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Abstract: Cardiovascular diseases (CVD) are the leading cause of death worldwide. People affected
by CVDs may go undiagnosed until the occurrence of a serious heart failure event such as stroke,
heart attack, and myocardial infraction. In Qatar, there is a lack of studies focusing on CVD diagnosis
based on non-invasive methods such as retinal image or dual-energy X-ray absorptiometry (DXA). In
this study, we aimed at diagnosing CVD using a novel approach integrating information from retinal
images and DXA data. We considered an adult Qatari cohort of 500 participants from Qatar Biobank
(QBB) with an equal number of participants from the CVD and the control groups. We designed a
case-control study with a novel multi-modal (combining data from multiple modalities—DXA and
retinal images)—to propose a deep learning (DL)-based technique to distinguish the CVD group
from the control group. Uni-modal models based on retinal images and DXA data achieved 75.6%
and 77.4% accuracy, respectively. The multi-modal model showed an improved accuracy of 78.3% in
classifying CVD group and the control group. We used gradient class activation map (GradCAM)
to highlight the areas of interest in the retinal images that influenced the decisions of the proposed
DL model most. It was observed that the model focused mostly on the centre of the retinal images
where signs of CVD such as hemorrhages were present. This indicates that our model can identify
and make use of certain prognosis markers for hypertension and ischemic heart disease. From DXA
data, we found higher values for bone mineral density, fat content, muscle mass and bone area across
majority of the body parts in CVD group compared to the control group indicating better bone health
in the Qatari CVD cohort. This seminal method based on DXA scans and retinal images demonstrate
major potentials for the early detection of CVD in a fast and relatively non-invasive manner.

Keywords: cardiovascular diseases; DXA; retina; deep learning; machine learning; Qatar Biobank
(QBB)

1. Introduction

Globally, cardiovascular diseases (CVDs) remain the leading cause of mortality and
hence increasing healthcare costs in many countries [1]. CVDs have accounted for 32%
of the overall global death where two-third occurs in low- and middle-income countries,
according to the World Health Organization (WHO) [2]. Furthermore, CVD has caused
38% of the total deaths of people below 70 years old of age (i.e., premature deaths) in
non-communicable diseases (NCD) [3]. In the East Mediterranean region, 54% of the
total NCD deaths are caused by CVD according to the WHO’s Eastern Mediterranean
Regional Office [4]. In the State of Qatar, according to the Planning and Statistics Authority,
33.1% of the total deaths in 2018 were caused by diseases related to the circulatory system
including blood pressure, which made CVD the top concern for Qatar in combating NCD [5].
Although diagnosis and treatment methods/tools of CVD have advanced throughout the
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years, yet many people still go undiagnosed until the occurrence of serious CVD events
such as stroke, heart attack, or myocardial infraction [3].

Risk factors such as age, gender, smoking, obesity, diabetes, hypertension, low-density
lipoprotein (LDL) cholesterol, and sedentary lifestyle [6] are known to be linked to CVD
and some of these factors have been studied and confirmed for the Qatari population [7,8].
In fact, there exists risk score calculators for CVD such as the Framingham Risk Score [9],
and ASCVD [10], which use some of the above factors to predict the 10-year risk of
developing CVD. There exists multiple clinical biomarkers such as cardiac troponins I
and T, C-reactive protein, D-dimer, and B-type natriuretic peptides which are also shown to
be linked to CVD [6]. Furthermore, with the advancement of medical imaging techniques,
several imaging modalities have been used to diagnose CVD. Imaging modalities such
as delayed enhancement cardiac magnetic resonance (DE-CMR) [11], echocardiogram
(ECG) [12,13], ultrasound imaging [14], magnetic resonance imaging (MRI) [15–17], and
computed tomography (CT) [18–20], single-photon emission computerized tomography
(SPECT) [21,22], and Coronary CT angiography (CCTA) [23] are also used to detect CVDs.
Recently retinal fundus image has emerged as a non-invasive data modality to examine the
heart condition. Retinal microvascular abnormalities are found to be linked to CVDs [24,25].
For example, [25] showed that generalized arteriolar narrowing, focal arteriolar narrowing,
arteriovenous nicking, and retinopathy, which are all abnormalities in retinal vessels, can
be used as indicators for cardiovascular diseases. They also showed that Fundus images
can capture these abnormalities. In [26], the authors predicted a variety of CVD risk
factors such as hypertension, hyperglycemia, and dyslipidemia from retinal fundus images.
Moreover, retinal fundus images have been utilized to predict diabetes [27], and CVD risk
factors [28,29].

Another imaging technique that could also be used to diagnose CVD events is the
dual-energy X-ray absorptiometry (DXA) through lean and fat mass [30] and/or bone
mineral density (BMD) [31]. DXA measurements of fat mass have been shown to have a
strong correlation with CVD events as well as its risks [32]. Furthermore, a recent study has
shown an independent association between lower BMD and high risk of ASCVD events
and death among women in South Korea [33]. DXA provides a number of advantages,
including the ability to accurately and precisely measure and differentiate fat, lean, and
bone components. It can assess the entire body in a single scan, making it fast in the
acquisition while less hazardous due to low-radiation. In addition, it is a non-invasive
procedure [34].

In this paper, we focused on two imaging techniques, namely DXA scan and retinal
fundus images to demonstrate their contribution to diagnose CVD in Qatari population.
We selected these techniques considering their non-invasive nature as well as the ease
of access to the data source as they have already been incorporated in QBB protocol to
collect participants’ health status. Moreover, the capability of the retinal image and DXA
scan in CVD diagnosis has not been investigated thoroughly for the Qatari population.
The contributions of this work are as follows:

• We proposed a novel technique that uses retinal images to distinguish CVD group
from the control group with over 75% accuracy. To the best of our knowledge, this is a
seminal work in CVD diagnosis from retinal images.

• We conducted extensive experiments on DXA scan data and showed that it has
reasonable discriminating ability to separate CVD group from the control group
yielding over 77% accuracy in the Qatari population.

• We proposed a superior multi-modal approach for CVD diagnosis that fuses both
tabular (DXA) and image data (retinal images) to distinguish CVD from the control
group with an accuracy of 78.3%. Hence, our study proposes a fast and relatively
non-invasive approach to diagnose patients with CVD.
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2. Related Work
2.1. Retinal Fundus Images

Retinal fundus images provide an easy-to-use, non-invasive, and accessible way to
screen the human eye health [35]. Retinal images allow medical professionals to examine
the eye and diagnose diseases such as diabetic retinopathy, hypertension, or arteriosclerosis.
They also provide the diameter and tortuosity measurements of the retinal blood vessels
enabling the diagnosis of CVD [36]. ML-based techniques have been utilized to process
retinal images for risk factor prediction for CVD. Guo et al. [37] presented a study to
investigate the association between CVD and series of retinal information, and whether
this association is independent of CVD risk factors in patients with type 2 diabetes. The
age- and gender-based case-control study recruited 79 eligible patients with CVD and 150
non-CVD (control) and used three stepwise logistic regression models to evaluate CVD
risk factors. Area Under the Curve (AUC) was used to evaluate three models having
AUC values of 0.692, 0.661, and 0.775, respectively. Results of the first model showed that
hypertension, longer diabetes duration and decreased high-density lipoprotein (HDL)-
cholesterol were associated with CVD. Furthermore, the second model showed that patients
with diabetic retinopathy, smaller arteriolar-to-venular diameter ratio (AVR), and arteriolar
junctional exponent (JE) were likely to develop CVD. Finally, the third model showed
that CVD is associated with hypertension, longer diabetes duration, higher HbA1c level,
smaller AVR, arteriolar branching coefficient (BC) and JE, as well as larger venular length-
to-diameter ratio; this shows that retinal information is associated with CVD, however, this
association is independent from CVD risk factors in patients having type 2 diabetes, but
it needs further investigation. Cheung et al. [29] developed a DL-based model that can
measure the retinal vascular calibre from retinal images. The authors used the Singapore
I Vessel Assessment (SIVA) to evaluate the assessments given by the DL system with hu-
man graders and found a strong correlation between the DL system and human graders.
The dataset used in that study was a composite of images from 15 different retinal imag-
ing datasets, totaling over 70,000 images. The results indicated a strong correlation
between 0.82 and 0.95 for the system and human utilizing SIVA on various datasets.
Furthermore, multivariable linear regression analysis was carried out between CVD risk
factors and vessel caliber measurements by both DL system and human. The central
retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE) were both
assessed using regression analysis, and the results showed that R-squared (R2) for all CVD
risk factors was greater while using the DL system compared to human measurement.
Zhang et al. [26] published a study that used retinal images to predict hypertension, hy-
perglycemia, dyslipidemia, and other CVD risk factors. 1222 retinal images were collected
from 625 Chinese people. For the creation of the prediction model, the researchers applied
transfer learning. For hyperglycemia detection, the model had an accuracy of 78.7% and
an AUC of 0.880; for hypertension detection, the model had an accuracy of 68.8% and an
AUC of 0.766; and for dyslipidemia detection, the model had an accuracy of 66.7% and
an AUC of 0.703. Age, gender, drinking status, smoking status, salty taste, BMI, waist-hip
ratio (WHR), and hematocrit were also used to train the model, and it was able to predict
them with an AUC over 0.7. Gerrits et al. [38] used retinal images to develop a deep neural
network approach for predicting cardiometabolic risk variables. The study employed
data from the Qatar Biobank (QBB), which included 3000 people and 12,000 retinal scans.
Age, sex, smoking, total lipid, blood pressure, glycaemic state, sex steroid hormones, and
bioimpedance measures were all investigated as risk factors. In addition, the study looked
into the impact of age and sex as a mediating factor in cardiometabolic risk prediction.
When four images were utilized for person level, good results were achieved for predicting
age and sex; acceptable results were obtained for the prediction of diastolic blood pressure
(DBP), HbA1c, relative fat mass (RFM), testosterone, and smoking habit; nevertheless,
poor results were obtained for total lipid prediction. Craenendonck et al. [39] used retinal
images to investigate the relationship between mono- and multi-fractal retinal vessels and
cardiometabolic risk variables. The study considered data from 2333 QBB participants.
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To estimate retinal blood vessel topological complexity, mono- and multi-fractal metrics
were derived using the dataset in this work. Results from multiple linear regression analysis
revealed that there is a significant relationship between one or more fractal metrics and age,
sex, systolic blood pressure (SBP), DBP, BMI, insulin, HbA1c, glucose, albumin, and LDL
cholesterol. Based on above-mentioned studies, we can observe that there exists multiple
studies focusing on CVD risk factor estimation based on retinal fundus images (Table 1).
However, to the best of our knowledge, there exists no study that focused on diagnosing
CVD by classifying CVD from non-CVD (control) subjects based on retinal images for the
Qatari population.

Table 1. Summary of DXA and retinal image-based works for CVD associated risk factor; (AUC: Area
under the curve, MAE: mean absolute error, N/A: Not available).

Reference Year Dataset Cohort ML/DL Results Findings

Retinal Images Data

[37] 2016 Retina Images
Images of 79 CVD
and 150 Non-CVD

patients in Hong Kong

AUC:
Model 1 (0.692)
Model 2 (0.661)
Model 3 (0.775)

The paper evaluated three stepwise logistic regression models to
investigate CVD association to retinal information and whether the
association is independent from having type 2 diabetes.
The findings reveal that information obtained from the retina is
independently linked to CVD in type 2 diabetic patients.

[29] 2020 Retina Images

>70,000 images
(Collection from 15 datasets

from multiple countries
and ethnicities)

N/A

The paper developed a DL system to assess retinal vessel caliber
(which measure microvascular structure changes which are
correlated with CVD risk factors. Outcome of the DL system was
compared with human graders. Later a comparison with associated
risk factors was carried out. In addition, DL system was able to
predict CVD risk factors better than or comparable to human graders.

[26] 2020 Retina Images
Retina images
of 625 patients

from China

Accuracy of 78.7% for
hyperglycemia detection,

68.8% for hypertension detection
and

66.7% for dyslipidemia detection

The study aimed at predicting hypertension, hyperglycemia, and
dyslipidemia, and other CVD risk factors from retinal images.
Transfer learning utilized for model development and obtained
a good result.

[38] 2020 Retina Images 12,000 images
from QBB

AUC (sex): 0.97;
MAE (age): 2.78 years;

MEA (SBP): 8.96 mmHg;
MAE (DBP): 6.84 mmHg;

MAE (Hb1Ac): 0.61%;
MAE (relative mass): 5.68 units);
MAE (testosterone): 3.76 nmol/L

The paper investigated the possibility of fundus images in
predicting cardiometabolic risk factors such as age, gender,
smoking habit, blood pressure, lipid profile, and bioimpedance
using DL

[39] 2020 Retina Images Images of 2333
participants from QBB N/A

The study investigated association between cardiometabolic risk
factors and mono- and multifractal retinal vessel using retinal
images. Fractal metrics were calculated, and then linear regression
analysis was carried out. One or more fractals are linked to sex, age,
BMI, SBP, DBP, glucose, insulin,HbA1c, albumin, and LDL,
according to the findings.

DXA Data

[40] 2012 DXA Data 409 participants N/A

The study aims at comparing BMI with direct measure of fat and
lean mass to predict CVD and diabetes among buffalo police officers
in New York, US. Findings shows a strong correlation of multiple
DXA indices of obesity showed with cardiovascular disease.

[41] 2014 DXA Data

616 ambulatory patients
who were not pregnant women,

or had self-reported cardiac failure,
had cardiac-pacemaker

or undergone limb amputation.

N/A

The researchers looked at how body composition factors affect BMI
and if they may be used as markers for metabolic and
cardiovascular health in Switzerland. The researchers observed that
fat mass and muscle mass were important nutritional status markers,
and they broadened their investigation to look at the impact on
health outcomes for all BMI categories. The authors also underlined
the need of evaluating body composition during medical
examinations to predict metabolic and cardiovascular diseases.

[42] 2016 DXA Data 117 patients with heart failure
with preserved ejection fraction N/A

The study that was conducted on patients from Germany, England
and Slovenia aimed to find out how sarcopenia in individuals
with heart failure with preserved ejection fraction is related
to exercise ability and muscle strength as well as quality of life.
It was found that heart failure has a detrimental effect
on appendicular skeletal muscle mass,

[43] 2020 DXA Data 570 patients with
and without heart failure N/A

The goal of the study was to see how aging and heart failure
treatments affected bone mineral density. Heart failure was
observed to be linked to a greater BMD prevalence of osteoporosis.
Heart failure exacerbates the loss of mineral bone density
that comes with aging.
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Table 1. Cont.

Reference Year Dataset Cohort ML/DL Results Findings

[44] 2020
Anthropometric

&
DXA Data

558 participants who were not
diagnosed with diabetes,

hypertension, dyslipidemia or CVD.
N/A

The study, which was based on Qatari population from QBB,
aimed at comparing Anthropometric & DXA Data in predicting
cardio-metabolic risk factors. randomly healthy participants were
selected. The study revealed a more in-depth relationship between
DXA-based assessment of adiposity as a cardio metabolic risk
predictor in Qatar compared to anthropometric markers.

[45] 2020
Demographic,

Cardio-metabolic
and DXA Data

2802 participants from QBB N/A

The goal of the study was to find the body fat composition cut-off
values to predict metabolic risk in the Qatari population.
For Qatari adults of various ages and genders, the study
developed cut-off values for body fat measurements that may
be used as a reference for assessing obesity-related metabolic risks.
According to the findings, there is a substantial link between body
fatness and the likelihood of developing metabolic illnesses.

2.2. Dual-Energy X-ray Absorptiometry (DXA)

Bone densitometry, also known as Dual-energy X-ray Absorptiometry (DXA), is a form
of X-ray technology that is used to analyze bone health and bone loss. DXA is currently
a widely accepted procedure for measuring BMD [46]. It has been reported that reduced
BMD has an adverse effect on cardiovascular system and osteoporosis which poses a risk
to patients with heart failure history [47]. Furthermore, another study with 570 patients
found that heart failure was linked to a faster loss of BMD, regardless of other osteoporosis
risk factors [43].

In another study involving 117 people having the history of heart failure, DXA re-
vealed that heart failure has a negative impact on appendicular skeletal muscle mass [42].
In a study conducted on 409 participants from police officers in buffalo, New York, mul-
tiple DXA indices of obesity showed a strong correlation with CVD [40]. Lang et al. [41]
discovered that DXA readouts of fat mass and muscle mass were key nutritional status
indicators, and they expanded their research to look at the influence on health outcomes for
all BMI categories. Furthermore, the authors emphasized the necessity of assessing body
composition during medical examinations in order to anticipate metabolic and cardiovas-
cular disorders. It was reported that BMD, muscle mass, and fat content associated with
CVD have detrimental impact in patients with advanced CVD stage which can be seen
in the above-mentioned research. Reid et al. [48] investigated the use of CNN to predict
abdominal aortic calcification (AAC) based on DXA. High AAC values could be used as
a predictor of coronary artery calcium, cardiovascular outcome or even death. In their
work, they used data of vertebral fracture assessment (VFA) lateral spine images extracted
from DXA and an ensemble CNN was used for training and evaluation. Computational
prediction showed high correlation with human-level annotation. In Qatar, the use of DXA
in the prediction of CVD, its risk factors, and associated medical conditions has just lately
gained traction. Bawadi et al. [49] examined data from the QBB in 2019 to investigate if
body shape index could be used as a predictor of diabetic mellitus (DM). Kerkadi et al. [44]
studied DXA-based measures in cardio-metabolic risk prediction a year later in 2020, and
this study revealed a more in-depth relationship between DXA-based assessment of adipos-
ity as a cardio metabolic risk predictor in Qatar. In the same year, Bawadi et al. [45] carried
out a study in Qatar on the age and gender-specific cut-off points for body fat among
adults. From the above mentioned articles (Table 1) we can say that, DXA data are linked
to multiple metabolic risk factors related to CVD. However, to the best of our knowledge,
there exists no study that applies machine or deep learning techniques to diagnose CVD
using DXA measurements.

2.3. Multi-Modal Approaches

Both DXA and retinal image data collection processes are non-invasive and require
less preparation overhead; there is no published work that uses a combination of DXA
and retinal image data for CVD detection. We, however, present a summary of existing
methods (Table 2) that use a multi-modal approach albeit with modalities different from
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DXA and retinal images. The existing multi-modal based approaches mainly rely on modal-
ities such as Magnetic Resonance Imaging (MRI), X-Ray, Myocardial Perfusion Imaging
(MPI), Electrocardiogram (ECG), Echocardiography (ECHO), and Phonocardiogram (PCG)
(Table 2). We would like to mention that none of these invasive multi-modal methods are
directly comparable to ours due to the use of different modalities than our approach.

Table 2. CVD detection based on multi-modal dataset.

Ref. Year Country Fused Data Results Summary

[50] 2019 USA Electronic Health Record (EHR)
and Genetic data

AUROC: 0.790
AUPRC 0.285

The study used a 10-year data from HER and genetic data to predict CVD
events using random forest, gradient boosting trees, logistic regression, CNN and
long short-term memory (LSTM). Chi-squared was used for feature selection on the
EMR data. Results show an improved prediction of CVD with AUROC of 0.790
compared to EMR alone (AUC of 0.71) or genetic alone (AUC of 0.698)

[51] 2020 China

Electrocardiogram (ECG),
Phonocardiogram (PCG),
Holter monitoring,
Echocardiography (ECHO),
and biomarker levels (BIO)

Accuracy: 96.67
Sensitivity: 96.67
Specificity: 96.67
F1-score: 96.64

The study aimed at the detection of coronary artery disease (CAD).
Data from ECG and PCG of 62 patients were used. Furthermore, data were also
collected from Holter monitoring, ECHO and BIO. Feature selection was applied
to attain optimum features and support vector machine was used for classification.
Results show best performance when feature were fused from all sources.

[52] 2020 USA

Sensors (collect blood pressure,
oxygen, respiration rate, etc.)
and Medical records
(history, lab test, etc.)

Results after
feature weighting
method:
Accuracy: 98.5
Recall: 96.4
Precision: 98.2
F1-score: 97.2
RMSE: 0.21
MAE: 0.12

The study aimed at predicting heart diseases (such as heart attack or stroke) using
data gathered from sensors and medical records. Features such as age, height, BMI,
respiration rate, and blood pressure were extracted, and then data from both
sources were fused. Furthermore, conditional probability is utilized for feature
weighting to help in accuracy improvement. An ensemble deep learning is then
used for the prediction of heart disease.

[53] 2021 Greece Myocardial Perfusion Imaging
(MPI) and Clinical data

Accuracy: 78.44
Sensitivity: 77.36
Specificity: 79.25
F1-score: 75.50
AUC: 79.26

The study aimed at cardiovascular disease diagnosis using MPI and Clinical data.
Polar maps were derived from the MPI data and fused with clinical data of 566
patients. Random forest, neural network, and deep learning with Inception V3
were used for classification. Results show a hybrid model of Inception V3 with
random forest achieved an accuracy of 78.44% compared to an accuracy
of 79.15% achieved by medical experts.

[54] 2021 USA
Electronic medical records
(EMR) and Abdominopelvic
CT imaging

AUROC: 0.86
AUCPR: 0.70

The study aimed at developing a risk assessment model of ischemic heart disease
(IHD) using combined information from patientsí EMR and features extracted
from abdominopelvic CT imaging. In this study, CNN used to extract features
from images and XGBoost was used as the learning algorithm. Results show
an improved prediction performance with AUROC of 0.86 and AUCPR of 0.70

[55] 2021 USA Genetic, clinical, Demographic,
imaging, and lifestyle. -

The study aimed at evaluating the ability of machine learning in detecting CAD
subgroups using multimodal data. The multimodal data consisted of genetic, clinical,
demographic, imaging, and lifestyle data. K-means clustering as well as Generalized
low rank Modeling were utilized. Results show that 4 subgroups were
uniquely identified.

3. Materials and Methods
3.1. Ethical Approval

This research was carried out under the regulation of Qatar’s Ministry of Public Health.
This work was approved by the Institutional Review Board of Qatar Biobank (QBB) in
Qatar, and used a de-identified dataset from (QBB).

3.2. Data Collection from QBB

The data used in this study was collected from QBB. The details of the data collection
protocol adopted by QBB are described in [56,57]. In brief, participants were invited
to QBB and they were interviewed by staff nurses to collect their background history.
Then multiple lab tests and imaging such as DXA scan and retinal images were collected.
The dataset considered for this study is comprised of 500 participants equally divided into
CVD group and control group. There were 262 male participants (CVD:Control = 137:125)
and 238 female participants (CVD:Control = 113:125) in the studied cohort. Participants
were all adult Qatari nationals aged between 18 and 84 years. Overall BMI was higher in
CVD compared to the control group (26.10 ± 2.8:23.20 ± 2.8).
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3.3. DXA Scan Data Preprocessing

The DXA data consisted of measurements related to bone mineral density, lean mass, fat
content, and bone area measurements from different body parts of the participants.
The dataset was cleaned by removing columns with missing values of more than 50% from
each class (i.e., CVD and control). For the remaining columns, the missing values were imputed
by the median value. After the data cleaning stage, 122 features were finally selected for this
study. Supplementary File S1 provides the summary statistics of these features. The CVD and
control groups’ data were then normalized using the min-max normalization technique [58]:

x
′
i =

xi −mini{xi}
maxi{xi} −mini{xi}

(1)

where x denotes the value of a specific DXA feature and max{x} and min{x} denote the
largest and smallest values of that feature, respectively.

3.4. Retinal Image Collection and Preprocessing

The retinal fundus images were acquired at QBB utilizing a Topcon TRC-NW6S retinal
camera to capture the “microscopic" characteristics of the optic nerve and macula of the
participants. At least two images (one for each retina) were collected from each participant,
but in some cases, multiple images (three or four) were collected from both eyes. Both
(a) macula-centered images and (b) disc-centered images were captured for both eyes. A
few participants had no retinal images and we discarded them from our analysis. Figure 1
shows few randomly selected images from each group.

Figure 1. Some randomly selected images from the QBB retinal image dataset.

In the dataset, we had 1839 retinal images from all participants. Then, we removed
low quality images by visual inspection since they may have negative impact on the
downstream classification task. After removing low quality images (all were from the CVD
group only), the number of images was reduced to 1805 (874 and 931 images from CVD
and control group, respectively). For some participants all their images were removed due
to low quality, and therefore, the number of participants in our study was reduced to 483,
where 250 were from control and 233 were from CVD group. Examples of some low-quality
images can be seen in Figure 2.
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Figure 2. Examples of few low-quality images.

4. Experiment Setup

To investigate the effect of different types of input data on the outcome of our study, we
conducted multiple experiments, both uni-modal and multi-modal. Specifically, we used
the tabular and image datasets in isolation in the uni-modal experiments and a combination
of them in the multi-modal one. This resulted in three experiment configurations: (i) DXA
model: applying traditional machine learning techniques on the DXA data. (ii) Retinal
image model: applying deep learning on the retinal images. (iii) Hybrid model: applying
deep learning on both the tabular DXA data and the retinal image data. All experiments
were performed on an Intel(R) Core(TM) i9 CPU @ 3.60 GHz machine with 64 GB RAM
and equipped with NVIDIA GeForce RTX 2080 Ti GPU. For implementation, We used
Scikit-learn for the DXA model and fastai for the other two models. Details about each
experiment is given below in the following sub-sections.

4.1. DXA Model

In the first experiment, we applied six different machine learning algorithms: Decision
Tree (DT) [59], (Shallow) Artificial Neural Network (ANN) [60], Random Forest (RF) [61],
Extreme Gradient Boosting (XGBoost) [62], CatBoost [63], and Logistic Regression (LR) [64].
We utilized the GridSearchCV utility from Python’s Scikit-learn package for hyperparame-
ter tuning with nested cross validation [65]. Supplementary File S2 includes all the tuned
parameters for the ML models.

4.2. Retinal Image Model

In the second experiment, we applied DL-based techniques to distinguish CVD group
from the control group based on the retinal images only. For this experiment, two different
image pre-processing steps were applied to generate two sets of images. For the first
set, the circular region of each image was extracted. Then, we removed the border-noise
by cropping the outside 10% of each image. For the second set, for each cropped image,
local mean was subtracted from a 4 × 4-pixel neighborhood, and then placed on a dark
background within a square-shaped image with tight boundaries. At the end, we had
all images with a size of 540 × 540 with black background. Figure 3 presents samples of
original images and pre-processed images. We also applied data augmentation techniques
such as random horizontal flip as well as a random brightness and contrast perturbation to
enhance the robustness of the model. We experimented with eight popular image classi-
fication models, namely, AlexNet [66], VGGNet-11 [67], VGGNet-16 [67], ResNet-18 [68],
ResNet-34 [68], DenseNet-121 [69], SqueezeNet-0 and SqueezeNet-1 [70]. We used super-
convergence in our experiments which allowed the network to converge faster [71]. The
model was fine-tuned through 10 epochs, with all layers (except the last layer) frozen using
a one-cycle policy [72] for scheduling the learning rate with a maximum learning rate of
0.01 and a batch size of 8. The model took around 30 min to train.
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Figure 3. Example of images from QBB dataset before and after pre-processing.

4.3. Hybrid Model

In the third experiment setup, we aimed to combine the DXA and the retinal image
data in a deep learning-based approach. To this end, we designed a deep neural network
that accepted a multi-modal input. The network consisted of three components: the
CNN stem, the MLP stem, and the Classification Head (Figure 4). The CNN stem was
responsible for processing the retinal images, while the MLP stem processed the DXA data.
Hence, in our work, the fusion between the two data modalities does not take place at
image-level. The data from the two different modalities, tabular data (DXA) and images
(retinal fundus images) are passed through the two stem networks (MLP stem and CNN
stem, respectively) and feature vectors produced from these are fused (vector concatenation)
to form a single feature vector which is finally passed through the Classification Head
to produce the output classification probability. The CNN stems we experimented with
extensions of AlexNet, VGGNet-11, VGGNet-16, ResNet-18, ResNet-34, DenseNet-121,
SqueezeNet-0, and SqueezeNet-1. We tried with multipl configurations of MLP stem and
Classification Head with different number of layers and neurons. The best configuration
we found for MLP stem, and the Classification Head is shown in Table 3.

Table 3. Details of the layers in the MLP stem and the Classification Head of Hybrid model.

Layer Name Output Size

MLP Stem

Linear 8

ReLU 8

BatchNorm1d 8

Dropout 8

Linear 8

Classification Head

BatchNorm1d 264

Dropout 264

Linear 32

ReLU 32

BatchNorm1d 32

Dropout 32

Linear 2
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Figure 4. Hybrid model to distinguish CVD from non-CVD using Retinal Images and DXA tabular
data. CNN stem for Retinal Image was based on ResNet-34 architecture [68]. The MLP stem includes
Linear (Lin), Batch Normalization (BN), Dropout (Dr) layers as shown in the diagram. Both stems
were integrated, and their output was fed into the Classification Head having multiple layers of BN,
Dr, Lin, ReLU, BN, Dr, and finally a single linear layer as output layer (CVD or non-CVD).

For the retinal images, we used the cropped images and the mean subtracted images
shown in Figure 3 and concatenated them with the tabular data. To achieve this, we used
fastai and the image_tabluar library (https://github.com/naity/image_tabular, accessed
on 15 August 2021) to integrate the image data and the DXA (tabular) data. Figure 4 shows
a high-level diagram of our proposed network architecture for the hybrid model. For the
CNN stem, multiple data augmentation techniques such as brightness, contrast, flipping,
rotation, and scaling of the images were applied.

The hybrid model was fine-tuned through 10 epochs, with all layers (except the last
layer) frozen using a one-cycle scheduler and a 1 × 10−2 learning rate and a batch size
of 64. Then, after unfreezing the whole network, 10 epochs were employed for training
utilizing discriminative learning rates in the range of (1 × 10−3 and 1 × 10−2). With the
20 epochs, the model took around 30 min to train.

4.4. Performance Evaluation Metrics

We evaluated the models with 5-fold cross validation (CV) [65] for all models.
The models were evaluated on accuracy, sensitivity, precision, F1-score, and Matthews
Correlation Coefficient (MCC). These metrics are highlighted in the following equations:

Accuracy =
tp + tn

tp + tn + f p + f n
(2)

Sensitivity(recall) =
tp

tp + f n
(3)

Precision =
tp

tp + f p
(4)

F1-score =
2× Precision× Recall

Precision + Recall
(5)

MCC =
(tp× tn)− ( f p× f n)√

(tp + f p)(tp + f n)(tn + f p)(tn + f n)
(6)

where true positive, false negative, false positive, and true negative are represented as tp,
fn, fp, and tn, respectively. Moreover, we computed an empirical p-value for evaluating the
significance of a cross-validated performance scores with permutations

https://github.com/naity/image_tabular
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5. Results
5.1. Experimental Results from the Machine Learning Models

The results obtained from the three experiments are presented in this section.
For the DXA Model, an ablation study was conducted on different feature types of DXA
separately and on all of them with 5-fold CV. Results based on the ablation study shows
that the area measurements features have low contribution with 66.5% accuracy. body fat
composition, BMD, and lean mass achieved highest accuracy of 77.0%, 73.2%, and 70.2%,
respectively. Considering all features (122 features), XGBoost model performed the best
achieving highest accuracy of 77.4%. The highest F1-score of 76.8% and the highest MCC
of 55.5% (see Table 4). For all DXA based experiments, a p-value of < 0.05 was obtained
indicating their statistical significance.

For the Retinal Image Model, where retinal images were used only to distinguish CVD
form control group, DenseNet-121 model achieved the highest accuracy of 75.6% on the
cropped image set based on 5 fold CV. DenseNet-121 model achieved 73.0% accuracy on
the mean subtracted image set. Table 5 highlights the comparison of performance among
all DL models used in this study. For all retinal image-based experiments, a p-value of
<0.05 was obtained indicating their statistical significance.

Table 4. Performance of ML techniques for ablation study on DXA Model.

Property (No of Features) Evaluation
Metric DT MLP RF LR CatBoost XGBoost

Bone Mineral Density (55)

Accuracy 0.620 0.682 0.686 0.732 0.710 0.726

Sensitivity 0.617 0.574 0.647 0.678 0.635 0.672

Specificity 0.628 0.795 0.724 0.785 0.784 0.780

Precision 0.624 0.740 0.701 0.758 0.746 0.758

F1-score 0.609 0.639 0.672 0.716 0.685 0.710

MCC 0.250 0.382 0.373 0.466 0.424 0.456

p-value 1.996 × 10−3 1.089 × 10−2 1.664 × 10−3 1.536 × 10−3 6.623 × 10−3 1.332 × 10−3

Body Fat Composition (15)

Accuracy 0.720 0.770 0.746 0.742 0.740 0.754

Sensitivity 0.594 0.640 0.697 0.741 0.673 0.723

Specificity 0.832 0.902 0.789 0.749 0.806 0.787

Precision 0.790 0.867 0.770 0.747 0.777 0.767

F1-score 0.669 0.734 0.731 0.741 0.720 0.743

MCC 0.445 0.560 0.489 0.488 0.482 0.508

p-value 1.248 × 10−3 1.175 × 10−3 1.110 × 10−3 1.052 × 10−3 4.975 × 10−3 9.515 × 10−4

Lean Mass (7)

Accuracy 0.576 0.652 0.690 0.634 0.668 0.702

Sensitivity 0.556 0.652 0.674 0.613 0.702 0.669

Specificity 0.596 0.664 0.710 0.657 0.638 0.736

Precision 0.582 0.717 0.699 0.641 0.661 0.716

F1-score 0.560 0.650 0.683 0.625 0.678 0.691

MCC 0.156 0.329 0.386 0.270 0.342 0.406

p-value 9.083 × 10−4 6.950 × 10−3 8.326 × 10−4 7.994 × 10−4 3.984 × 10−3 7.402 × 10−4

Area Measurements (45)

Accuracy 0.580 0.614 0.600 0.664 0.644 0.598

Sensitivity 0.546 0.528 0.624 0.665 0.660 0.605

Specificity 0.623 0.698 0.584 0.667 0.633 0.597

Precision 0.597 0.636 0.602 0.675 0.644 0.598

F1-score 0.556 0.575 0.607 0.664 0.647 0.598

MCC 0.175 0.230 0.210 0.335 0.295 0.203

p-value 7.138 × 10−4 4.135 × 10−3 6.662 × 10−4 6.447 × 10−4 3.332 × 10−3 6.057 × 10−4
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Table 4. Cont.

Property (No of Features) Evaluation
Metric DT MLP RF LR CatBoost XGBoost

All (122)

Accuracy 0.672 0.750 0.748 0.768 0.750 0.774

Sensitivity 0.658 0.656 0.704 0.761 0.694 0.754

Specificity 0.691 0.855 0.797 0.780 0.812 0.800

Precision 0.694 0.827 0.777 0.777 0.789 0.790

F1-score 0.663 0.722 0.736 0.766 0.734 0.768

MCC 0.363 0.526 0.504 0.542 0.511 0.555

p-value 5.879 × 10−4 5.711 × 10−4 5.552 × 10−4 5.402 × 10−4 2.849 × 10−3 5.126 × 10−4

Table 5. A Comparison on the performance of deep learning models built based on retinal images.

Type of Images DL Model Accuracy Sensitivity Specificity Precision f1 Score MCC p-Value

Cropped images

DenseNet-121 0.756 0.753 0.758 0.74 0.746 0.511 2.023 × 10−10

Resnet-18 0.694 0.735 0.656 0.661 0.696 0.392 1.732 × 10−2

ResNet-34 0.753 0.682 0.817 0.773 0.725 0.505 8.824 × 10−4

VGGNet-11 0.744 0.712 0.774 0.742 0.727 0.487 5.529 × 10−8

VGGNet-16 0.739 0.7 0.774 0.739 0.719 0.476 4.612 × 10−16

AlexNet 0.699 0.659 0.737 0.696 0.677 0.397 3.519 × 10−2

SqueezeNet1_0 0.719 0.665 0.769 0.724 0.693 0.436 3.130 × 10−5

SqueezeNet1_1 0.685 0.729 0.645 0.653 0.689 0.375 6.687 × 10−3

Mean subtracted images

DenseNet-121 0.73 0.712 0.747 0.72 0.716 0.459 3.545 × 10−2

Resnet-18 0.713 0.682 0.742 0.707 0.695 0.425 1.953 × 10−2

ResNet 34 0.713 0.635 0.785 0.73 0.679 0.426 6.846 × 10−5

VGGNet-11 0.685 0.735 0.64 0.651 0.691 0.376 5.984 × 10−4

VGGNet-16 0.725 0.724 0.726 0.707 0.715 0.449 3.542 × 10−2

AlexNet 0.683 0.688 0.677 0.661 0.674 0.365 2.806 × 10−3

SqueezeNet1_0 0.677 0.635 0.715 0.671 0.653 0.352 2.390 × 10−3

SqueezeNet1_1 0.669 0.612 0.72 0.667 0.638 0.334 1.390 × 10−3

Finally, for the Hybrid Model, where both DXA tabular data and retinal images were
combined, ResNet-34 achieved the highest accuracy of 78.3% with 5-fold CV.
Table 6 shows a comparison between the eight DL models that we tested in this experiment.
For all hybrid model based experiments, a p-value of <0.05 was obtained indicating their
statistical significance. We also calculated the area under of curve (AUC) of receiver oper-
ating characteristics (ROC) for all DL models in this experiment for the cropped images
(Supplementary File S3).

Table 6. A comparison on the performance of hybrid models built based on both retinal image and
DXA data.

Type of Images DL Model Accuracy Sensitivity Specificity Precision f 1 Score MCC p-Value

Cropped images

DenseNet-121 + DXA 0.74 0.688 0.793 0.771 0.719 0.492 1.371 × 10−3

ResNet-18 + DXA 0.756 0.666 0.842 0.802 0.725 0.519 1.255 × 10−3

ResNet-34 + DXA 0.783 0.747 0.816 0.793 0.767 0.566 1.290 × 10−3

VGGNet-11 + DXA 0.752 0.691 0.812 0.784 0.729 0.512 1.297 × 10−3

VGGNet-16 + DXA 0.739 0.675 0.8 0.773 0.71 0.49 1.608 × 10−3

AlexNet + DXA 0.778 0.698 0.854 0.815 0.751 0.559 1.166 × 10−3

SqueezeNet1_0 + DXA 0.748 0.653 0.836 0.786 0.713 0.498 3.795 × 10−3

SqueezeNet1_1 + DXA 0.767 0.736 0.795 0.773 0.753 0.534 1.243 × 10−3
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Table 6. Cont.

Type of Images DL Model Accuracy Sensitivity Specificity Precision f 1 Score MCC p-Value

Mean subtracted images

DenseNet-121 + DXA 0.736 0.669 0.8 0.76 0.71 0.475 1.409 × 10−3

ResNet-18 + DXA 0.734 0.639 0.825 0.775 0.699 0.474 1.355 × 10−3

ResNet-34 + DXA 0.757 0.755 0.761 0.754 0.75 0.52 1.173 × 10−3

VGGNet-11 + DXA 0.734 0.707 0.760 0.737 0.715 0.474 1.323 × 10−3

VGGNet-16 + DXA 0.723 0.702 0.746 0.727 0.705 0.456 1.608 × 10−3

AlexNet + DXA 0.753 0.658 0.841 0.796 0.718 0.511 1.466 × 10−3

SqueezeNet1_0 + DXA 0.754 0.673 0.829 0.789 0.725 0.511 1.241 × 10−3

SqueezeNet1_1 + DXA 0.770 0.732 0.804 0.780 0.754 0.540 1.464 × 10−3

5.2. Performance of the Hybrid Model Based on Gender and Age Stratified Dataset

To check the effectiveness of the proposed model developed on different subgroups
of population, we tested the Hybrid Model (incorporating the DXA and retinal image)
on age- and gender-stratified samples. Though the performance of the model dropped
slightly on the gender-stratified dataset, ResNet-34 based model achieved the highest
performance with 75% and 72.9% accuracy for male and female, respectively (Figure 5).
For the gender-stratified samples, all the eight models achieved better performance for
males compared to females (Figure 5).
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Figure 5. Performance of the hybrid models on gender-stratified participants (based on cropped image).

Table 7 provides information on the numbers of participants and images used for
different age groups. For the age-stratified samples, the performance of the model was
close to the performance of the model while whole dataset. The highest performance across
all DL models were obtained from ResNet-34 model with 76.5% accuracy for the 40 and
above age group. For the other age group (below 40), the ResNet-34 model also achieve
best performance with 76.2% accuracy. Figure 6 shows the detailed results and comparison
of the model performance for age-stratified participants.
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Table 7. Details of number of participants and number of images used for each age group.

Class
Age Group (18–39) Age Group (40 and Above)

Participants Images Participants Images

CVD 115 440 118 434

Control 210 782 40 140
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Figure 6. Performance of the hybrid models on age-stratified participants (based on cropped image).

5.3. Statistical Analysis on DXA Data

We conducted statistical analysis on the DXA data for comparing the CVD group
against the control group. After analyzing the 122 features, 95 features were statistically
significant (p-value < 0.05) (Supplementary File S1).

When compared against the control group, CVD group accumulated more fat in
different body parts including the arms, legs, trunk, android, gynoid, and android visceral.

Measurements of lean mass in android, leg, arm, trunk, etc., were also higher in the CVD
group. For instance, lean mass in trunk (20,329.32 ± 3809:18,779.82 ± 3965) was greater in
CVD than the control group. Overall, the total fat mass (25,908.58 ± 6342:20,962.12 ± 4946)
as well as total lean mass (43,643.57 ± 8617:40,614.88 ± 9059) was higher in the CVD group
and higher BMI value in CVD group reflect their fat and lean mass content.

We also observed higher level of BMD and anthropometric measurements from dif-
ferent body parts in the CVD group compared to the control group (Supplementary File
S1). For BMD measurements in different body parts, e.g., head, arms, spine, troch, and
trunk, the CVD group had a greater BMD than the control group. Overall the total BMD
(1.20 ± 0.11:1.17 ± 0.12) was higher in the CVD group compared to the control group.
Individuals with higher weight and BMI tend to have high BMD which might help to
reduce the risk of bone fracture [73–75]. A similar trend was seen in our cohort.

Furthermore, when it comes to anthropometic measurements, we observed larger bone
area in the troch, lumbar spine (L1, L2, L3, L4), and pelvis body parts for CVD group compared
to the control group. In summary, most measurements for BMD, fat content, muscle mass,
and bone area were higher in the CVD group compared to the control group, according to the
analysis. Details of the analysis can be found in Supplementary File S1.

5.4. Class Activation Map for Highlighting the Region of Interest in CVD Patients

We used Gradient-weighted Class Activation Mapping (GradCAM) [76] to highlight
regions of interest which influenced the DL model to make predictions. Figure 7 shows
results of GradCAM on images of the CVD class. It was observed that regions of interest,
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as shown in the color-coded heat map on the right of each image, are mostly in the central
region of the retina. Micro hemorrhage can be observed in all images and especially in the
bottom left images which is associated with hypertension [77,78].

Figure 7. Few retinal images from CVD group with overlaid GradCAM. Red-ish color indicates higher
influence on the decision of prediction model compared to the blue-ish color that indicate less influence.

6. Discussion
6.1. Principal Findings

Integrating retinal images with DXA improves the performance of CVD detection. In
our experiments, the classification accuracy for the retinal image data only and for the DXA
data only was 75.6% and 77.4% respectively. However, when both datasets were integrated
using a joined deep learning model, there was an improvement in the performance which has
reached up to 78.3% accuracy with ResNet-34 based model. This indicates that integration of
multi-modal dataset has improved the performance of the proposed model. For the gender-
stratified participants, the proposed model achieved almost similar performance for both
genders (Figure 5). The performance of the model based on the age-stratified participants were
close to the performance of the model with all participants (Figure 6). This indicates that the
performance of the proposed model is unbiased towards age-stratified adult population.

The majority of DXA readings in the CVD group were higher than the control group.
For statistically significant variables, majority of the BMD, fat content, muscle mass, and
bone area measurements for the CVD group had greater average values than the control
group (Supplementary File S1). Obesity was shown to be linked as a protective factor of
osteoporosis through different mechanisms including mechanical and biochemical mecha-
nisms [79]. In the current study, although obesity (higher BMI) has deleterious effect on
cardiovascular risk factors, we can also observe its protective effects on bone health. In
summary, our results indicate a better bone health condition for the CVD group which
had higher BMI than the control group. Ablation study revealed the better discriminatory
power of fat content and BMD than muscle mass and bone areas (Table 4). This highlights
the discriminatory power of DXA measurements which could open new avenues in the
diagnosis plan of CVD.

6.2. Comparison against Other Tools

We could not find any work that used retinal images and DXA for CVD detection
based on the Qatari population or outside Qatar. Published work that has been reviewed
focused on the prediction of risk factors associated with CVD (refer to Table 1) instead
of predicting CVD directly, and therefore, we could not compare the performance of the
proposed model against any existing model.

We, however, present a summary of the existing methods (Table 2) that use a multi-
modal approach albeit with modalities different from DXA and retinal images.
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Therefore, we would like to re-iterate that a direct comparison of our proposed multi-
modal approach with any of these would not be fair due to the following reasons: First,
none of the existing research uses the particular combination of multi-modal data (DXA
and retinal images) in their work. To the best of our knowledge, ours is the first research
that considers these two data modalities using a machine learning approach. Second, the
data used in the approaches (Table 2) include bio-markers related directly to the health of
the heart, and hence have an unfair advantage in CVD prediction over our approach at
the cost of being more invasive. Our method stands superior in scenarios involving health
centers located at remote regions with access to limited non-invasive resources.

6.3. Motivation for Using a Multi-Modal Approach

We were motivated to use a “multi-modal” approach to predict CVD using retinal
images and DXA data for multiple reasons. First, we have shown that a multi-modal ap-
proach is a superior technique (Table 6) than the uni-modal counterparts (Tables 4 and 5)
for predicting CVD. Second, the particular combination of the modalities (DXA and retinal
images) we used in our work has never been explored, hence providing a completely novel
insight into the possible ways of predicting CVD in a non-invasive manner. Last but not the
least, since neither DXA nor retinal data collection is invasive, our proposed multi-modal
approach is also, overall, non-invasive, and hence is applicable to a wide variety of health
centers possibly located in remote regions with limited resources.

7. Limitations

In this work, we used dataset from QBB that consisted of participants from Qatar only.
This means that the outcome of this study could be specific to the Qatari population and
people of gulf countries with similar lifestyle and ethnicity. This indicates that the results
from this study might not be generalized to other population. Moreover, the human retinal
images contain a vascular tree that orchestrate a complex branching pattern. To identify
different aspects of this tree it is important to have retinal images with high contrast, color
balance, and quality. Hence, having more and better quality controlled images could have
pushed the accuracy of the proposed model even higher. Despite these limitations, this
study serves as a proof of concept that incorporating information from retinal images
and DXA provides a novel avenue to diagnose CVD with a reasonable accuracy in a
non-invasive manner.

8. Conclusions

In this work, we presented a novel deep learning based model to distinguish CVD
group from control group by integrating information from retinal images and DXA scans.
The proposed multi-modal approach achieved an accuracy of 78.3% which performed
better than the individual uni-modal (DXA and retinal images) models. To the best of our
knowledge, this is the first study to diagnose CVD from DXA data and retinal images. The
achieved performance demonstrated that signals from fast and relatively non-invasive
techniques such as DXA and retinal images can be used to diagnose patients with CVD.
The findings from our study are required to be validated in a clinical setup for proper
understanding of their links to CVD diagnosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s22124310/s1. Supplementary File S1: Summary Statistics of the DXA features. Supple-
mentary File S2: Details for parameter optimization for the models. Supplementary File S3: ROC
Curve Analysis.

Author Contributions: H.R.H.A.-A., T.A. conceived and planned the experiments. H.R.H.A.-A. and
M.T.I. performed the experiments. H.R.H.A.-A. analyzed the data. H.R.H.A.-A., T.A. and M.T.I.
prepared the manuscript with the assistance from other authors. Data curation, M.A.R. Validation,
M.E.H.C. All authors have read and agreed to the final version of the manuscript.

Funding: This research received no external funding.

https://www.mdpi.com/article/10.3390/s22124310/s1
https://www.mdpi.com/article/10.3390/s22124310/s1


Sensors 2022, 22, 4310 17 of 20

Institutional Review Board Statement: This research was carried out under the regulation of Qatar’s
Ministry of Public Health. This work was approved by the Institutional Review Board of Qatar
Biobank (QBB) in Qatar, and used a de-identified dataset from QBB.

Informed Consent Statement: QBB received the infomred consent of all participants.

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained
from QBB under non-disclosure agreement (NDA).

Acknowledgments: We thank Qatar Biobank (QBB) for providing access to the de-identified dataset.
The open-access publication of this article is funded by the College of Science and Engineering,
Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

Abbreviations
The following abbreviations are used in this manuscript:

ASCVD Atherosclerotic Cardiovascular Disease
AUC Area Under the Curve
BMI Body Mass Index
BMD Bone Mineral Density
CCTA Coronary CT Angiography
CT Computed Tomography
CVD Cardiovascular disease
DL Deep Learning
DXA Dual-energy X-ray Absorptiometry
ECG Electrocardiogram
ECHO Echocardiography
ML Machine Learning
MPI Myocardial Perfusion Imaging
MRI Magnetic Resonance Imaging
PCG Phonocardiogram
ROC Receiver Operating Characteristics
WHO World Health Organization
WHR Waist-to-hip Ratio

References
1. Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.;

Benziger, C.P.; et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J.
Am. Coll. Cardiol. 2020, 76, 2982–3021. [CrossRef] [PubMed]

2. World Health Organization. Cardiovascular Diseases (CVDs); World Health Organization: Geneva, Switzerland, 2021.
3. Long, C.P.; Chan, A.X.; Bakhoum, C.Y.; Toomey, C.B.; Madala, S.; Garg, A.K.; Freeman, W.R.; Goldbaum, M.H.; DeMaria, A.N.;

Bakhoum, M.F. Prevalence of subclinical retinal ischemia in patients with cardiovascular disease—A hypothesis driven study.
EClinicalMedicine 2021, 33, 100775. [CrossRef] [PubMed]

4. WHO-EMRO. Cardiovascular Diseases; World Health Organization, Regional Office for the Eastern Mediterranean: Cairo,
Egypt, 2021.

5. Planning and Statistics Authority (Qatar). Births & Deaths in the State of Qatar (Review & Analysis). Report 2018. Available
online: https://www.psa.gov.qa/en/statistics/Statistical%20Releases/General/StatisticalAbstract/2018/Birth_death_2018_EN.
pdf (accessed on 18 September 2021).

6. Ghantous, C.M.; Kamareddine, L.; Farhat, R.; Zouein, F.A.; Mondello, S.; Kobeissy, F.; Zeidan, A. Advances in cardiovascular
biomarker discovery. Biomedicines 2020, 8, 552. [CrossRef]

7. Al-Absi, H.R.; Refaee, M.A.; Rehman, A.U.; Islam, M.T.; Belhaouari, S.B.; Alam, T. Risk Factors and Comorbidities Associated to
Cardiovascular Disease in Qatar: A Machine Learning Based Case-Control Study. IEEE Access 2021, 9, 29929–29941. [CrossRef]

8. Rehman, A.U.; Alam, T.; Belhaouari, S.B. Investigating Potential Risk Factors for Cardiovascular Diseases in Adult Qatari
Population. In Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT),
Doha, Qatar, 2–5 February 2020; pp. 267–270.

9. Wilson, P.W.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of coronary heart disease using
risk factor categories. Circulation 1998, 97, 1837–1847. [CrossRef]

http://doi.org/10.1016/j.jacc.2020.11.010
http://www.ncbi.nlm.nih.gov/pubmed/33309175
http://dx.doi.org/10.1016/j.eclinm.2021.100775
http://www.ncbi.nlm.nih.gov/pubmed/33842865
https://www.psa.gov.qa/en/statistics/Statistical%20Releases/General/StatisticalAbstract/2018/Birth_death_2018_EN.pdf
https://www.psa.gov.qa/en/statistics/Statistical%20Releases/General/StatisticalAbstract/2018/Birth_death_2018_EN.pdf
http://dx.doi.org/10.3390/biomedicines8120552
http://dx.doi.org/10.1109/ACCESS.2021.3059469
http://dx.doi.org/10.1161/01.CIR.97.18.1837


Sensors 2022, 22, 4310 18 of 20

10. American College of Cardiology. ASCVD Risk Estimator; American College of Cardiology: Washington, DC, USA, 2022. Available
online: https://tools.acc.org/ascvd-risk-estimator-plus/ (accessed on 18 September 2021).

11. Xu, C.; Xu, L.; Gao, Z.; Zhao, S.; Zhang, H.; Zhang, Y.; Du, X.; Zhao, S.; Ghista, D.; Liu, H.; et al. Direct delineation of myocardial
infarction without contrast agents using a joint motion feature learning architecture. Med. Image Anal. 2018, 50, 82–94. [CrossRef]

12. Sudarshan, V.K.; Acharya, U.R.; Ng, E.; San Tan, R.; Chou, S.M.; Ghista, D.N. An integrated index for automated detection of
infarcted myocardium from cross-sectional echocardiograms using texton-based features (Part 1). Comput. Biol. Med. 2016, 71,
231–240. [CrossRef]

13. Madani, A.; Ong, J.R.; Tibrewal, A.; Mofrad, M.R. Deep echocardiography: Data-efficient supervised and semi-supervised deep
learning towards automated diagnosis of cardiac disease. NPJ Digit. Med. 2018, 1, 1–11. [CrossRef]

14. Vidya, K.S.; Ng, E.; Acharya, U.R.; Chou, S.M.; San Tan, R.; Ghista, D.N. Computer-aided diagnosis of myocardial infarction using
ultrasound images with DWT, GLCM and HOS methods: A comparative study. Comput. Biol. Med. 2015, 62, 86–93. [CrossRef]

15. Larroza, A.; López-Lereu, M.P.; Monmeneu, J.V.; Gavara, J.; Chorro, F.J.; Bodí, V.; Moratal, D. Texture analysis of cardiac cine
magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction. Med. Phys. 2018, 45,
1471–1480. [CrossRef]

16. Snaauw, G.; Gong, D.; Maicas, G.; Van Den Hengel, A.; Niessen, W.J.; Verjans, J.; Carneiro, G. End-to-end diagnosis and
segmentation learning from cardiac magnetic resonance imaging. In Proceedings of the 2019 IEEE 16th International Symposium
on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 802–805.

17. Baessler, B.; Luecke, C.; Lurz, J.; Klingel, K.; Das, A.; von Roeder, M.; de Waha-Thiele, S.; Besler, C.; Rommel, K.P.; Maintz, D.; et al.
Cardiac MRI and texture analysis of myocardial T1 and T2 maps in myocarditis with acute versus chronic symptoms of heart
failure. Radiology 2019, 292, 608–617. [CrossRef] [PubMed]

18. Mannil, M.; von Spiczak, J.; Manka, R.; Alkadhi, H. Texture analysis and machine learning for detecting myocardial infarction in
noncontrast low-dose computed tomography: Unveiling the invisible. Investig. Radiol. 2018, 53, 338–343. [CrossRef] [PubMed]

19. Coenen, A.; Kim, Y.H.; Kruk, M.; Tesche, C.; De Geer, J.; Kurata, A.; Lubbers, M.L.; Daemen, J.; Itu, L.; Rapaka, S.; et al. Diagnostic
accuracy of a machine-learning approach to coronary computed tomographic angiography–based fractional flow reserve: Result
from the MACHINE consortium. Circ. Cardiovasc. Imaging 2018, 11, e007217. [CrossRef] [PubMed]

20. Zreik, M.; Van Hamersvelt, R.W.; Wolterink, J.M.; Leiner, T.; Viergever, M.A.; Išgum, I. A recurrent CNN for automatic detection
and classification of coronary artery plaque and stenosis in coronary CT angiography. IEEE Trans. Med Imaging 2018, 38,
1588–1598. [CrossRef] [PubMed]

21. Sacha, J.P.; Goodenday, L.S.; Cios, K.J. Bayesian learning for cardiac SPECT image interpretation. Artif. Intell. Med. 2002, 26,
109–143. [CrossRef]

22. Shibutani, T.; Nakajima, K.; Wakabayashi, H.; Mori, H.; Matsuo, S.; Yoneyama, H.; Konishi, T.; Okuda, K.; Onoguchi, M.; Kinuya,
S. Accuracy of an artificial neural network for detecting a regional abnormality in myocardial perfusion SPECT. Ann. Nucl. Med.
2019, 33, 86–92. [CrossRef]

23. Liu, C.Y.; Tang, C.X.; Zhang, X.L.; Chen, S.; Xie, Y.; Zhang, X.Y.; Qiao, H.Y.; Zhou, C.S.; Xu, P.P.; Lu, M.J.; et al. Deep learning
powered coronary CT angiography for detecting obstructive coronary artery disease: The effect of reader experience, calcification
and image quality. Eur. J. Radiol. 2021, 142, 109835. [CrossRef]

24. Farrah, T.E.; Dhillon, B.; Keane, P.A.; Webb, D.J.; Dhaun, N. The eye, the kidney, and cardiovascular disease: Old concepts, better
tools, and new horizons. Kidney Int. 2020, 98, 323–342. [CrossRef]

25. Wong, T.Y.; Klein, R.; Klein, B.E.; Tielsch, J.M.; Hubbard, L.; Nieto, F.J. Retinal microvascular abnormalities and their relationship
with hypertension, cardiovascular disease, and mortality. Surv. Ophthalmol. 2001, 46, 59–80. [CrossRef]

26. Zhang, L.; Yuan, M.; An, Z.; Zhao, X.; Wu, H.; Li, H.; Wang, Y.; Sun, B.; Li, H.; Ding, S.; et al. Prediction of hypertension,
hyperglycemia and dyslipidemia from retinal fundus photographs via deep learning: A cross-sectional study of chronic diseases
in central China. PLoS ONE 2020, 15, e0233166. [CrossRef]

27. Islam, M.T.; Al-Absi, H.R.; Ruagh, E.A.; Alam, T. DiaNet: A deep learning based architecture to diagnose diabetes using retinal
images only. IEEE Access 2021, 9, 15686–15695. [CrossRef]

28. Poplin, R.; Varadarajan, A.V.; Blumer, K.; Liu, Y.; McConnell, M.V.; Corrado, G.S.; Peng, L.; Webster, D.R. Prediction of cardiovas-
cular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2018, 2, 158–164. [CrossRef] [PubMed]

29. Cheung, C.Y.; Xu, D.; Cheng, C.Y.; Sabanayagam, C.; Tham, Y.C.; Yu, M.; Rim, T.H.; Chai, C.Y.; Gopinath, B.; Mitchell, P.; et al.
A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre. Nat.
Biomed. Eng. 2021, 5, 498–508. [CrossRef] [PubMed]

30. Spahillari, A.; Mukamal, K.; DeFilippi, C.; Kizer, J.R.; Gottdiener, J.S.; Djoussé, L.; Lyles, M.F.; Bartz, T.M.; Murthy, V.L.; Shah, R.V.
The association of lean and fat mass with all-cause mortality in older adults: The Cardiovascular Health Study. Nutr. Metab.
Cardiovasc. Dis. 2016, 26, 1039–1047. [CrossRef]

31. Chuang, T.L.; Lin, J.W.; Wang, Y.F. Bone Mineral Density as a Predictor of Atherogenic Indexes of Cardiovascular Disease,
Especially in Nonobese Adults. Dis. Markers 2019, 2019, 1045098. [CrossRef]

32. Messina, C.; Albano, D.; Gitto, S.; Tofanelli, L.; Bazzocchi, A.; Ulivieri, F.M.; Guglielmi, G.; Sconfienza, L.M. Body composition
with dual energy X-ray absorptiometry: From basics to new tools. Quant. Imaging Med. Surg. 2020, 10, 1687. [CrossRef]

33. Park, J.; Yoon, Y.E.; Kim, K.M.; Hwang, I.C.; Lee, W.; Cho, G.Y. Prognostic value of lower bone mineral density in predicting
adverse cardiovascular disease in Asian women. Heart 2021, 107, 1040–1046. [CrossRef]

https://tools.acc.org/ascvd-risk-estimator-plus/
http://dx.doi.org/10.1016/j.media.2018.09.001
http://dx.doi.org/10.1016/j.compbiomed.2016.01.028
http://dx.doi.org/10.1038/s41746-018-0065-x
http://dx.doi.org/10.1016/j.compbiomed.2015.03.033
http://dx.doi.org/10.1002/mp.12783
http://dx.doi.org/10.1148/radiol.2019190101
http://www.ncbi.nlm.nih.gov/pubmed/31361205
http://dx.doi.org/10.1097/RLI.0000000000000448
http://www.ncbi.nlm.nih.gov/pubmed/29420321
http://dx.doi.org/10.1161/CIRCIMAGING.117.007217
http://www.ncbi.nlm.nih.gov/pubmed/29914866
http://dx.doi.org/10.1109/TMI.2018.2883807
http://www.ncbi.nlm.nih.gov/pubmed/30507498
http://dx.doi.org/10.1016/S0933-3657(02)00055-6
http://dx.doi.org/10.1007/s12149-018-1306-4
http://dx.doi.org/10.1016/j.ejrad.2021.109835
http://dx.doi.org/10.1016/j.kint.2020.01.039
http://dx.doi.org/10.1016/S0039-6257(01)00234-X
http://dx.doi.org/10.1371/journal.pone.0233166
http://dx.doi.org/10.1109/ACCESS.2021.3052477
http://dx.doi.org/10.1038/s41551-018-0195-0
http://www.ncbi.nlm.nih.gov/pubmed/31015713
http://dx.doi.org/10.1038/s41551-020-00626-4
http://www.ncbi.nlm.nih.gov/pubmed/33046867
http://dx.doi.org/10.1016/j.numecd.2016.06.011
http://dx.doi.org/10.1155/2019/1045098
http://dx.doi.org/10.21037/qims.2020.03.02
http://dx.doi.org/10.1136/heartjnl-2020-318764


Sensors 2022, 22, 4310 19 of 20

34. Ceniccola, G.D.; Castro, M.G.; Piovacari, S.M.F.; Horie, L.M.; Corrêa, F.G.; Barrere, A.P.N.; Toledo, D.O. Current technologies in
body composition assessment: Advantages and disadvantages. Nutrition 2019, 62, 25–31. [CrossRef]

35. Hansen, A.B.; Sander, B.; Larsen, M.; Kleener, J.; Borch-Johnsen, K.; Klein, R.; Lund-Andersen, H. Screening for diabetic
retinopathy using a digital non-mydriatic camera compared with standard 35-mm stereo colour transparencies. Acta Ophthalmol.
Scand. 2004, 82, 656–665. [CrossRef]

36. Oloumi, F.; Rangayyan, R.M.; Ells, A.L. Digital Image Processing for Ophthalmology: Detection and Modeling of Retinal Vascular
Architecture. Synth. Lect. Biomed. Eng. 2014, 9, 1–185. [CrossRef]

37. Guo, V.Y.; Chan, J.C.N.; Chung, H.; Ozaki, R.; So, W.; Luk, A.; Lam, A.; Lee, J.; Zee, B.C.Y. Retinal information is independently
associated with cardiovascular disease in patients with type 2 diabetes. Sci. Rep. 2016, 6, 19053. [CrossRef] [PubMed]

38. Gerrits, N.; Elen, B.; Van Craenendonck, T.; Triantafyllidou, D.; Petropoulos, I.N.; Malik, R.A.; De Boever, P. Age and sex affect
deep learning prediction of cardiometabolic risk factors from retinal images. Sci. Rep. 2020, 10, 9432. [CrossRef] [PubMed]

39. Van Craenendonck, T.; Gerrits, N.; Buelens, B.; Petropoulos, I.N.; Shuaib, A.; Standaert, A.; Malik, R.A.; De Boever, P. Retinal
microvascular complexity comparing mono-and multifractal dimensions in relation to cardiometabolic risk factors in a Middle
Eastern population. Acta Ophthalmol. 2021, 99, e368–e377. [CrossRef] [PubMed]

40. Sharp, D.S.; Andrew, M.E.; Burchfiel, C.M.; Violanti, J.M.; Wactawski-Wende, J. Body mass index versus dual energy X-ray
absorptiometry-derived indexes: Predictors of cardiovascular and diabetic disease risk factors. Am. J. Hum. Biol. 2012, 24,
400–405. [CrossRef]

41. Lang, P.O.; Trivalle, C.; Vogel, T.; Proust, J.; Papazian, J.P. Markers of metabolic and cardiovascular health in adults: Comparative
analysis of DEXA-based body composition components and BMI categories. J. Cardiol. 2015, 65, 42–49. [CrossRef]

42. Bekfani, T.; Pellicori, P.; Morris, D.A.; Ebner, N.; Valentova, M.; Steinbeck, L.; Wachter, R.; Elsner, S.; Sliziuk, V.; Schefold, J.C.; et al.
Sarcopenia in patients with heart failure with preserved ejection fraction: Impact on muscle strength, exercise capacity and
quality of life. Int. J. Cardiol. 2016, 222, 41–46. [CrossRef]

43. Martens, P.; Ter Maaten, J.M.; Vanhaen, D.; Heeren, E.; Caers, T.; Bovens, B.; Dauw, J.; Dupont, M.; Mullens, W. Heart failure is
associated with accelerated age related metabolic bone disease. Acta Cardiol. 2021, 76, 718–726. [CrossRef]

44. Kerkadi, A.; Suleman, D.; Salah, L.A.; Lotfy, C.; Attieh, G.; Bawadi, H.; Shi, Z. Adiposity indicators as cardio-metabolic risk
predictors in adults from country with high burden of obesity. Diabetes Metab. Syndr. Obesity Targets Ther. 2020, 13, 175. [CrossRef]

45. Bawadi, H.; Hassan, S.; Zadeh, A.S.; Sarv, H.; Kerkadi, A.; Tur, J.A.; Shi, Z. Age and gender specific cut-off points for body fat
parameters among adults in Qatar. Nutr. J. 2020, 19, 75. [CrossRef]

46. Bartl, R.; Bartl, C. Bone densitometry. In The Osteoporosis Manual: Prevention, Diagnosis and Management; Springer International
Publishing: Cham, Switzerland, 2019; pp. 67–75. [CrossRef]
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