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Abstract: With the onset of the COVID-19 pandemic, the number of critically sick patients in intensive
care units (ICUs) has increased worldwide, putting a burden on ICUs. Early prediction of ICU
requirement is crucial for efficient resource management and distribution. Early-prediction scoring
systems for critically ill patients using mathematical models are available, but are not generalized
for COVID-19 and Non-COVID patients. This study aims to develop a generalized and reliable
prognostic model for ICU admission for both COVID-19 and non-COVID-19 patients using best
feature combination from the patient data at admission. A retrospective cohort study was conducted
on a dataset collected from the pulmonology department of Moscow City State Hospital between
20 April 2020 and 5 June 2020. The dataset contains ten clinical features for 231 patients, of whom
100 patients were transferred to ICU and 131 were stable (non-ICU) patients. There were 156 COVID
positive patients and 75 non-COVID patients. Different feature selection techniques were investigated,
and a stacking machine learning model was proposed and compared with eight different classification
algorithms to detect risk of need for ICU admission for both COVID-19 and non-COVID patients
combined and COVID patients alone. C-reactive protein (CRP), chest computed tomography (CT),
lung tissue affected (%), age, admission to hospital, and fibrinogen parameters at hospital admission
were found to be important features for ICU-requirement risk prediction. The best performance
was produced by the stacking approach, with weighted precision, sensitivity, F1-score, specificity,
and overall accuracy of 84.45%, 84.48%, 83.64%, 84.47%, and 84.48%, respectively, for both types of
patients, and 85.34%, 85.35%, 85.11%, 85.34%, and 85.35%, respectively, for COVID-19 patients only.
The proposed work can help doctors to improve management through early prediction of the risk of
need for ICU admission of patients during the COVID-19 pandemic, as the model can be used for
both types of patients.

Keywords: intensive care unit; COVID-19; early prediction; machine learning; clinical biomarkers

1. Introduction

The COVID-19 pandemic began in Wuhan, China at the end of 2019, and spread
quickly throughout the world [1]. Some countries experienced more than one wave of the
pandemic. As of 11 July 2022, globally there have been around 560 M confirmed cases and
around 6.3 M deaths caused by COVID-19 [2]. This novel coronavirus mostly affects a
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patient’s lungs, resulting in pneumonia [3]. The majority of individuals have a mild form of
the illness, with typical respiratory symptoms [4]. The most frequent clinical signs are fever
and cough; however, some patients develop severe illness, which results in intensive care
unit (ICU) admission and even death [5]. During the pandemic, along with the non-COVID
critically ill patients, COVID-19 patients were also transferred to ICU [6], which resulted
in the demand for ICU resources substantially increasing, exceeding the capacity in many
healthcare systems [7]. ICUs are costly and time-sensitive resources, and if their capacity
is challenged, it can have a major consequence for healthcare services [8]. In addition,
as the number of critically ill patients continues to increase, their stays in the ICU have
become even longer [9,10], especially during the COVID-19 situation. To solve this issue,
some scoring systems have been used for the early identification of ICU requirements.
Scoring techniques rely on the identification of prognostic markers associated with the
severity of the disease [11]. Similar scoring systems are available for ICU admission risk
prediction among non-COVID patients. Analysis of coagulation parameters has been very
useful in identifying the severity of non-COVID-related pneumonia [12]. The severity of
COVID-19 can also be identified from a similar analysis of blood-profile deviations, includ-
ing lymphopenia, thrombocytopenia, and coagulopathies, such as prolonged prothrombin
time [13–16]. However, these studies could be improved further by increasing their robust-
ness by training on a larger dataset, and also by providing an approach that could be used
for both COVID and non-COVID patients [17]. A model that can be generalized for both
types of patients is not available in the literature, to the best of the authors’ knowledge.

The research implication of this study is the development of a novel framework
that reliably and accurately helps in calculating the risk of ICU admission among two
types (COVID and non-COVID) of patients. The severity scoring systems can be used to
predict adverse outcomes for initial triage and treatment [18]. This can help in the efficient
management of ICU resources for timely intervention. During the peak of the pandemic,
it may even be crucial to predict and manage the ICU requirement beforehand so that
potential capacity challenges can be managed.

The rest of the paper is organized in the following manner: Section 1 is the introduc-
tion outlining the motivation for the study, along with the potential research implication.
Section 2 summarizes the relevant works in this domain and also summarizes the contri-
bution of this work. Section 3 provides the methodology, which includes the details of
the dataset description, statistical analysis, data preprocessing, feature ranking techniques,
machine learning (ML) techniques, and performance metrics used in this study. Section 4
provides the results of the investigations followed by a detailed discussion. Finally, the
conclusion is provided in Section 5.

2. Related Work

Radiological images, such as chest X-rays (CXR) and computed tomography (CT)
images, have been extensively used in the stratification of COVID-19 patients [19–24]. Poly
et al. [25] have performed a systematic review with a meta-analysis of relevant studies
to quantify the performance of deep learning algorithms in the automatic stratification
of COVID-19 patients using CXR images. It is reported that the deep learning models
provided satisfactory results and can be used in the fast screening of COVID-19 patients.
However, these models should be further validated using independent unknown test sets.
Several studies have reported the usefulness of CT images for COVID-19 detection and
severity stratification and in follow-on studies. CXR- or CT-based approaches cannot be
used as prognostic models.

Clinical biomarkers from electronic health records have shown great promise in de-
veloping a prognostic model and scoring technique as an early predictor of severity or
mortality for COVID-19 patients [26–28]. Thus, clinical biomarkers can be used as reliable
predictors for COVID-19 stratification, severity detection, and mortality risk prediction.
Most importantly, these prognostic models can make reliable predictions based on the
data at admission. Electronic health records have been utilized in developing machine
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learning models for predicting the length of stay (LOS) in patients suffering from sepsis and
COVID-19 in ICU [29–32]. Alabbad et al. [33] used a random forest classifier to predict the
ICU requirement of COVID-19 patients and estimated their LOS in ICU with an accuracy
of 94.16%, using data from King Fahad University Hospital, Saudi Arabia. The Kuwait
Progression Indicator (KPI) Score is an ICU admission risk prediction scheme for COVID-19
patients [34], which uses three biomarkers—lactic dehydrogenase (LDH), lymphocytes, and
high-sensitivity C-reactive protein (hs-CRP). Yan et al. [35] were able to predict a patient’s
mortality with over 90% accuracy 10 days in advance. It was reported that a high LDH
level is a crucial indicator for the vast majority of patients who require urgent medical care.
However, it does not include any scoring system that could help doctors to objectively
stratify individuals at risk. Chowdhury et al. [36] proposed a nomogram scoring system
for early mortality prediction for COVID-19 patients using five biomarkers. The proposed
model provided the area under the curve (AUC) of 0.961 and 0.991 for the derivation and
validation cohort, respectively. However, the model requires some bio-markers that are
not routinely monitored in a resource-limited setup [37]. This can pose a restriction on the
wide usage of the proposed scoring system. Moreover, this is a mortality prediction system
and cannot be used for ICU-admission risk prediction. Similarly, Lorenzoni et al. [38] used
data from 25 ICUs from the Veneto ICU network between 28 February 2020 to 4 April 2021
to predict ICU mortality risk among COVID-19 patients. The reported performance was
0.72–0.90 on the test set, while scores of 0.75–0.85 were observed on an external validation
set. Magunia et al. [39] developed a model to stratify patient risk and predict ICU survival
and outcomes using data collected in a retrospective and prospective manner from dif-
ferent parts of Germany for COVID-19 ICU patients. Age, inflammatory and thrombotic
activity, and severity of acute respiratory distress syndrome (ARDS) at ICU admission were
reported as strong contributing factors.

Although machine learning approaches have been utilized for ICU admission risk
prediction using clinical biomarkers [40–45], to the best of our knowledge, no machine
learning model has been developed that can be applied for both COVID-19 and non-
COVID patients. Identification and prioritization of the patients at high risk are essential
for resource planning as well as treatment planning. Patients can be continuously monitored
for ICU admission risk during their hospital stay using an easy-to-use and reliable scoring
system. This proposed study can help clinicians make early predictions regarding patients
at risk of ICU admission; for patients at risk of organ dysfunction, providing early treatment
could save their lives. This study proposed a machine-learning-based model that can
reliably predict ICU admission risk among both COVID-19 and non-COVID patients using
patient data at hospital admission. This work may help in the development of a framework
of prognostic models using machine learning approaches, adding to the body of knowledge.

3. Materials and Methods

The methodology adopted in the study is presented in this section. The study at-
tempted to investigate ICU admission risk prediction for (i) both COVID-19 and non-
COVID-19 patients and (ii) COVID-19 patients only. For both experiments, the impacts of
combined features and individual features were investigated in terms of ICU prediction.
Firstly, different imputation techniques were used in a preprocessing step to impute the
missing data. This missing data imputation technique is very common in clinical studies.

After preprocessing the dataset, three different feature selection methods (Pearson
correlation coefficient, chi-square test, and recursive feature elimination) were used for
ranking all the parameters in the dataset. Later on, these three techniques were combined
to rank the features using the combined scores from three models. A stacking ML model
was proposed and compared with the different ML classifiers to predict ICU-requirement
risk among COVID-19 and Non-COVID patients. The dataset was divided into training,
validation, and testing sets, where the training and validation sets were used to determine
the best-performing combination of (i) imputation technique, (ii) combination of features
using the feature ranking techniques, and (iii) machine learning model. The testing set was
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used to state the classification performance. The details of the complete methodology are
provided below and can also be referred to in Figure 1.
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Figure 1. Methodology of the study.

3.1. Study Population

In this study, we used a dataset that contained COVID-19 and non-COVID-19 pa-
tients’ data collected from the pulmonology department of Moscow City State Hospital
between 20 April 2020 and 5 June 2020 [46]. The dataset contained data from 231 patients;
among them, 100 patients were transferred to ICU and 131 patients were non-ICU pa-
tients. Of the 231 patients, 156 patients were COVID-19-positive and 75 patients were
COVID-19-negative.

Among the COVID-19 patients, confirmed by real-time reverse-transcriptase–polymerase-
chain-reaction (RT-PCR) assay of nasal and pharyngeal swab probes, 82 developed refrac-
tory respiratory failure (RRF) or severe acute respiratory distress syndrome (SARDS) and
were transferred to ICU, and 74 patients had a stable course of the disease and were not
transferred to ICU, as shown in Figure 2. Clinical, radiological, and laboratory parameters
present upon admission were extracted from electronic health records (EHR). Some of the
parameters were present for longitudinal evaluation. However, since all the parameters
were not collected longitudinally, longitudinal data could not be considered for the investi-
gation. Only data present at hospital admission were considered. Patients who regularly
received anticoagulant therapy before admission, as well as patients with pregnancy (or in
lactation period), oncological diseases (in the last 5 years), chronic liver diseases, human
immunodeficiency virus (HIV) infection, syphilis, or hepatitis, were excluded from the study.
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Figure 3 shows the distribution of nine features in the dataset: (i) Gender; (ii) Age;
(iii) Admission2Hosp (admission to hospital); (iv) CRP (C-Reactive Protein); (v) INR (inter-



Diagnostics 2022, 12, 2144 5 of 19

national normalized ratio); (vi) PT (Prothrombin Time); (vii) Fibrinogen; (viii) Chest CT
lung tissue affected, and (ix) Platelet count for ICU and non-ICU patients. The distribution
plots confirm that the values for the features were well distributed. For example, the dataset
contained patients of all ages, with a higher number of patients in ICU being over 70 years
of age while for non-ICU, the average was 60 years. Similarly, CRP among the ICU-patients
showed a significantly different distribution compared to that for non-ICU patients. Pro-
thrombin time for the patients varied from 10 to 20 s, with most of the patients having a
prothrombin time of around 13 s for both ICU and non-ICU patients. Figure 4 shows the
details of demographic variations (age and gender) between the ICU and non-ICU patients.
Patients from both categories (ICU and non-ICU patients) are normally distributed among
males and females.
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3.2. Statistical Analysis

Statistical analysis was performed using Python programming language (version 3.7,
Creator-Guido van Rossum, The Netherland), where the chi-square univariate test and
rank-sum test were conducted to identify the statistically significantly different features
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among the ICU and Non-ICU (stable) groups. The difference was considered significant if
the p-value was <0.05. Table 1 summarizes continuous variables, age, and other clinical
data reported with a mean and standard deviation of the data, and frequency for each
biomarker among the ICU and Non-ICU groups.

Table 1. Statistical characteristic analysis of all patients in ICU and Non-ICU groups using the dataset.

Item ICU Non-ICU Total Method χ2 = 17.5 p Value

Gender
Chi-square test χ2 = 17.5 <0.05 *Male (%) 57 (57%) 74 (56.5%) 131 (57%)

Female (%) 43 (43%) 57 (43.5%) 100 (43%)

Age (years)

Rank-sum test Z = −6.2 <0.05 *
N(missing) 100 (0) 131 (0) 231 (0)
Mean ± SD 61.6 ± 13.8 55.9 ± 15.7 58.4 ± 15.1
Q1, Q3 53, 70.2 44, 68.5 48.0, 69.0
Min, Max 28, 93 20, 94 20, 94

The time between the disease and
admission to hospital (Admission
2Hospital) (Days)

Rank-sum test Z = −6.2 <0.05 *N(missing) 99 (1) 128 (3) 227 (4)
Mean ± SD 7.9 ± 7.45 9.1 ± 5.68 8.6 ± 6.53
Q1, Q3 4, 8 6, 11 5.0, 10.0
Min, Max 1, 50 1, 45 1, 50

C-reactive protein 1(CRP1) (mg/L)

Rank-sum test Z = −4.34 <0.05 *
N(missing) 97 (3) 128 (3) 225 (6)
Mean ± SD 123 ± 67.1 78 ± 61.7 97 ± 67.9
Q1, Q3 64, 166 26, 134 40, 157
Min, Max 4, 328 1, 207 1, 328

International normalized ratio (INR)

Rank-sum test Z = 6.53 0.78
N(missing) 86 (14) 122 (9) 208 (23)

Mean ± SD 1.32 ±0.18 1.25 ± 0.14 1.28 ± 0.16
Q1, Q3 1.17, 1.4 1.16, 1.3 1.17, 1.36
Min, max 1.07,1.92 0.98, 1.9 0.98, 1.92

Prothrombin time 1 (PT1) (s)

Rank-sum test Z = 3.27 <0.05 *
N(missing) 86 (14) 122 (9) 208 (23)
Mean ± SD 14.39 ± 1.91 13.63 ± 1.52 13.95 ± 1.73
Q1, Q3 12.9, 15.3 12.7, 14.2 12.8, 14.9
Min, max 11.7, 20.6 10.7, 20.4 10.7, 20.6

Fibrinogen 1 (mg/L)

Rank-sum test Z = −5.89 <0.05 *
N(missing) 68 (32) 113 (18) 181 (50)
Mean ± SD 4.9 ± 1.44 4.99 ± 1.25 4.9 ± 1.32
Q1, Q3 4.2, 5.3 4.18, 5.45 4.2, 5.4
Min, max 1.2, 11.5 2.68, 9.21 1.2, 11.5

Chest CT lung tissue affected (%)

Rank-sum test Z = −1.11 <0.05 *
N(missing) 88 (12) 110 (21) 198 (33)
Mean ± SD 59.9 ± 19 46.1 ± 14.1 52.2 ± 17.8
Q1, Q3 49.5, 75 40, 60 40, 60
Min, max 24, 92 10, 75 10, 92

Platelet count 1 (109/L)

Rank-sum test Z = 4.74 0.44
N(missing) 100 (0) 131 (0) 231 (0)
Mean ± SD 182 ± 83.2 183 ± 68.8 183 ± 75.2
Q1, Q3 126, 233 138, 216 129, 219
Min, max 47, 493 38, 436 38, 493

Outcome 100 (43%) 131 (57%) 231 (100%)

* p value less than 0.05 is significant.
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3.3. Data Preprocessing
3.3.1. Missing Data Imputation

Only the first-day data were used for model training and validation in identifying the
primary predictors for ICU admission. Figure 5 shows the count of different features in the
dataset, and it can be seen that some parameters were missing for some patients, such as the
time between the disease onset and admission to the hospital (days), CRP1, prothrombin
time upon admission (PT1 in second), fibrinogen upon admission (Fibrinogen1), and lung
tissue affected (%) from chest computed tomography (CT).
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Missing data issues are a constant challenge in clinical data analysis, and this can
lead to biased models or degraded model performance. Similarly, a model can produce a
biased result if the rows of the missing data are deleted from the study [47]. In this study,
three common imputation techniques to tackle the missing data problem were investigated:
(i) multiple imputations using the chained equations (MICE) [45], (ii) random forest [48,49],
and (iii) nearest neighbor [50] imputation techniques. One of the most common techniques
for clinical data imputation is the MICE data imputation technique, which uses logistic
regression for binary variables and statistical mean matching for continuous variables. On
the other hand, the random forest algorithm has a built-in routine to handle the values that
are missing by weighing the frequency of values with the proximity of a random forest
after the training of an initially imputed mean dataset. This approach requires a response
variable that is useful for random forest training. K-nearest neighbor can predict both
discrete attributes (the most frequent value among the k-nearest neighbors) and continuous
attributes (the mean among the k-nearest neighbors). The k-nearest neighbor can be easily
adapted to work with any attribute as a class, by just modifying which attributes will be
considered in the distance metric.

3.3.2. Balancing the Dataset

An imbalanced dataset can result in a biased model, and therefore, the dataset needs
to be balanced. The synthetic minority oversampling technique (SMOTE) is a powerful
approach to tackling the imbalance problem [51]. This study investigated two different
phases. Firstly, all data were used to predict ICU-admission-risk patients, where ICU and
non-ICU patients were 100 and 131, respectively. For the investigation with only COVID-19
patients, ICU and non-ICU patients numbered 82 and 74, respectively. SMOTE technique
was used to balance the dataset for different investigations. Rather than using simple
replication of minor class data using an over-sampling technique, SMOTE was used to
create synthetic data to avoid data imbalance among the classes.
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3.4. Feature Reduction

Nine different features were present in the dataset. After preprocessing, the correlation
among different features was checked to identify and remove highly correlated features, as
removing them has always helped in improving the classifier performance in the author’s
previous works [52,53]. As seen in Figure 6, there was no high correlation between the
features, and all the features could be used in this study.
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3.5. Feature Selection

In this study, three different feature selection techniques, namely the chi-square
test [54], Pearson correlation coefficient [55], and recursive feature elimination (RFE) [56],
were used for detecting ICU admission risk. Additionally, we utilized an average of the
feature importance score as a threshold for choosing the features for each technique, after
calculating the feature importance score for each feature using each of the three feature se-
lection techniques. Finally, we chose the features for the classification model that exceeded
the threshold (feature importance score ≥3) for all three feature selection procedures.

3.6. Stacking-Based Machine Learning Model

The study proposed a stacking-based approach and compared the performance with
conventional ML classifiers. This approach consisted of a two-step learner comprising a
base learner and meta learner; this approach has produced good results in the author’s pre-
vious works [20,53,57]. Eight different ML classifiers were investigated in this study, namely
random forest [45], support vector machine (SVM) [46], K-nearest neighbor (KNN) [47],
XGBoost [48], extra trees [43], gradient boosting [49], MLP [50], and logistic regression [50].
Three feature selection strategies were used to choose the top features, which were then
used to compare the different classifiers’ performance. The stacking architecture was used
on the three top-performing classifiers (C1, C2, C3) as the base-learner model, and logistic
regression was used as the meta-learner model (C f ) in the second phase of the stacking
model to provide the best performance. Figure 7 shows the architecture of the proposed
stacking model, which combines n numbers of best-performing classifiers C, . . . . . . , Cn
using an input dataset D, which had a feature vector (xi) and corresponding label (yi). In
the first step, N base level ML classifier produced the prediction probabilities y1, . . . . . . , yp.
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Finally, the prediction probabilities of the best performing base learners fed to a logistic
regression-based meta-learner classifier (C f ) for the final prediction.
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3.7. Development and Validation of Classification Model

In this study, various machine learning models were examined using 5-fold cross-
validation, where 80% of the subjects’ data were used in training and validation and 20%
were used in the testing set for a single fold. This was repeated 5-fold, with a new test set on
each fold. Several performance criteria, such as sensitivity, specificity, precision, accuracy,
and F1-score, were used to assess the performance of several models on the test dataset.
Mathematical representations of the different metrics are shown in Equations (1)–(5). The
areas under the curve (AUC) for individual predictors, as well as combinations of them,
were assessed to ascertain how well-ranked parameters performed in stratifying ICU and
non-ICU patients. The performances of unseen (test) folds were combined to create the
overall confusion matrix for the 5-fold cross-validation. It is worth noting that leave-one-
out cross-validation (LOOCV) was also investigated, where all the subjects apart from one
were used for training and validation while one subject’s data were used in testing, and the
procedure was repeated based on the number of subjects in the experiment.

Accuracy =
(TP + TN)

(TP + FN) + (FP + TN)
(1)

Sensitivity =
(TP)

(TP + FN)
(2)

Specificity =
(TN)

(FP + TN)
(3)

Precision =
(TP)

(TP + FP)
(4)

F1 Score =
(2∗TP)

(2∗TP + FN + FP)
(5)

The number of patients with ICU outcomes classified as ICU is denoted as True
Positive (TP), the number of non-ICU patients identified as Non-ICU is denoted as True
Negative (TN), the number of non-ICU patients incorrectly identified as ICU is denoted
as False Positive (FP), and the number of ICU patients incorrectly identified as Non-ICU
is denoted as False Negative (FN). The performance of the ML classifier was assessed
using different evaluation metrics with 95% confidence intervals (Cis), calculated using
Equation (6).

r = z
√

metr(1 − metric)/N (6)

where, N is the number of test samples and z is the level of significance that is 1.96 for
95% CI.
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4. Results
4.1. Characteristics and Outcomes

Two different investigations were conducted in this study: (i) an investigation of the
ICU admission risk of all patients (n = 231), where 156 patients were COVID-19-positive
and 75 were COVID-19-negative, and (ii) an investigation of the ICU admission risk of
COVID-19-positive (n = 156) patients alone. Each investigation was used to identify the
best feature combination and individual best feature for detecting ICU admission risk
using eight different machine learning classifiers. Three different imputation techniques
were used in this study, where the MICE data imputation technique outperformed KNN
and random forest for identifying the best feature combination from the ranked features
in both investigations. It was found that age, gender, admission-to-hospital time, CRP,
fibrinogen, chest CT lung tissue affected (%), and PT had statistically significant differences
between ICU and non-ICU groups, while differences between INR and platelet count were
statistically insignificant across the groups (Table 1).

4.2. Best Feature Combination for Early Prediction of ICU

In both experiments, three different feature selection approaches were used to select a
feature combination supported by all these techniques. All of the three feature selection
techniques selected five features—CRP, chest CT lung tissue affected (%), age, admission to
hospital, and fibrinogen to classify ICU and non-ICU patients, as shown in Table 2.

Table 2. Ranked Features by different algorithms.

Features Pearson Correlation
Coefficient

Chi-Square
Test

Recursive Feature
Elimination Total

CRP
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4.3. Development and Validation of the Stacking Model

The five selected features were used in both the investigations using the eight different
ML classifiers, and then the stacking approach was implemented to boost the performance
further. A logistic regression model was used as a meta-learner in the stacking model. The
top three performing classifiers were random forest, gradient boosting, and extra trees.
The accuracies obtained from these models were 82.33%, 81.03%, and 79.74% respectively,
as shown in Table 3. These three models were used to train the meta-learners logistic
regression classifier, which boosted the performance and provided weighted precision,
sensitivity, F1-score, specificity, and accuracy of about 84.45%, 84.48%, 83.64%, 84.47%, and
84.48%, respectively. It is evident from Table 3 that the stacking approach improved the
accuracy by more than 2%. With 90% AUC, the stacking approach clearly outperforms
other ML classifiers, as can be seen in Figure 8.
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Table 3. Performance comparison between different ML classifiers using all (both COVID-19 and
non-COVID-19) patients’ data.

Classifier
Overall Weighted with 95% CI

Accuracy Precision Sensitivity Specificity F1-Score

Support Vector Machine (SVM) 61.21 ± 1.99 63.17 ± 1.97 61.21 ± 1.99 63.09 ± 1.97 61.29 ± 1.99

XGBoost (XGB) 65.52 ± 1.94 65.92 ± 1.93 65.52 ± 1.94 65.15 ± 1.94 65.64 ± 1.94

MLP 71.12 ± 1.85 70.98 ± 1.85 71.12 ± 1.85 69.4 ± 1.88 71.02 ± 1.85

Logistic Regression (LR) 71.12 ± 1.85 70.92 ± 1.85 71.12 ± 1.85 68.67 ± 1.89 70.86 ± 1.85

K-Nearest Neighbors (KNN) 71.55 ± 1.84 71.55 ± 1.84 71.55 ± 1.84 70.45 ± 1.86 71.55 ± 1.84

Extra Trees (ET) 79.74 ± 1.64 79.68 ± 1.64 79.74 ± 1.64 78.11 ± 1.69 79.64 ± 1.64

Gradient Boosting (GB) 81.03 ± 1.6 80.98 ± 1.6 81.04 ± 1.6 79.81 ± 1.64 80.98 ± 1.6

Random Forest (RF) 82.33 ± 1.56 82.33 ± 1.56 82.33 ± 1.56 80.55 ± 1.61 82.2 ± 1.56

Stacking model (RF+ GB+ ET) 84.48 ± 1.48 84.45 ± 1.48 84.48 ± 1.48 83.64 ± 1.51 84.47 ± 1.48
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Similarly, for COVID-19 patients only, random forest, extra trees, and K-nearest neigh-
bors were the top three performing classifiers. The accuracies obtained from these models
were 83.44%, 82.8%, and 82.17%, as shown in Table 4. The stacking model employed a logis-
tic regression model as a meta-learner. This approach boosted the performance to weighted
precision, sensitivity, F1-score, specificity, and overall accuracy of 85.34%, 85.35%, 85.11%,
85.34%, and 85.35%, respectively. Table 4 shows an overall improvement in accuracy of 2%
using the stacking model. With 91% AUC, the stacking approach clearly outperforms other
ML classifiers, as can be seen in Figure 9.

Figure 10 shows the confusion matrix for the best-performing stacking model to
identify ICU risk patients using all (both COVID-19 and non-COVID-19) patients’ data and
using only COVID-19 patients’ data. In Figure 10A it is clearly shown that the stacking
model correctly identified 81 out of 100 ICU patients from both COVID-19 and non-COVID-
19 patients, while the stacking model correctly identified 71 out of 82 COVID-19 ICU
patients (Figure 10B).
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Table 4. Performance comparison between different ML classifiers using only COVID-19 patient data.

Classifier
Overall Weighted with 95% CI

Accuracy Precision Sensitivity Specificity F1-Score

XGBoost (XGB) 67.52 ± 2.32 67.86 ± 2.32 67.52 ± 2.32 67.82 ± 2.32 67.56 ± 2.32

Support Vector Machine (SVM) 71.97 ± 2.23 72.4 ± 2.22 71.97 ± 2.23 72.42 ± 2.22 72 ± 2.23

MLP 77.71 ± 2.07 77.92 ± 2.06 77.71 ± 2.07 77.93 ± 2.06 77.73 ± 2.06

Gradient Boosting (GB) 78.98 ± 2.02 79.34 ± 2.01 78.98 ± 2.02 79.4 ± 2.01 79 ± 2.02

Logistic Regression (LR) 80.25 ± 1.98 80.25 ± 1.98 80.25 ± 1.98 79.97 ± 1.99 80.25 ± 1.98

K-Nearest Neighbors (KNN) 82.17 ± 1.9 82.26 ± 1.9 82.16 ± 1.9 81.45 ± 1.93 82.09 ± 1.9

Extra Tree (ET) 82.80 ± 1.87 82.90 ± 1.87 82.80 ± 1.87 82.90 ± 1.87 82.82 ± 1.87

Random Forest (RF) 83.44 ± 1.84 83.49 ± 1.84 83.44 ± 1.84 83.45 ± 1.84 83.45 ± 1.84

Stacking model (RF + ET+ KNN) 85.35 ± 1.75 85.34 ± 1.76 85.35 ± 1.75 85.11 ± 1.77 85.34 ± 1.76
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Figure 10. Confusion matrix for ICU and Non-ICU classification using the best performing stacking
model for (A) all (both COVID-19 and non-COVID-19) patients’ data, and (B) only COVID-19
patient data.
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4.4. Individual Feature as ICU Admission Predictor

The study also investigated individual feature performance with the best-performing
stacking classification model to ascertain the top individual feature simultaneously for all
(both COVID-19 and non-COVID-19) patients and only COVID-19 patients.

For both COVID-19 and non-COVID-19 patients, chest CT lung tissue affected (%) is
the most important feature for the stacking classifier. Table 5A provides the performance
metrics with a 95% confidence interval to identify the contribution of the individual features.
Chest CT lung tissue affected (%) produced the best performance with overall accuracy and
weighted precision, sensitivity, specificity, and F1-score of 74.43%, 77.65%, 74.43%, 74.43%,
and 71.75%, respectively.

Table 5. Comparison of performance evaluation parameters to identify the best classifier for individ-
ual feature impact to predict ICU admission risk patients using (A) both COVID-19 and non-COVID-
19 patients’ data, and (B) only COVID-19 patients’ data.

(A)

95% Confidence Interval Results

Feature Overall
Accuracy

Weighted
Precision

Weighted
Recall

Weighted
Specificity

Weighted
F1-Score

CRP 71.11 ± 1.85 70.56 ± 1.86 71.11 ± 1.85 71.11 ± 1.85 70.58 ± 1.86

Chest CT lung tissue affected (%) 74.43 ± 1.78 77.65 ± 1.7 74.43 ± 1.78 74.43 ± 1.78 71.75 ± 1.84

Age 61.01 ± 1.99 36.46 ± 1.96 61.01 ± 1.99 61.01 ± 1.99 45.34 ± 2.03

Admission2Hospital 62.41 ± 1.98 37.86 ± 1.98 62.41 ± 1.98 62.41 ± 1.98 46.74 ± 2.03

Fibrinogen 65.31 ± 1.98 65.62 ± 1.97 65.31 ± 1.98 65.31 ± 1.98 65.47 ± 2.04

Platelet Count 67.01 ± 1.92 42.46 ± 2.02 67.01 ± 1.92 67.01 ± 1.92 51.34 ± 2.04

Gender 64.21 ± 1.95 61.51 ± 1.98 64.21 ± 1.95 64.21 ± 1.95 62.65 ± 2.04

PT 57.91 ± 1.9 43.36 ± 2.02 57.91 ± 1.9 57.91 ± 1.9 52.24 ± 2.04

INR 59.81 ± 2 35.26 ± 1.95 59.81 ± 2 59.81 ± 2 44.14 ± 2.02

(B)

95% Confidence Interval Results

Feature Overall
Accuracy

Weighted
Precision

Weighted
Recall

Weighted
Specificity

Weighted
F1-Score

CRP 64.29 ± 2.38 64.6 ± 2.37 64.29 ± 2.38 64.29 ± 2.38 64.29 ± 2.38

Chest CT lung tissue affected (%) 68.77 ± 2.3 71.79 ± 2.23 68.77 ± 2.3 68.77 ± 2.3 67.88 ± 2.32

Age 55.95 ± 2.46 56.51 ± 2.46 55.95 ± 2.46 55.95 ± 2.46 55.75 ± 2.46

Admission2Hospital 73.9 ± 2.18 73.99 ± 2.18 73.9 ± 2.18 73.9 ± 2.18 73.92 ± 2.18

Fibrinogen 57.24 ± 2.46 57.15 ± 2.46 57.24 ± 2.46 57.24 ± 2.46 57.17 ± 2.46

Platelet Count 47.62 ± 2.48 47.96 ± 2.48 47.62 ± 2.48 47.62 ± 2.48 47.2 ± 2.48

Gender 52.75 ± 2.48 53.19 ± 2.48 52.75 ± 2.48 52.75 ± 2.48 52.57 ± 2.48

PT 51.47 ± 2.48 50.64 ± 2.48 51.47 ± 2.48 51.47 ± 2.48 50.43 ± 2.48

INR 53.39 ± 2.48 53.68 ± 2.47 53.39 ± 2.48 53.39 ± 2.48 53.37 ± 2.48

By contrast, for COVID-19 patients, the time between the disease onset and admission
to the hospital (days) was the most important feature for the stacking classifier. Table 5B
shows the overall accuracies and weighted average performance with a 95% confidence
interval for the other matrices to identify the contribution of individual features using all
features for five-fold cross-validation with the best performing classifier. The time between
the disease onset and admission to the hospital (days) produced the best performance, with



Diagnostics 2022, 12, 2144 14 of 19

overall accuracy, weighted precision, sensitivity, specificity, and F1-score of 73.9%, 73.99%,
73.9%, 73.9%, and 73.92%, respectively. We also developed and validated all ML models
and stacking approaches with the leave-one-out cross-validation (LOOCV) approach, and
compared the performances. Supplementary Tables S1 and S2 represent the performances
of all models for the two different studies using the LOOCV approach. The stacking
approach produced the best performance for both studies, which was comparable with
the five-fold CV (see Tables 3 and 4 for five-fold CV results). However, the experimental
time for the stacking model with the LOOCV technique was 25–30 times longer than the
five-fold CV technique.

5. Discussion

The primary goal of the present study was to accurately identify the ICU admission
risk of the hospital patients on the first day of hospital admission using a few clinical
parameters. In addition to this, the correlation between ICU admission risk and clinical
data for both COVID-19-positive and negative patients and COVID-19-positive patients
alone was also investigated. Based on all patients’ data, it was found that five important
features (chest CT lung tissue affected (%), CRP, fibrinogen, age, and admission-to-hospital
time) in combination performed better than others, and produced 84.48% sensitivity using
the stacking model. Similarly, for COVID-19-positive patients alone, it was found that these
five features combined using the stacking model outperformed other ML classifiers and
produced 85.35% sensitivity. It is evident from this study that for all data or data from
COVID patients alone, carefully selected multiple parameters can provide better sensitivity
in predicting the ICU admission risk.

In addition, the most important individual feature for detecting ICU admission risk
using combined and COVID-19 patients’ data was also investigated. Based on all patients’
data, it was found that the most impactful feature was the chest CT lung tissue affected
(%) which individually can predict ICU patients with 74.43% sensitivity. In [46], it was
reported that prothrombin time is a good predictor of ICU admission risk; however, in this
study, it was found that PT was a weak predictor, with 57.91% prediction sensitivity for the
combined data. For COVID-19-positive patients alone, the time between the disease onset
and admission to the hospital (days) was the most impactful feature, individually predicting
ICU admission risk with 73.9% sensitivity, while CRP predicted with 64.29% sensitivity. As
reported in [46], PT is a good predictor, but this was not observed in this study. Therefore,
it is evident that machine-learning-based study can provide better prediction accuracy
in comparison to standard statistical analysis. Moreover, the parameters found to be
strong contributors in this machine-learning-based study were also reported in other recent
studies as strong contributors for COVID mortality prediction, which is highly related to
ICU admission risk prediction.

Age is one of the most commonly agreed risk factors for predicting the outcomes and
severity of COVID-19, where patients older than 60 years of age have the highest fatality
rates [58]. This is related to the associated risk factors in this particular age group, including
renal disease, coronary heart disease/cerebrovascular disease, hypertension, diabetes, low
immunity, and previous respiratory disease. Likewise, patients with older age (>60 years)
and comorbidity had worse outcomes in severe acute respiratory syndrome (SARS) [59].
However, in this dataset, this trend was not evident, which could be because this dataset
was small and the ICU patient group had a widely distributed age range. If this model can
be validated on a large population, the effect of age will be pronounced, and the model
performance could be further enhanced.

Several reports have shown a trend toward abnormal hemostasis and coagulation
profile in patients with COVID-19 [5]. Hospitalized patients with particularly higher
levels of fibrinogen and D-dimer typically develop disseminated intravascular coagulation
and lung embolism, and also have worse outcomes [14,60]. Higher serum fibrinogen
levels were noted in patients in the early stages of acute respiratory distress syndrome
(ARDS). However, these factors were typically explored after hospitalization and were
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not used as early predictors to determine the patients with potentially severe forms of
COVID-19 based on their initial presentation [61]. Hospitalized patients with severe
COVID 19 show a trend toward hyperfibrinolysis and loss of coagulation factor (fibrinogen).
Furthermore, fibrinogen is an acute phase reactant that increases during infection and
provokes hypercoagulation. It is a glycoprotein that covers fibrin when exposed to thrombin
leads to clot formation to stop bleeding. Zou et al. [30] concluded that fibrinogen greater
than 7.0 g/L is more prevalent in patients with severe COVID-19 disease (around 19.1%)
compared to patients with mild COVID-19 disease (around 5.7%). At later stages of the
disease, fibrinogen levels decrease, and fibrinogen less than 2.0 g/L is considered an
indicator of thromboprophylaxis and cause for hospital admission [62]. In the current
study, since we used the data at admission, most of the patients were not severe at that
time, and therefore, while fibrinogen was found to be a useful predictor, it was not the best
predictor. However, if we had had longitudinal data, we could have evaluated the model
performance when the patients were admitted to ICU.

Serum C-reactive protein (CRP) is a critical indicator that changes considerably in
patients with severe COVID-19 [30]. CRP is an early marker of inflammation and infection
and is produced by the liver [63]. CRP binds to phosphocholine, which is expressed on the
surfaces of damaged cells and which modulates phagocytic activities [64]. It was found that
CRP changes significantly at the early stages of the disease in patients with COVID-19, as
reported previously [15], and patients who died from the disease had levels of serum CRP
10 times greater in comparison to those who recovered [16]. This is in line with the finding
of this study. In both of the investigations, CRP was found to be an important biomarker.

Chest CT is a widely available and noninvasive modality for pneumonia detection and
monitoring. When RT-PCR was utilized as the gold standard tool, CT chest was shown to
have 97% sensitivity and 68% accuracy in diagnosing COVID-19 [14]. Furthermore, follow-
up CT chest showed that 42% of the patients had their lung abnormalities resolved before
RT-PCR became negative [14]. Furthermore, CT chest is effective in diagnosing COVID
in the absence of symptoms, and is considered an early marker for possible worsening of
disease severity [65]. Likewise, changes in CT findings were shown to be an early predictor
for speeding up the diagnostic workup in symptomatic patients [66]. The typical findings
include bilateral, multi-lobe, posterior peripheral ground-glass opacities, as defined by
the Radiological Society of North America (RSNA) Consensus statement [67]. Several CT
severity scoring systems are valid for evaluating disease severity and burden [68,69]. It is
evident from the above discussion that lung infection manifestation is a vital parameter for
later-stage COVID-19 infection detection and quantification. However, in the early infection
stage, it could be a good predictor for COVID-19 patients, but not the best predictor.

Predicting the ICU risk for patients when they are admitted to the hospital can greatly
aid the hospital management team in allocating the proper resources to the appropriate
patient during a crisis. Ineffective management of resources and distribution during the
early stages of the pandemic in many countries has led to extremely high patient mortality
rates as no ML-based prediction tool was used. In contrast, patients who do not require
ICU admission but who are at risk can receive care in the special ward, lessening the strain
on hospitals and healthcare facilities. The proposed model is deployed as a web application
that can be used by clinicians. The details of the deployment are outside of the scope of
this work; however, the link (https://qu-mlg.com/projects/qu-ukm-icucare, accessed on 1
March 2022) is shared here, so that clinicians and interested readers can use it.

The limitation of the proposed tool is that it takes into consideration several clinical
and biological parameters and does not integrate symptoms, vitals, and treatments, and
therefore, has a risk of bias. The model presented in this work utilizes several clinical
variables that can be acquired in most clinics and hospitals, making this work potentially
suitable for deployment in a wide range of patient evaluations. However, some further
useful biomarkers (e.g., procalcitonin, D-dimers, neutrophils, lymphocytes, etc.) could
be investigated, as these were not present in this dataset. Lastly, the number of patients
studied was not high, which may cause the developed model to be less generalizable. The

https://qu-mlg.com/projects/qu-ukm-icucare


Diagnostics 2022, 12, 2144 16 of 19

overall model performance and generalizability could be significantly improved if these
concerns could be resolved.

6. Conclusions

In conclusion, the proposed model in this study can predict the ICU admission risk
for patients with good discrimination for COVID-19 or non-COVID patients, with 90%
AUC, and with 91% AUC for COVID-19 cases alone. Five predictors (chest CT lung tissue
affected (%), CRP, fibrinogen, age, and admission-to-hospital time) were required for both
studies. The model can predict the risk of admission to ICU based on the hospital admission
data; i.e., predicting it much earlier than the real clinical outcome. This study evaluated
the various combinations of feature selection approaches, features, and machine learning
classifiers. Classical machine learning classifiers are computationally inexpensive and easy
to deploy [52], while they can provide better performance in tabular values, such as the
data from electronic health records (EHRs). Thus, the proposed study can help physicians
in patient stratification in the early stages, which will ultimately facilitate better and more
efficient resource management and thereby lessen strain on healthcare resources, reducing
mortality risk by supporting seriously ill patients earlier. The proposed framework is
deployed as a web application, which can be easily used by clinicians. Considering the
potential of this application for pandemic/non-pandemic situations, the authors plan to
collect more patient data from the Hamad General Hospital (HGH) to make the model
more generalized, and to externally validate the model on a larger dataset. The authors will
also continue to work on making the model robust and suitable for a different population.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12092144/s1, Table S1: Performance comparison
between different ML classifiers using all (both COVID-19 and non-COVID-19) patients’ data with
LOOCV. Table S2: Performance comparison between different ML classifiers using only COVID-19
patient data with LOOCV.
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69. Mruk, B.; Plucińska, D.; Walecki, J.; Półtorak-Szymczak, G.; Sklinda, K. Chest Computed Tomography (CT) Severity Scales in
COVID-19 Disease: A Validation Study. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2021, 27, e931283-1. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/35684870
http://doi.org/10.1016/j.jchromb.2012.05.020
http://www.ncbi.nlm.nih.gov/pubmed/22682888
http://doi.org/10.3390/ijerph17165974
http://www.ncbi.nlm.nih.gov/pubmed/32824596
http://doi.org/10.1001/jama.289.21.JOC30885
http://www.ncbi.nlm.nih.gov/pubmed/12734147
http://doi.org/10.1016/j.thromres.2020.11.017
http://doi.org/10.1111/jth.14810
http://doi.org/10.1016/j.clim.2005.08.004
http://www.ncbi.nlm.nih.gov/pubmed/16214080
http://doi.org/10.3109/00313029109060809
http://doi.org/10.1148/radiol.2020200843
http://doi.org/10.1007/s00330-020-07033-y
http://doi.org/10.1148/ryct.2020200152
http://doi.org/10.12659/MSM.931283
http://www.ncbi.nlm.nih.gov/pubmed/33947823

	Introduction 
	Related Work 
	Materials and Methods 
	Study Population 
	Statistical Analysis 
	Data Preprocessing 
	Missing Data Imputation 
	Balancing the Dataset 

	Feature Reduction 
	Feature Selection 
	Stacking-Based Machine Learning Model 
	Development and Validation of Classification Model 

	Results 
	Characteristics and Outcomes 
	Best Feature Combination for Early Prediction of ICU 
	Development and Validation of the Stacking Model 
	Individual Feature as ICU Admission Predictor 

	Discussion 
	Conclusions 
	References

