP/VA, PVP/VA 335, PVP/VA 535, PVP/VA 635, PVP/VA
735, Soluplus analyzes from a modeling perspective. The least-squares support vector regression
(LS-SVR) designs to approximate the solubility temperature of drugs in polymers from polymer and
drug types and drug loading in polymers. The structure of this machine learning model is well-tuned
by conducting trial and error on the kernel type (i.e., Gaussian, polynomial, and linear) and methods
used for adjusting the LS-SVR coefficients (i.e., leave-one-out and 10-fold cross-validation scenarios).
Results of the sensitivity analysis showed that the Gaussian kernel and 10-fold cross-validation is
the best candidate for developing an LS-SVR for the given task. The built model yielded results
consistent with 278 experimental samples reported in the literature. Indeed, the mean absolute
relative deviation percent of 8.35 and 7.25 is achieved in the training and testing stages, respectively.
The performance on the largest available dataset confirms its applicability. Such a reliable tool is
essential for monitoring polymer–drug systems’ stability and deliverability, especially for poorly
soluble drugs in polymers, which can be further validated by adopting it to an actual implementation
in the future.

Keywords: solubility temperature; drug; polymer; support vector regression; kernel type;
tuning techniques

1. Introduction

Enhancing the deliverability of poorly water-soluble solid drugs has always been
challenging for researchers engaged in pharmaceutical synthesis [1,2]. Various strate-
gies, including applying nanotechnology [3], nanosuspension [4], nanomedicine [5], solid
dispersion [6], surfactants in solid dispersion [7], mesoporous silica material [8], and di-
verse solution media (such as supercritical [9,10], ionic [11], eutectic [12], the polymer [13])
have already been tried in the field of drug synthesis/formulation. Utilizing the amorphous
form of drugs instead of their crystalline structures (i.e., ASD: amorphous solid dispersions)
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has also gained tremendous attention as a practical path to improve the deliverability and
dissolution rate of poorly soluble drugs [14,15]. Dispersing and stabilizing the amorphous
form of drugs in polymeric carriers is a well-established class of this ASD scenario [16–19].
Molecularly dispersing amorphous drugs in polymeric carriers with a higher glass transi-
tion temperature (GTT) increases the mixture’s GTT [20], enhances apparent solubility [21],
and improves thermodynamic stability [22]. Some researchers also claimed that poly-
meric carrier selection is the most critical factor in the ASD scenario [23]. Furthermore,
drug–polymer miscibility is likely the most important influential factor in achieving amor-
phous solid dispersion stability [21].

Therefore, reliable insights into drug solubility in polymeric carriers are necessary for
successfully implementing the ASD scenario [22,24–28]. The polymer–drug solubility curve
is also significant for selecting appropriate polymers for the ASD process and determining
the maximum drug loading in the polymeric carrier without the risk of crystallization [28].
Indeed, the drug stability primarily depends on the drug solubility in polymers at the
storage temperature [24,29]. To reach a thermodynamically stable formulation, a drug
loading in a polymeric carrier should be smaller or at least equal to the drug solubility in the
polymer at the storage temperature [24]. In addition, the drug solubility in polymeric media
is of interest in the design of pharmaceutical formulation and purification equipment [30].
The drug solubility in polymers is determined by measuring the temperature and the
solution dosage at a system equilibrium state [25]. Experimental measurement of the drug
solubility is a well-established method in this regard [31,32]. Laboratory measurements
of the drug solubility in polymeric carriers is a challenging task due to the unavailability
of the standard procedure [25], the high viscosity of polymers [24,33], the difficulty of
reaching the equilibrium condition [28], and the consuming time [27].

Therefore, researchers suggested several correlations to estimate the solubility tem-
perature of ibuprofen and naproxen in Soluplus [24] and the miscibility of curcumin
in polyvinyl pyrrolidone, hydroxypropyl methylcellulose, and polyethylene glycol [34].
Knopp et al., developed a model utilizing statistical analysis to compare the effect of prepa-
ration methods on indomethacin-Polyvinylpyrrolidone solubility curves [35]. The solubility
parameter (originally introduced by Hildebrand [36] and then modified by Hansen [37]) is
another approach for theoretically determining drug–polymer miscibility. Recently, Mamidi
and Rohera constructed the thermodynamic phase diagram of drug–polymer systems us-
ing the melting-point depression data, Gordon–Taylor equation, and the Flory–Huggins
theory [21]. Such a correlation is only valid for an investigated polymer–drug medium and
potentially presents high uncertainty for other polymer–drug systems. To the authors’ best
knowledge, the literature has constructed no general empirical, intelligent, or mathematical
model for approximating a broad range of polymer–drug systems. Building a universal
model helps find the best polymer for drug carriers among different candidates.

Consequently, designing a reliable LS-SVR model to estimate the equilibrium behavior
of a wide range of drugs in different polymers is the main objective of the current research.
Furthermore, it is necessary to engineer the LS-SVR structure systematically. The suggested
LS-SVR can easily produce the solubility curve of a drug in the polymer as a function of
drug and polymer type and drug load in the polymer. In addition, this study:

(a) Introduces the most general model to estimate the solubility of drugs in polymers.
(b) Saves time and money by replacing experimental analysis with a straightforward

model.
(c) Offers a route for choosing the most suitable polymer for the ASD scenario.
(d) Provides the polymer–drug solubility data for monitoring the solution stability.

2. Data Collection

An experimental database is needed to develop an LS-SVR model to approximate the
solubility temperature of drugs in polymers. This database should include the dependent
variable (Tsol: solubility temperature) and its related independent variables (i.e., polymer
and drug type and drug load in polymers). Table 1 concisely reports polymer–drug systems
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that will be analyzed in the current study. This table also introduces the names of the drug
and polymer based on the original reference, the amount of data, and the range of drug
load in polymers and solubility temperature.

Table 1. Summary of the literature data for the solubility of drugs in polymers.

Drug Name Polymer Name Drug Load (wt%) Tsol (◦C) N Ref.

Sulfadiazine, Sulfadimidine,
Sulfamerazine, Sulfathiazole PVP, Soluplus 1–100 146.7–252.7 56 [22]

Acetaminophen, Ibuprofen,
Ibuprofen Sodium, Itraconazole,

Naproxen, Nifedipine
PVP/VA, Soluplus 20–100 30.0–198.3 56 [24]

D-Mannitol, Indomethacin,
Nifedipine

PVAc, PVP K12, PVP K15,
PVP K25, PVP/VA,

VP dimer
5–100 88.2–175.7 59 [25]

Celecoxib, Chloramphenicol,
Paracetamol PVAc, PVP, Soluplus 8–95 95.5–168.5 53 [26]

Celecoxib, Chloramphenicol,
Felodipine, Indomethacin,

Paracetamol

PVP K17, PVP/VA 335,
PVP/VA 535, PVP/VA 635,

PVP/VA 735
60–95 132–172 35 [27]

D-Mannitol, Indomethacin,
Nifedipine PVP K15, PVP/VA 22.2–100 108.7–172.1 19 [28]

N: Amount of data. PVAc: Polyvinyl Acetate. PVP: Polyvinylpyrrolidone. PVP/VA: Polyvinylpyrrolidone/vinyl
acetate copolymers. Soluplus: Polyvinyl caprolactam-PVAc-polyethylene glycol graft copolymer. Tsol: Solubility
temperature. VP dimer: 1,3-bis[2-pyrrolidone-1-yl] butane.

Since the collected experimental data covers different polymer–drug systems, molec-
ular weights (Mw) of the drug and polymer are selected to help LS-SVRs discriminate
between the behavior of various drugs and polymers during the modeling phase.

In summary, the current study includes 16 drugs, 13 polymers, a drug load of 1 to
100 weight percent (wt%) in polymers, and a solubility temperature of 30 to 252.7 ◦C. It
should be mentioned that the composition of polymer–drug mixtures can vary from low
(~0 wt%) to high (~100 wt%) dosages of a drug. Indeed, these points indicate the pure
polymer and pure drug, respectively. When the drug loading is 100 wt% (i.e., pure drug),
the melting temperature is considered as the solubility temperature [25].

The numerical value of experimental data is available in the Supplementary Materials.

Relevancy Analysis

Two well-known relevancy analysis scenarios, i.e., Spearman [38] and Pearson [38],
respectively in Equation (1) are applied to quantize the strength and reveal the direction of
relationships between Tsol and drug Mw, Tsol and polymer Mw, and Tsol and drug load in
a polymer (Figure 1).

Relevancy = 1−
[(

6∑N
n=1 d2

n

)
/
(

N3 − N
)]

and

Relevancy = ∑N
n=1 (IV − IVave)n

(
TExp

sol − Tave
sol

)
n
/

(√
∑N

n=1(IV − IVave)2
n

√
∑N

n=1

(
TExp

sol − Tave
sol

)2

n

)
(1)

where d is the difference between the two ranks of observations and N is the number of
available samples. In addition, IV and IVave (Equation (2)) show numerical values of the
independent variable and their average, and TExp

sol and Tave
sol (Equation (3)) are numerical

values of the solubility temperature and its average.
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IVave = ∑N
n=1 (1/N)× (IV)n (2)

Tave
sol = ∑N

n=1 (1/N)×
(

TExp
sol

)
n

(3)

Figure 1. Quantizing the relevancy (strength and direction of relationship) between solubility
temperature and its affecting variables.

Figure 1 approves that increasing the molecular weight of drugs decreases the solubil-
ity temperature (negative relevancy value shows an indirect relationship [39]). On the other
hand, the molecular weight of polymers and drug load in polymers increase the solubility
temperature [40] (positive relevancy value shows a direct relationship [39]). In addition, the
molecular weight of drugs is the strongest reducing feature (due to its minimum relevancy
value [38]), and drug load is the strongest increasing factor (due to its maximum relevancy
value [38]) for the solubility temperature.

3. LS-SVR Description

Machine learning, deep learning, feature selection, and decision-making techniques have
a broad range of applications for implementing either classification or approximation [41]
tasks in different fields of daily life, science, and technology [42–44]. Support vector
machine [45] and its derivation (i.e., least-squares support vector regression [46]) have
recently gained great attention. These methods transform the experimental data to a multi-
dimensional space utilizing the linear, polynomial, and Gaussian kernels (i.e., K) based on
Equation (4) [47].

K
(

xi, xj
)
=


xi

Txj Linear kernel(
xi

T xj + t
)d Polynomial kernel

e− ‖xi− xj‖2/2σ2
Gaussian kernel

(4)

where T is transpose operation, t, d, and σ2 are kernel-related parameters.
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In the transformed space, it is possible to linearly relate independent and independent
variables by Equation (5). w (i.e., weights) and b (bias) are adjustable parameters of LS-SVR
method [48].

g(xi) = wT ϕ(xi) + b i = 1, 2, . . . , N (5)

Then, a combination of simulated annealing and simplex methods tries to adjust
weights and biases through solving the following optimization algorithm [48]. Minimize OF(w, e) = 1

2 wT w + γ
2

N
∑

n=1
e2

n

en =
(

TExp
sol

)
n
− wT ϕ(xn)− b n = 1, 2, . . . , N

(6)

4. Results and Discussions

This study aims to determine the best kernel type (Gaussian, polynomial, and linear)
and tuning method (leave-one-out and 10-fold cross-validations) of the LS-SVR by trial
and error. Hence, it is necessary to adjust the coefficients of the LS-SVR with different
kernel types by the leave-one-out and 10-fold cross-validations and compare their accuracy
to find the highest accurate topology. MARDP (mean absolute relative deviation percent,
Equation (7)), MADP (mean absolute deviation percent, Equation (8)), RMSE (root mean
squared error, Equation (9)), and R-value (coefficient of determination, Equation (10))
compare the accuracy of different LS-SVR topologies [49] and help find the best one.

MARDP = ∑N
n=1 (100/N)×

(∣∣∣TExp
sol − TLS−SVR

sol

∣∣∣/TExp
sol

)
n

(7)

MADP = ∑N
n=1 (100/N)×

∣∣∣TExp
sol − TLS−SVR

sol

∣∣∣
n

(8)

RMSE =

√
∑N

n=1 (1/N)×
(

TExp
sol − TLS−SVR

sol

)2

n
(9)

R =

√
1−

{
∑N

n=1

(
TExp

sol − TLS−SVR
sol

)2

n
/∑N

n=1

(
TExp

sol − Tave
sol

)2

n

}
(10)

Here, TLS−SVR
sol is the predicted solubility temperature by the LS-SVR.

4.1. Constructing the LS-SVR Model

Developing any knowledge-based model needs at least two data collections,
i.e., training and testing [50]. Therefore, it is necessary to randomly divide the exper-
imental data into training and testing collections. The former collection is applied to
regulate the LS-SVR parameters (known as an LS-SVR training stage). On the other hand,
the latter collection is used to appraise the generalization ability of the trained LS-SVR
in some unseen situations. This study uses a ratio = 85/15 to allocate the experimental
data into the training and testing collections, respectively. Table 2 reports the highest
accurate predictions obtained by the LS-SVR models trained by the leave-one-out and
10-fold cross-validation (CV) techniques. The performance of LS-SVRs in the training and
testing stages (and the combination of two phases, i.e., overall) has been measured using
the aforementioned statistical criteria. The second column of these tables also introduces
kernel functions’ adjusted coefficients (t, d, and σ2) and regularization parameter (γ).
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Table 2. The best results obtained by LS-SVRs with different kernel types (leave-one-out CV and
10-fold CV).

The Best Results Obtained by LS-SVRs with Different Kernel Types (Leave-One-Out CV)

Kernel Type Tuned
Parameters Group MARDP MADP RMSE R-Value

Linear γ = 0.07673

Training 19.15 25.15 35.81 0.1726

Testing 27.73 29.74 43.63 −0.1032

Overall 20.44 25.84 37.10 0.1161

Polynomial
γ = 1.83 × 107

t = 2.19796
d = 5

Training 10.50 13.73 20.02 0.8538

Testing 11.20 15.79 22.68 0.7738

Overall 10.61 14.04 20.44 0.8386

Gaussian γ = 1.66181
σ2 = 0.00765

Training 8.44 11.14 16.99 0.9234

Testing 9.70 15.35 18.92 0.8455

Overall 8.63 11.78 17.30 0.9148

The Best Results Obtained by LS-SVRs with Different Kernel Types (10-Fold CV)

Kernel Type Tuned
Parameters Group MARDP MADP RMSE R-Value

Linear γ = 0.06677

Training 20.52 26.82 37.62 0.1506

Testing 20.68 20.85 34.09 −0.0893

Overall 20.54 25.92 37.10 0.1133

Polynomial
γ = 0.01154
t = 7.10159

d = 5

Training 15.68 18.34 28.11 0.6236

Testing 14.37 19.93 28.19 0.8333

Overall 15.48 18.58 28.13 0.6661

Gaussian γ = 1.98636
σ2 = 0.01335

Training 8.35 11.00 17.04 0.9118

Testing 7.25 13.78 20.93 0.8624

Overall 8.18 11.42 17.69 0.9037

The reported results in Table 2 approve that LS-SVRs equipped with the Gaussian and
linear kernel functions are the highest and lowest accurate models, respectively.

4.2. Selecting the Best LS-SVR

Although the previous results showed that the Gaussian function provides the LS-SVR
with a higher prediction accuracy than the other kernel types, it is better to demonstrate
this finding by helping the ranking analysis. This analysis uses Equation (11) to calculate
the average rank of each LS-SVR over the four statistical indexes (MARDP, RMSE, MADP,
and R-value) [38]. Since ranking analyses have been separately conducted for the training
and testing stages (and their combination), it is possible to sort LS-SVRs in different
modeling phases.

Rank = round

{
4

∑
i=1

rank(index)
i

/4

}
(11)

4.2.1. Selecting the Best Kernel Function

Results of performing the ranking analysis on the priority of LS-SVRs with different
kernel functions have been depicted in Figure 2a,b for the leave-one-out CV and 10-fold
cross-CV. Thus, LS-SVRs with the Gaussian kernel function achieve the first ranking in the
training/testing stages and their combination.
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Figure 2. (a). Performing the ranking analysis on the performance of LS-SVRs with different kernel
types (leave-one-out CV). (b). Performing the ranking analysis on the performance of LS-SVRs with
different kernel types (10-fold CV).

4.2.2. Selecting the Best Tuning Technique

In this stage, the ranking analysis is applied again to determine the best tuning method
of the LS-SVR model. The results of performing the ranking analysis on the priority of leave-
one-out and 10-fold CV techniques have been illustrated in Figure 3. It can be concluded
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that the LS-SVR (with the Gaussian kernel function) trained by the 10-fold cross-validation
technique presents the highest accuracy in approximating the solubility temperature of
drugs in polymers.

Figure 3. Performing the ranking analysis on the best results of the leave-one-out and 10-fold
cross-validation scenarios.

Although it is possible to extend the LS-SVR model to cover other drug–polymer
binary systems, the current version of the LS-SVR model can only be applied to simulate
phase equilibria of the involved drug–polymer systems (see Table 1).

4.3. Monitoring the LS-SVR Performance Using Graphical Analyses
4.3.1. Compatibility between Experimental and Calculated Tsol

Equation (12) measures the actual difference (AD) between experimental and approxi-
mated values of the drug solubility temperature in polymers.

ADn =
(

TExp
sol − TLS−SVR

sol

)
n

n = 1, 2, . . . , N (12)

It is obvious that these observed differences are better to be as small as possible.
However, several issues, including the complexity of a considered process/phenomenon,
broad ranges of variables, uncertainty in experimental measurements, and modeling error,
often result in observing nonzero AD values.

The histogram presentation of the training and testing ADs is shown in Figure 4. This
figure indicates that a high percentage of drug solubility temperature in polymers has been
estimated with excellent AD values between −20 and 20 ◦C. In addition, the maximum
number of experimental solubility temperatures (~140 training and 30 testing samples) has
been computed with the lowest possible AD value (~0 ◦C). This figure also shows that
~17 experimental solubility samples have been estimated with an AD lower than −40 ◦C
or higher than 40 ◦C.



Pharmaceuticals 2022, 15, 1405 9 of 15

Figure 4. Histogram of residual errors of the structure-tuned LS-SVR in the training and
testing stages.

This section calculates the average value (ADave) and standard deviation (SD) of pre-
sented ADs by the structure-tuned LS-SVR using Equations (13) and (14), respectively [38].

ADave = ∑N
n=1 (1/N)× ADn (13)

SD =
√

∑N
n=1 (1/N)× (ADn − ADave)2 (14)

The constructed LS-SVR is able to predict 278 solubility temperatures of 16 drugs in
13 polymers with the promising ADave = 1.2 ◦C and SD = 17.7 ◦C.

4.3.2. Experimental versus Predicted Tsol in the Training and Testing Stages

Figure 5a,b show the value of experimental solubility temperatures in the training and
testing stages of the LS-SVR, respectively. Although the testing group possesses a higher
scattering level than the training dataset, it can be seen that both groups are scattered
enough to make the modeling hard. Despite this relatively high scattering of experimental
solubility temperatures, the constructed LS-SVR properly describes the thermodynamic
behavior of polymer–drug systems. The excellent performance of the LS-SVR can be more
approved by the values of MARDP, MADP, RMSE, and R reported in the figures’ body.

4.4. Monitoring the LS-SVR Performance Using Trend Analyses
4.4.1. Evaluating the Impact of Drug Type and Its Load in Polymer on the Tsol

The effect of the drugs’ type (i.e., Paracetamol, Celecoxib, and Chloramphenicol)
and their loading in Polyvinyl Acetate on the solubility temperature has been depicted
in Figure 6. This figure presents experimental as well as modeling values of Tsol versus
drug loading. It can be concluded from these profiles that the drug loading in polymers
increases the solubility temperature. Increasing the solubility temperature with increasing
the drug loading in the polymer is related to the drug–polymer interactions [26]. It is
better to recall that the relevancy analyses also anticipated the increasing impact of drug
loading in polymers on the solubility temperature (see Section 2). In addition, the drug type
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also affects the solubility temperature of drugs in a polymer. It is obvious that changing
the solute type changes the interaction between the drug–polymer and the observed
solubility temperature.

Figure 5. Experimental and modeling values of the solubility temperature in the (a) training and
(b) testing stages.
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Figure 6. The effect of drug type and drug load in polyvinyl acetate on the solubility temperature.

From the modeling perspective, the LS-SVR successfully describes the thermodynamic
behavior of different polymer–drug systems and discriminates among them. Furthermore,
the developed model correctly identifies the direct effect of the drug load on the solubility
temperature. The excellent agreement between experimental and predicted solubility
temperatures can be more justified by the MARDP of 1.55 (Polyvinyl Acetate-Paracetamol),
2.9 (Polyvinyl Acetate-Celecoxib), and 2.59 (Polyvinyl Acetate-Chloramphenicol).

4.4.2. Evaluating the Impact of Polymer Type on the Tsol

The variation of solubility temperature of D-Mannitol in PVP K12, PVP K15, and
VP dimer has been plotted in Figure 7. This figure covers both experimental and mod-
eling Tsol-drug load profiles. It can be viewed that the PVP K12/D-Mannitol and VP
dimer/D-Mannitol systems have the highest and lowest solubility temperature, respec-
tively. The acceptable performance of the LS-SVR for predicting the equilibrium behavior
of polymer/D-Mannitol systems can be approved by the observed MARDP value of 1.65
(PVP K12/D-Mannitol), 2.84 (PVP K15/D-Mannitol), and 2.34 (VP dimer/D-Mannitol).

In addition, both the experimental data and LS-SVR curves in Figure 7 show that the
effect of the polymer type on solubility temperature is minor. We recall from Figure 1 that
the molecular weight of polymers has a minor effect on the drug solubility temperature.
On the other hand, PVP K12, PVP K15, and VP dimer are polyvinyl pyrrolidone-based
polymers with different molecular weights. Therefore, it is expected that the solubility
temperature of D-Mannitol in these polymers is almost equal.

4.5. Checking the Data Validity

The experimental data may contain different quantities of noise, outliers, and wrong
measurements. Human mistakes, instrument defects, and incorrect calibration are the main
cause of this data uncertainty. It seems necessary to check the uncertainty level in the
analyzed drug–polymer equilibrium samples. Hence, the last analysis of this study utilizes
the leverage method to check the experimental database validity. This method uses the
standard residual (SR, Equation (15)) against the Hat index (Equation (16)) graph to find
both valid and problematic samples [38].

SRn = ADn/SD n = 1, 2, . . . , N (15)
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Hatindex = MIV
(

MIVT MIV
)−1

MIVT
{

MIV : Matrix o f independent variables
T : Transpose operator

(16)
The samples outside the region confined by critical leverage (CL, Equation (17)) and

SR = ±3% are outliers, and all others are valid [51].

CL = 3× (NIV + 1)/N NIV : Number o f independent variables (17)

Figure 7. The effect of polymer type and D-Mannitol load on the solubility temperature.

Figure 8 reveals that 264 valid and 14 problematic samples exist among the
278 experimental datasets. Indeed, 95% of the experimental databank is valid, and only
5% may be outliers. Since the analyzed experimental samples related to drug–polymer
equilibrium behavior are almost valid, the extracted LS-SVR model from this databank is
also reliable.

Figure 8. William’s graph to identify outlier as well as valid samples.
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5. Conclusions

This study successfully simulated the solubility temperature of 16 drugs in 13 poly-
meric media by a machine learning technique. The kernel type and tuning method of
the LS-SVR have been well-tuned by a systematic combination of statistical and ranking
analyses. The results concluded that it is better to equip the LS-SVR with the Gaus-
sian kernel function and adjust its parameters with the 10-fold cross-validation method.
The designed LS-SVR predicted the solubility of 278 polymer–drug samples with the
MARDP = 8.18, MADP = 11.42, RMSE = 17.69, and R = 0.9037. Since the performance of
the LS-SVR model has been validated by the graphical and trend analyses and the utilized
experimental database includes 95% valid samples, the suggested model can be readily
applied to estimate the solubility temperature of drugs in polymeric media. The relevancy
analysis and experimental/modeling profile clarified that the drug solubility temperature
in polymers increases by increasing the drug load and the polymer’s molecular weight. On
the other hand, the drug’s molecular weight has an inverse relationship with the solubility
temperature. This study successfully applied the LS-SVR method to simulate the solubility
of different drugs in nonionic polymers. Using machine learning models to estimate the
drug solubility in ionic polymers is a good idea to continue this preliminary research study.

Supplementary Materials: The numerical value of independent and dependent variables of the analyzed
experimental data can be downloaded at: https://www.mdpi.com/article/10.3390/ph15111405/s1.
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