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Abstract: Cardiovascular diseases are the most common causes of death around the world. To detect
and treat heart-related diseases, continuous blood pressure (BP) monitoring along with many other
parameters are required. Several invasive and non-invasive methods have been developed for this
purpose. Most existing methods used in hospitals for continuous monitoring of BP are invasive. On
the contrary, cuff-based BP monitoring methods, which can predict systolic blood pressure (SBP) and
diastolic blood pressure (DBP), cannot be used for continuous monitoring. Several studies attempted
to predict BP from non-invasively collectible signals such as photoplethysmograms (PPG) and
electrocardiograms (ECG), which can be used for continuous monitoring. In this study, we explored
the applicability of autoencoders in predicting BP from PPG and ECG signals. The investigation
was carried out on 12,000 instances of 942 patients of the MIMIC-II dataset, and it was found that
a very shallow, one-dimensional autoencoder can extract the relevant features to predict the SBP
and DBP with state-of-the-art performance on a very large dataset. An independent test set from a
portion of the MIMIC-II dataset provided a mean absolute error (MAE) of 2.333 and 0.713 for SBP and
DBP, respectively. On an external dataset of 40 subjects, the model trained on the MIMIC-II dataset
provided an MAE of 2.728 and 1.166 for SBP and DBP, respectively. For both the cases, the results met
British Hypertension Society (BHS) Grade A and surpassed the studies from the current literature.

Keywords: systolic blood pressure; diastolic blood pressure; arterial blood pressure; photoplethysmogram;
electrocardiogram; autoencoder; feature extraction

1. Introduction

Despite tremendous advancements in the healthcare sector, cardiovascular diseases
(CVDs) still secured the top positions last year in the list of leading causes of death globally.
The most fatal CVD was Ischaemic Heart Disease which is termed by the World Health
Organization (WHO) as the “world’s biggest killer” as it accounted for 16% of the total
deaths from 2000 to 2019 [1]. The second, third, and fourth positions were secured by
stroke, chronic pulmonary diseases and lower respiratory infections, respectively which are
also, directly and indirectly, related to CVDs [2–4]. Hypertension or high blood pressure
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(BP) is one of the leading causes of CVDs: Almost 54% of strokes and 47% of coronary heart
diseases, worldwide, can be attributed to high BP [5]. In the USA alone, there are around
67 million people (almost one-third of the population) suffering from various hypertension
problems while the irony is, according to this statistic [6], more than half of them are
reluctant to mitigate their condition. The main reason behind this kind of reluctance seen
among high BP patients is the dormant nature of hypertension which eventually leads
to untimely death. For this reason, it is commonly termed the “Silent Killer” [7]. Due
to the silent nature of hypertension, it is crucial to continuously monitor the BP of the
patients. Due to a shortage of expert physicians compared to the huge number of patients,
automated BP monitoring methods seem to be a viable alternative in this regard.

Several studies attempted to tackle this problem following various methodologies and
a handful of them (e.g., [8]) were adopted by the healthcare centers to measure blood pres-
sure continuously. However, most of the robust methods for blood pressure monitoring are
either intermittent or invasive if continuous. Two commonly used BP recording methods
are the cuff-based oscillometric technique and arterial blood pressure (ABP) reading from
the radial artery through cannulation. Both of these methods are reliable; the former is
non-invasive albeit intermittent whereas the latter is continuous but invasive [9]. A few
calibration-based techniques have been developed to detect BP non-invasively, such as the
photoplethysmography (PPG)-based finger-clamp method [10] and the applanation tonom-
etry method [11]. Calibration is required for both of these non-invasive techniques since
they do not readily provide the correct BP values or ABP signals. This type of calibration or
mapping can also be useful in measuring BP readings [12] or ABP waveforms [13] from
PPG if they are recorded simultaneously. Recently, a few studies have been reported where
various machine learning (ML) and statistical techniques are used to predict BP from non-
invasively collected PPG signals. Some studies used traditional ML (regression) models,
such as support vector regressor (SVR) [14], adaptive boosting (AdaBoost) [12], random
forest [15], gradient boosting (GradBoost) [16], Gaussian process regression (GPR) [17],
artificial neural network (ANN) [18–21], recurrent neural network (RNN)-based long short-
term memory (LSTM) [22,23], etc. on small or medium-sized datasets to predict BP from
PPG alone or a combination of PPG and electrocardiogram (ECG).

In recent years, convolution neural network (CNN)-based deep learning (DL) tech-
niques have been utilized to solve complex problems on large datasets in 1D (e.g., Signals),
2D (e.g., images, and even in 3D (e.g., videos) settings. However, there are not many deep
learning-based approaches in the literature for BP estimation. Slapnicặr et al. [24] predicted
BP from PPG, its derivatives (1D signals) and their respective spectrograms (2D signals)
using a hybrid pipeline containing both 1D and 2D CNNs termed as “Spectro-Temporal
ResNets”. Recently, Athaya et al. [25] used modified U-Net [26] architecture for PPG to
ABP signal to signal translation. On the other hand, Ibtehaz et al. [13] in their work used
two CNN networks in sequence (U-Net and MultiResUNet [27]) for PPG to ABP signal
translation but could not reach Grade A [28] for systolic blood pressure (SBP) prediction.
Therefore, based on the current literature, there is still scope for significant improvement in
BP predictions using deep learning models.

U-Net is an encoder-decoder-based deep CNN architecture that was originally used for
image (2D) segmentation. Many studies used U-Net to perform tasks, such as biomedical
image segmentation [29], shape regeneration [30], road shape extraction from satellite
maps [31], etc. A good number of studies tried to design special-purpose variations
of U-Net such as U-Net++ [29], nnu-Net [32], Ternausnet [33], Wave-U-Net [34], etc. for
various applications, mostly in 2D settings. There is also a 3D version of U-Net [35] designed
for tackling three-dimensional problems. In the 1D domain, apart from the PPG to ABP
signal translation discussed earlier, there have also been works in speech enhancement [36],
echo cancellation [37], heartbeat detection, etc. Thus, the U-Net architecture has been
modified in various ways for solving different types of problems and in a few cases, a
shallow U-Net performed better than a deeper version. For example, Wu et al. [38,39]
utilized a shallow three-layer version of U-Net used for shadow detection as part of a scene
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understanding task. On the other hand, to the best of our knowledge, the U-Net architecture
has rarely been used just for feature extraction while acting as an autoencoder. These
studies [37,40–42] tried to extract features from PPG and/or ECG signals using generic
CNNs and used those features on LSTM models to predict BP. Features were extracted
separately from PPG and ECG and both were put into LSTM networks to separately predict
SBP and diastolic blood pressure (DBP). In this study, we followed a similar approach but
for feature extraction, we utilized the encoder portion of the U-Net. A densely connected
multi-layer perceptron (MLP) layer was added to the end of the encoder for extracting the
network learned features. This lightweight version of the U-Net can easily be applied to
devices in a (computing and memory) resource-constrained setting. Thus, the novelty of
this work lies not only in the feature extraction pipeline but also in using the shallowest
version of U-Net on a large dataset for extracting features optimizing the BP prediction
process. To the best of our knowledge, our extracted latent features from the shallowest
U-Net have outperformed most of the BP prediction techniques found in the literature
so far.

2. Materials and Methods
2.1. Datasets

In this study, two different datasets have been used, which are briefly described below.

2.1.1. Multi-Parameter Intelligent Monitoring in Intensive Care II (MIMIC-II) Dataset from
the UCI Repository

The Cuff-Less Blood Pressure Estimation Dataset [14] from the UCI Machine Learning
Repository [43], termed as the “UCI Dataset”, has been used in this study. The UCI
Dataset is a filtered and processed version of the Multi-Parameter Intelligent Monitoring in
Intensive Care II (MIMIC-II) Waveform database [44,45]. The MIMIC-II Waveform database
contains records of continuous high-resolution physiologic waveforms and minute-by-
minute numeric trends of physiologic measurements, such as ABP, PPG, cerebral perfusion
pressure (CPP), central venous pressure (CVP), pulmonary arterial pressure (PAP), so on
and so forth. The UCI Dataset contains 12,000 instances of simultaneous PPG, ABP, and
ECG data of 942 patients extracted from the MIMIC-II Waveform database with a sampling
rate of 125 Hz. The 12,000 instances of the UCI Dataset were uniformly divided into four
parts, each part containing 3000 instances, and the data are available in MATLAB file
format (“.mat”). Even though the MIMIC-II database has data from a large number of
patients, only 942 patients had all three PPG, ECG, and ABP signals simultaneously, which
is required for BP prediction in the proposed model. UCI Dataset was created with only
the MIMIC-II records where all three of PPG, ABP, and ECG data were present. While
creating the UCI Dataset, Kachuee et al. [14] performed some signal processing tasks, such
as smoothing all signals using a simple averaging filter, removing signals with unacceptable
human BP and heart rate (HR) values, getting rid of signals with severe discontinuities
and auto-correlating PPG signals for checking the similarity between successive pulses.
Therefore, these steps were not repeated in this study.

2.1.2. Ballistocardiogram (BCG) Dataset

The external validation dataset used in this work has been collected and shared recently
by Carlson et al. [46] (referred to as “BCG Dataset” in this paper). Several heart-driven
signals, such as ballistocardiogram (BCG), ECG, PPG, and ABP waveforms are available in
the dataset. Note that BCG waveforms of this dataset are not of any interest for this study.
Data were collected from 40 subjects (17 males and 23 females) with a sampling rate of
1000 Hz. The signals were digitized by the NI-9220 [47] device, which was used to gather
signals collected by various data acquisition devices. The ABP signals in this dataset were
non-invasively collected from the reconstructed brachial artery pressure (reBAP) signals,
which were collected using Finometer Pro [48] from Finapres Medical Systems. The ABP
signals were represented in terms of volts following a normalizing scale of 100 mmHg/volt.
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The BCG Dataset is also available in the “.mat” file format. An overview of both datasets is
provided in Table 1.

Table 1. Overview of the datasets (after pre-processing).

Datasets BP Parameters Minimum Maximum Mean Standard
Deviation

UCI Dataset
SBP 80.026 189.984 132.609 21.703
DBP 50.000 119.927 63.705 9.978
MAP 57.941 149.062 87.228 12.737

BCG
Dataset

SBP 80.313 186.641 124.535 15.237
DBP 43.899 96.829 65.011 9.180
MAP 62.975 128.391 86.878 10.046

As seen from Table 1, the UCI dataset, even though larger, is more deviated, especially
for SBP. On the other hand, DBP and mean arterial pressure (MAP) of the signals in the
UCI dataset vary within a much wider range than those in the BCG dataset. The sampling
rate of the signals in the BCG dataset was resampled at 125 Hz from 1000 Hz to maintain
harmony with the UCI dataset signals. So, the duration of a sample signal was about
(1024/125) ≈ 8.192 s. This means that the total duration of the data collected from the UCI
dataset was about 456 h and was around 4.26 h for the BCG dataset.

2.2. Data Pre-Processing

At first, the signal was segmented to 1024 samples from the UCI dataset while preserv-
ing the original sampling rate of 125 Hz. Signals from the UCI dataset suffer from severe
baseline drift in many instances. Therefore, baseline wandering was removed before nor-
malizing the signals. After fixing the baseline drifts and properly normalizing the signals,
the first two derivatives of PPG were derived and stored along with their corresponding
PPG signals to be used as predictors alongside PPG and ECG. Before compiling the whole
dataset, highly distorted signals were removed. Signal pre-processing was performed in
MATLAB (version R2020a). The whole data pre-processing procedure is shown in Figure 1.
The BCG dataset was also pre-processed similarly. However, before pre-processing, their
sampling frequency was down-sampled from 1000 Hz to 125 Hz to ensure consistency
with the UCI dataset. The ABP signals in the BCG dataset were denormalized by multi-
plying with a factor of 100 since they were normalized and stored by maintaining a scale
of 100 mmHg/volt. To better understand the algorithms used for data pre-processing,
pseudo-codes were used to explain each process in detail. The MATLAB built-in functions
used in the code have been written in italics in the pseudo-codes.

Baseline drift correction: this was undertaken using the built-in functions of MATLAB
(‘movmin’ [49], ‘polyfit’ [50], and ‘polyval’ [51]). At first ‘movmin’ or moving minimum
function was used to find an array of estimated minimum points acting as a baseline
approximation for the waveform. Afterward, the ‘polyfit’ function was used to fit a higher-
order polynomial along with the estimated points and ‘polyval’ was used to formulate
the polynomial based on the ‘polyfit’ result, which is the estimated baseline. Then, the
baseline was deducted from the raw signal to achieve the baseline drift corrected signal.
The Algorithm 1 pseudo-code for baseline drift correction is shown below.
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Algorithm 1 Pseudo-Code: Baseline Drift Correction

Inputs: X (Segmented Raw Signal)
1.1.1. Check X is a Row Vector else X = Transpose (X)
1.2.1. Initialize Time_Vector = Transpose (linspace(1, length(X), length(X)))
2.1.1. try:
2.2.1. [peaks, peak_locations] = findpeaks(X)
2.3.1. Initialize peak_dist
2.4.1. for i = 1: (length(peak_locations) − 1)
2.4.2. peak_dist(i) = peak_locations(i + 1) − peak_locations(i)
2.4.3. end for
2.5.1. median_peak_dist = median (peak_dist)
2.6.1. Baseline = movmin (X, median_peak_dist)
2.7.1. P = polyfit (Time_Vector’, Baseline, round(median_peak_dist))
3.1.1. except:
3.2.1. Initialize polynomial_order
3.3.1. P = polyfit (Time_Vector’, X, polynomial_order)
4.1.1. Baseline_Fit = polyval (P, Time_Vector’)
4.2.1. Y = X – Baseline_Fit
4.3.1. Y = Y – min(Y)
4.4.1. X_amp = max(X) − min(X)
4.5.1. Y_amp = max(Y) − min(Y)
4.6.1. Y = Y*(X_amp/Y_amp)
Outputs: Y (Baseline Corrected Signal)

Sensors 2022, 22, x FOR PEER REVIEW 5 of 24 
 

 

 
Figure 1. Flowchart representing the data pre-processing pipeline for the UCI Dataset. The pipeline 
for the Ballistocardiogram (BCG) Dataset is almost identical except the ABP signals were denormal-
ized first by multiplying with the normalizing factor of 100. 

Baseline drift correction: this was undertaken using the built-in functions of 
MATLAB (‘movmin’ [49], ‘polyfit’ [50], and ‘polyval’ [51]). At first ‘movmin’ or moving 
minimum function was used to find an array of estimated minimum points acting as a 
baseline approximation for the waveform. Afterward, the ‘polyfit’ function was used to 
fit a higher-order polynomial along with the estimated points and ‘polyval’ was used to 
formulate the polynomial based on the ‘polyfit’ result, which is the estimated baseline. 
Then, the baseline was deducted from the raw signal to achieve the baseline drift corrected 
signal. The Algorithm 1 pseudo-code for baseline drift correction is shown below. 

Algorithm 1 Pseudo-Code: Baseline Drift Correction 

Inputs: X (Segmented Raw Signal) 
1.1.1. Check X is a Row Vector else X = Transpose (X) 
1.2.1. Initialize Time_Vector = Transpose (linspace(1, length(X), length(X))) 
2.1.1. try: 
2.2.1.       [peaks, peak_locations] = findpeaks(X) 
2.3.1.       Initialize peak_dist 
2.4.1.       for i = 1: (length(peak_locations) − 1) 
2.4.2.           peak_dist(i) = peak_locations(i + 1) − peak_locations(i) 
2.4.3.       end for 
2.5.1.       median_peak_dist = median (peak_dist) 
2.6.1.       Baseline = movmin (X, median_peak_dist) 
2.7.1.       P = polyfit (Time_Vector’, Baseline, round(median_peak_dist)) 
3.1.1. except: 
3.2.1.        Initialize polynomial_order 
3.3.1.        P = polyfit (Time_Vector’, X, polynomial_order) 
4.1.1. Baseline_Fit = polyval (P, Time_Vector’) 
4.2.1. Y = X – Baseline_Fit 
4.3.1. Y = Y – min(Y) 
4.4.1. X_amp = max(X) − min(X) 
4.5.1. Y_amp = max(Y) − min(Y) 
4.6.1. Y = Y*(X_amp/Y_amp) 

Figure 1. Flowchart representing the data pre-processing pipeline for the UCI Dataset. The pipeline
for the Ballistocardiogram (BCG) Dataset is almost identical except the ABP signals were denormal-
ized first by multiplying with the normalizing factor of 100.

Normalization: PPG and ECG signals were z-score normalized, followed by a range
normalized between 0 and 1 per segment (Equation (1)) while ABP waveforms were min-
max normalized globally, in terms of the minimum and maximum of the ABP waveforms
across the whole dataset (Equation (2)).

PPGi(normPPG) = range
((PPGi − µi

σi

)
, [0 1]

)
(1)
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ABP signals were not range normalized between 0 to 1 to retain their relative amplitude
feature (i.e., BP levels) which was found to be helpful during BP prediction. Mentionable
that the bold quantities in the equations mean signals, similar to vectors.

ABPi(normBP) =
ABPi

SBPGlobal Maximum
(2)

Derivatives of PPG: according to literature, the first and second derivatives of PPG
also provide valuable information or features while predicting BP. They are called various
names such as PPG’, PPG” or Velocity of PPG (VPG), Acceleration of PPG (APG), or FDPPG
(First Derivative of PPG), SDPPG (Second Derivative of PPG) [52–54] (Figure 2). To find
the VPG and APG from PPG, MATLAB’s ‘diff’ function was used. However, a finite “Step
Size” [55] of the “diff” function induced distortions in the derived signals which kept
increasing for higher-order derivatives. To remove these high-frequency distortions, the
signals need to be filtered in each stage, which was done using MATLAB’s “designfilt”
function [56,57]. The cutoff frequencies for the bandpass filter were set carefully to pass
through important frequency components related to PPG derivatives while attenuating
low and high-frequency distortions. However, applying a filter on the signals creates some
delay which deteriorates along with the derivative order (APG > VPG). MATLAB’s built-in
function ‘grpdelay’ [58] was used to find the average filter delay. Then the signals were
moved to the left by the amount of their respective delay. Adjustment of the length of
original PPG signals was undertaken to ensure the length of VPG and APG signals after
the delay to maintain the length of the signals at 1024. The Algorithm 2 pseudo-code for
deriving PPG derivatives is shown below.

Algorithm 2 Pseudo-Code: Deriving PPG Derivatives

Inputs: PPG
1.1.1. Initialize Bandpass Filter Parameters (Filter Order, Passband, Stopband,
Sampling Frequencies)
2.1.1 bandpass_filter = designfilt(Bandpass Filter using Filter Parameters)
2.2.1 delay = mean(grpdelay(bandpass_filter))
3.1.1 Initialize Sample_Num = linspace(1, length(PPG), length(PPG))
3.2.1 dt = Sample_Num(2) − Sample_Num(1)
3.3.1 PPG = Normalize(PPG)
3.4.1 VPG = Normalize(bandpass_filter(PPG)/dt)
3.5.1 APG = Normalize(bandpass_filter(VPG)/dt)
3.6.1 PPG = PPG(1:end−2*delay)
3.7.1 VPG = VPG(delay+1:end)
3.8.1 APG = APG(2*delay+1:end)
Outputs: PPG, VPG, APG

Removing bad signals: the signal samples extracted from the UCI dataset contains
many highly distorted signals that can potentially affect the performance of the deep
learning model significantly as the network tries to learn from them. Hence, the following
types of samples were removed from the dataset: ABP signals with extreme SBP and DBP
values, blank samples, and signals which exceed a certain distortion threshold. In particular,
ABP signals with SBP values smaller than 80 and greater than 190, DBP values greater than
120 and smaller than 50, and ABP signals which had a BP range (SBP–DBP) less than 20 or
more than 120 were removed since it was observed that apart from some extreme cases,
highly distorted signals normally had such a BP range. Under this scheme, around 2% of
signals were removed from the datasets. After performing some signal processing and
taking the derivatives, a few samples became blank due to being extremely distorted; these
were also removed. There are levels of distortions for various samples and a sample remains
acceptable up to a certain level of distortion. As shown in Supplementary Figure S1, for
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ABP and PPG signals, the distorted samples had two main traits, namely highly non-
uniform peaks either in terms of distance or height, and double peaks. Standard deviation
(STD) of the peak-to-peak distances and peak prominences (relative height) were observed
to detect this anomaly and signals were sorted out based on a threshold of deviation.
This threshold was set after performing trial and error by manually observing more than
1000 samples. The Algorithm 3 pseudo-code for removing bad signals is shown below.

Algorithm 3 Pseudo-Code: Deriving PPG Derivatives

Inputs: PPG, ABP, Signal_Length
1.1.1 Normalize both signals
1.2.1 PPG_Size = size(PPG)
1.3.1 ABP_Size = size(ABP)
1.4.1 if (PPG_Size(1) or ABP_Size(1)) > 1 then Transpose
2.1.1 Initialize Time_Vector = linspace(1, length(PPG), length(PPG))
2.2.1 [peaks_PPG, peak_locations_PPG] = findpeaks(PPG)
2.3.1 num_peaks_PPG = length(peaks_PPG)
2.4.1 std_peaks_PPG = std(peaks_PPG)
2.5.1 std_peaks_dist_PPG = std(peak_locations_PPG)
2.6.1 [peaks_ABP, peak_locations_ABP] = findpeaks(ABP)
2.7.1 num_peaks_ABP = length(peaks_ABP)
2.8.1 std_peaks_ABP = std(peaks_ABP)
2.9.1 std_peaks_dist_ABP = std(peak_locations_ABP)
3.1.1 Initialize thresholds
3.2.1 if (std_peaks_PPG, std_peaks_dist_PPG, std_peaks_ABP, std_peaks_dist_ABP,
num_peaks_PPG, num_peaks_ABP) satisfies thresholds then Decision = 0
3.2.2 else Decision = 1
Outputs: Decision (0 or 1)

Sensors 2022, 22, x FOR PEER REVIEW 8 of 24 
 

 

 
Figure 2. Snapshot of five signals (photoplethysmography (PPG), velocity of PPG (VPG), accelera-
tion of PPG (APG), electrocardiogram (ECG), and arterial blood pressure (ABP)) from a segment of 
the UCI dataset after pre-processing. 

Histograms of ABP and SBP in Figure 3a,c can be compared for the signal distribution 
before and after the signal pre-processing. The box plots in Figure 3 show that after re-
moving the low-quality signals, the number of outliers decreased, and a greater portion 
of signals entered into the interquartile range. Removing these outliers might improve the 
performance of the network. The median and standard deviation have changed margin-
ally as the signal distribution is spreading more. Around 25% of both train and test signals 
were removed through this “bad signal removal” scheme. It is worth mentioning that 
most other researchers also worked on ABP signals of a certain BP range alongside putting 
on other constraints to boost the network performance [13,22–25]. Even though a consid-
erable number of segments were removed, due to the use of more than one channel and 
considering the whole UCI version of the MIMIC-II dataset, a comparatively larger num-
ber of segments were available for training, validation, and testing. 

 
(a) 

Figure 2. Snapshot of five signals (photoplethysmography (PPG), velocity of PPG (VPG), acceleration
of PPG (APG), electrocardiogram (ECG), and arterial blood pressure (ABP)) from a segment of the
UCI dataset after pre-processing.

Histograms of ABP and SBP in Figure 3a,c can be compared for the signal distribu-
tion before and after the signal pre-processing. The box plots in Figure 3 show that after
removing the low-quality signals, the number of outliers decreased, and a greater portion
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of signals entered into the interquartile range. Removing these outliers might improve the
performance of the network. The median and standard deviation have changed marginally
as the signal distribution is spreading more. Around 25% of both train and test signals
were removed through this “bad signal removal” scheme. It is worth mentioning that most
other researchers also worked on ABP signals of a certain BP range alongside putting on
other constraints to boost the network performance [13,22–25]. Even though a considerable
number of segments were removed, due to the use of more than one channel and consid-
ering the whole UCI version of the MIMIC-II dataset, a comparatively larger number of
segments were available for training, validation, and testing.
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2.3. Rationale behind This Study

The rationale behind this study was to extract an effective set of features from a very
large dataset containing PPG, ECG, and ABP signals which can be used to reliably predict
BP. While studies mostly use PPG and ECG signals for BP prediction or extracting features
directly, we propose to use an approach inspired by the power of autoencoders to extract the
latent features automatically and check for the performance. In traditional autoencoders,
usually, the input is given to the network to reconstruct it through a latent space compact
transformation. This enforces the model to learn the distinctive attributes of the input and
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thus has shown great success in feature extraction. Therefore, an obvious idea would be
to train an autoencoder using PPG and ECG signals both as inputs and outputs. This will
provide us with a latent space aware of the diverse patterns of the PPG and ECG signals.
Then, we could simply use this feature representation to train regressor models and predict
BP by keeping BP values as labels. However, despite that this approach should prove
a concise set of attributes of the PPG and ECG signals, this feature set may still not be
suitable for BP prediction. On the other hand, from the literature, there have been many
studies in which deep convolutional (CNN) networks were trained to extract features from
PPG and/or ECG against BP labels and perform regression in the topmost layer to predict
BP [24,25]. However, BP is used only as the label in these cases limiting the potential of
utilizing the ABP waveform itself to predict BP. To utilize ABP features alongside PPG and
ECG, we employed a different approach as follows. We trained the autoencoder with PPG
and ECG signals as input and ABP waveform as the output anticipating that the network
will inherently learn to map the ECG, PPG signals to the ABP waveforms. Consequently,
through this process, the network is expected to map the various patterns of the PPG and
ECG signals to the corresponding patterns in the ABP signal. Therefore, we hypothesize
that by applying the aforementioned training mechanism of the autoencoder network, we
can extract features from the PPG and ECG signals responsible for the changes in ABP. As
a result, a regressor model, trained with these features, will likely be able to predict blood
pressure better.

2.4. Pipeline for Blood Pressure (BP) Prediction

The BP prediction pipeline consists of mainly two sections, namely the U-Net based
autoencoder for feature extraction from the raw signals, and the machine learning-based
regressor to perform regression on the extracted features for BP prediction. The complete
pipeline is shown in Figure 4.
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2.4.1. Feature Extractor

The U-Net-based autoencoder is used for extracting a feature map from the raw input
data. The dimensionality of the feature map may vary depending on the network setup
(discussed elaborately in the experiments section). The general training setup for the
U-Net based feature extractor (autoencoder) consisted of a batch size = 64, number of
epochs = 100, patience (stopping criterion) = 15, mean squared error (MSE) as the loss
function, Adam as the optimizer, and MAE as the metric being monitored. Batch size,
number of training epochs, and the patience value were varied a few times initially to
determine their optimal values.
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2.4.2. Regressor

Extracted features were regressed using traditional machine learning (ML) techniques,
such as k-nearest neighbor (KNN), SVM, stochastic gradient descent (SGD), various en-
semble techniques (e.g., adaptive boosting, gradient boosting, extreme gradient boosting
(XGBoost 1.5.2, and random forest), and artificial neural network (ANN)-based MLP. For
all these ML algorithms, various parameters were tweaked and tuned to get the optimum
outcome. As shown in Supplementary Table S2, for MLP, Adam was chosen the solver,
ReLU as the activation function, Invscaling as the learner, alpha = 0.0001, batch size = auto,
max iteration = 500 and hidden layer size = 100.

3. Experiments

The primary aim of the experiments was to find the best performing U-Net archi-
tecture which can be used as an autoencoder for optimum feature extraction. Later, the
same pipeline can be used to evaluate external datasets. Therefore, mainly two types of
experiments were performed in this study as discussed below.

3.1. Experiment 1 (Train and Test on UCI Dataset)

The UCI dataset (12,000 instances from 942 subjects) was originally divided into four
equal ‘parts’. The first three parts of the UCI dataset were combined to make the train set
(75% of the dataset) and the fourth part was taken as an independent test set (25% of the
dataset). These four parts being independent in terms of subjects (i.e., no overlap of subject
data across these parts). During training, a randomly selected 20% of the training set was
used for validation. Four combinations of the four input signals, namely PPG, ECG, VPG,
and APG were used in this experiment, while the target signal was ABP. Total predictor
signal segments used for the four-channel approach (PPG, VPG, APG, and ECG as the four
predictor signals) were 147,116 while the test set size was 53,043, as shown in Table 2.

Table 2. Description of training and testing sets for Experiment 1.

No. of Channels Channels Target Total Samples in the
Train Set

Total Samples in the
Test Set

1 PPG ABP 147,116 53,043

2 PPG, ECG ABP 147,116 53,043

3 PPG, VPG, APG ABP 147,116 53,043

4 PPG, VPG, APG, ECG ABP 147,116 53,043

Various sub-experiments were performed in Experiment 1 to determine the best U-Net
architecture as an autoencoder (at least for this study). Their respective MAE was recorded
in each case.

Variable depth of the encoder: the depth (number of levels) of the U-Net was varied
from 1 to 4 to determine whether the depth of the architecture had any effect on the
extracted latent features from the autoencoder.

Variable width of the encoder and number of features: the width of the encoder, which
represents the number of kernels or filters present in the input layer, was varied from
32 to 256.

Variable kernel size: the kernel size was varied from 3 to 11 to see the effect of Kernel
size on performance.

Variable number of channels: four combinations of the four predictor signals were
used for BP prediction. For one channel: only PPG, for two channels: PPG and ECG, for
three channels: PPG and its two derivatives, and for four channels: all four types of signal
were utilized.
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Experiments on regression techniques: the extracted features were used to train some
traditional Machine Learning regression techniques, namely, MLP, SGD, SVR, XGBoost,
GradBoost, AdaBoost, k-nearest neighbor, and random forest to predict BP.

BP Prediction from PPG-to-PPG Feature Mapping: Apart from the primary approach
of this study which aimed at mapping PPG and ECG features to ABP features for BP
prediction, an additional experiment was performed aiming at predicting BP by mapping
PPG (or PPG and ECG) to PPG i.e., PPG was taken as the target signal instead of ABP while
using the same BP labels and ground truths. The significance of this study lies in taking the
ABP signal completely out of the equation which would help avoid acquiring simultaneous
ABP data during data acquisition and BP can be predicted from PPG alone.

3.2. Experiment 2 (Validating on External “BCG Dataset”)

The external BCG dataset was investigated using two different methods. Firstly, the
model trained on the whole UCI dataset is evaluated on the full BCG dataset (Method 1).
Secondly, an exercise similar to Experiment 1 was performed on the UCI dataset, i.e., the
model was trained using the BCG dataset through 5-Fold Cross-Validation (Method 2).

Train on UCI, test on BCG Dataset (Method 1): in this experiment, the BCG Dataset was
tested against a model trained on the whole UCI Dataset. The outcome from this experiment
proved the performance and generalizability of a model trained using the proposed shallow
U-Net-based autoencoder on a completely unknown dataset. The training and testing sets
used for this experiment are described in Table 3.

Table 3. Description of training and testing sets for Experiment 2 (Method 1).

No. of Channels Channels Target Total Samples in the
Train Set from UCI

Total Samples in the
Test Set from BCG

1 PPG ABP 200,159 1872

2 PPG, ECG ABP 200,159 1872

3 PPG, VPG, APG ABP 200,159 1872

4 PPG, VPG, APG, ECG ABP 200,159 1872

Five-fold CV on BCG Dataset (Method 2): the BCG dataset was divided into train-test
fold (80:20) and validated using a five-fold cross-validation approach. The training set, in
this case, contained 1498 samples while the test set contained 374 samples (Table 4).

Table 4. Description of training and testing sets for Experiment 2 (Method 2).

No. of Channels Channels Target Total Samples in the
Train Set

Total Samples in the
Test Set

1 PPG ABP 1498 374

2 PPG, ECG ABP 1498 374

3 PPG, VPG, APG ABP 1498 374

4 PPG, VPG, APG, ECG ABP 1498 374

3.3. Evaluation Metrics

Primary Evaluation Metric:
Mean absolute error (MAE) [59] was used as the primary evaluation metric for this

study. For example, for predicted values ŷ = [y1, y2, y3, . . . , yn] and ground truth values
y = [y1, y2, y3, . . . , yn], MAE is defined as in Equation (3) [57]:
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MAE =
∑n

i=1|yi − ŷi|
n

(3)

British Hypertension Society (BHS) Standard:
The BHS introduced a structured protocol [60] to act as a standard for assessing BP

measuring devices and methods which has been frequently used in the literature as a metric.
The BHS standard evaluates the performance based on absolute error while classifying the
outcomes mainly into three categories, namely Grade A, B, and C. The grades are provided
by measuring what percentage of the prediction absolute errors fall under (less than or
equal to) 5 mmHg, 10 mmHg, and 15 mmHg, respectively. It is worth mentioning that
for an algorithm or pipeline to obtain a certain grade, it has to satisfy the criteria of all
three categories. There is also a Grade D for studies that fail to meet the requirements for
Grade C [60].

Association for the Advancement of Medical Instrumentation (AAMI) Standard:
AAMI has proposed a similar standard [61] as BHS for evaluating BP measuring

devices and algorithms. According to this standard, BP measuring systems should have
a mean error (ME) and STD of magnitude less than or equal to 5 mmHg and 8 mmHg,
respectively. Moreover, the number of subjects to be evaluated should be greater than or
equal to 85.

Statistical analyses:
Mainly two types of statistical analysis were performed in this study, namely linear

regression and the Bland–Altman plots [62]. The linear regression plots show the correlation
between the ground truths and the predictions and can be represented by Equation (4) [63].

Yi = β0 + β1Xi (4)

Here, Yi and Xi are the dependent and independent variables, respectively. β0 is the
offset or the y-intercept and β1 is the slope. The most positive correlation results in a
slope of 1, which in turn varies between −1 and 1. In this study, we also represent the
linear correlation performance with the Pearson correlation coefficient (PCC). PCC is the
covariance of the two variables divided by the product of their standard deviations, as
shown in Equation (5) [63].

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(5)

Here, it is necessary to mention that the PCC formula for an entire population and a
sample of the population is different due to considering population and sample means,
respectively, during computation. In this case, PCC formulae for a sample have been used
since the dataset is a sample of the originally collected dataset in MIMIC-II. On the contrary,
we also computed and plotted the Bland–Altman plots to show the difference between the
ground truths and the predictions over the whole BP range, which cannot be reflected upon
properly from normal correlation plots.

4. Results
4.1. Experiment 1: Train and Test on UCI Dataset

Several different studies were carried out in Experiment 1 as mentioned earlier to
identify the best network architecture with optimized parameters. In what follows, we will
report the results of these studies.

Variable depth of the encoder: as shown in Table 5, the MAE for BP prediction
increased as the depth of the encoder increased. Based on this direct correlation, we can
conclude that as the encoder became deeper, it increasingly looked into complex features
of the signals and the network became lesser efficient in capturing peripheral features such
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as SBP and DBP. For this reason, the shallowest version of U-Net as an autoencoder model
performed best for BP prediction.

Table 5. Mean absolute error (MAE) of BP prediction for variable encoder depth.

Fixed Parameters Encoder Levels
MAE

SBP DBP

Encoder Type: U-Net 1 2.333 0.713
Encoder Width: 128 2 3.169 1.099

Kernel Size: 3 3 3.763 1.243
No. of Channels: 4

4 4.416 1.419No. of Extracted Feature: 1024
Regressor: MLP

Variable width of the encoder and number of features: as shown in Figure 5, the width
of the input layer of the encoder varied from 32 to 256. The best performance was recorded
at 128. The performance improved until 128 then started to drop again as the network
becomes very wide and heavier than necessary. Here, the fixed parameters were encoder
type, encoder depth, kernel size, number of channels, and regressor type.
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Figure 5. Heatmap depicting MAE for SBP (left) and DBP (right) prediction while varying encoder
width and number of extracted features. Here, the color scale varies from red (high performance) to
green (low performance).

The U-Net-based autoencoder was used to extract features from both train and test sets.
So, the optimal number of features to be extracted is also crucial to investigate. Figure 5 also
reveals that the performance gets better until 1024 features, then start dropping. There can
be a misconception that more features will provide better accuracy indefinitely. But in this
case, it was noticed that the performance does not increase, but rather drops slightly when
the feature number is increased from 1024 to 2048 and the process becomes computationally
expensive.

Variable number of channels: it can be noticed from Table 6 that performance improves
by around 45% when two or three channels are used instead of using only PPG. The
performance of the two and three-channel approaches are similar, while the performance
improves again by around 25% when all four signals are used in combination. The same
pattern was seen for both SBP and DBP even though SBP performed worse than DBP in all
cases, which is a typical observation from the literature as well [12–16,18,20–27,64].

One significant outcome from this experiment is that PPG and its first two derivatives
perform similarly to PPG alone with ECG for BP prediction. Therefore, ECG can be replaced
just by deriving two derivatives of the PPG signal and supplying them as two additional
channels in U-Net. Removing ECG while maintaining the performance greatly reduces the
complexity of the test setup.
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Table 6. MAE of BP prediction for variable channels.

Fixed Parameters No. of Channels
MAE

SBP DBP

Encoder Type: U-Net 1 4.971 1.361
Encoder Depth: 1 2 2.513 0.825

Encoder Width: 128 3 2.739 0.960
Kernel Size: 3

4 2.333 0.713No. of Extracted Feature: 1024
Regressor: MLP

Variable kernel size: the kernel size, k = 3 performed best as the kernel size was varied
from 3 to 11. The performance dropped as the kernel size was increased (Table 7).

Table 7. MAE of BP prediction for variable kernel or filter size.

Fixed Parameters Kernel Size
MAE

SBP DBP

Encoder Type: U-Net 1 2.387 0.876
Encoder Depth: 1 3 2.333 0.713

Encoder Width: 128 5 2.503 0.949
No. of Channels: 4 7 2.900 0.888

No. of Extracted Feature: 1024 9 3.421 1.568
Regressor: MLP 11 4.544 1.388

Based on these experiments, the best U-Net architecture as an autoencoder is shown
in Figure 6 along with annotations for all parameters. Here, in the bottom layer of the
U-Net, an extra fully connected dense layer was inserted to extract features. The number
of parameters in the dense layer depends on the CNN block before it and the number of
features to be extracted. For example, while extracting 1024 features, the size of the dense
layer was (512 × 128 × 1024) = 67108864, which added up to the size of the whole model.
It is worth mentioning that the dense layer could be placed between CNN blocks of 512 by
256 which would double the number of parameters (512 × 256 × 1024) but doing it did not
improve the performance.
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Figure 6. Architecture of the shallow U-Net model for feature extraction.

Experiments on regression techniques: the extracted features from the best autoen-
coder architecture, were trained using some traditional machine learning regression tech-
niques to predict BP. As is evident from Table 8, MLP outperformed other classical machine
learning techniques.
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Table 8. MAE of systolic blood pressure (SBP) and diastolic blood pressure (DBP) for different
machine learning (ML) techniques in Experiment 1.

Fixed Parameters Regressor Algorithm MAE for SBP MAE for DBP

Encoder Type: U-Net
Encoder Depth: 1

Encoder Width: 128
Kernel Size: 3

No. of Channels: 4
No. of Extracted Feature: 1024

MLP 2.333 0.713

GradBoost 5.837 1.418

SGD 5.945 2.261

SVM 5.980 2.269

XGBoost 6.089 1.429
K-Nearest Neighbor 6.543 1.510

AdaBoost 8.584 2.234

BP prediction from PPG-to-PPG feature mapping: from Supplementary Table S1, it can
be seen that the PPG-to-PPG approach to predict BP was not very successful, at least using
this pipeline, due to lower correspondence between BP values and PPG patterns. MAE
for DBP and SBP prediction was around 7.7 and 17.1, respectively. This mini-experiment
indirectly ascertained the robustness of the proposed pipeline in predicting BP by exploiting
the relationship between BP values and corresponding ABP waveform patterns.

BHS Standard:
The criteria of the three grades along with the model performance of this study are

presented in Table 9. From Table 9, it can be seen that with the developed pipeline, we have
achieved Grade A for both SBP and DBP. For DBP prediction, in particular, almost 100% of
the signals met the Grade A criterion.

Table 9. Evaluation of BP prediction in Experiment 1 in terms of British Hypertension Society
(BHS) Standard.

Cumulative Error Percentage

≤5 mmHg ≤10 mmHg ≤15 mmHg

Our Results
SBP 92.02% 99.18% 99.85%
DBP 99.01% 99.91% 100.0%

BHS Metric
Grade A 60% 85% 95%
Grade B 50% 75% 90%
Grade C 40% 65% 85%

Histograms of MAE for SBP and DBP predictions for all of them are provided in
Supplementary Figure S2. It can be seen that for the DBP, the MAE for almost all predictions
is below or equal to 5 mmHg, which is the Grade A threshold. On the other hand, for SBP,
MAE of most of the predictions is below or equal to 5 mmHg, which is BHS Grade A, and
MAE of almost all predictions is below or equal to 10 mmHg, which is BHS Grade B.

AAMI Standard:
As presented in Table 10, the predictions from our pipeline meet both categories of the

AAMI standard keeping a large margin with the criteria.

Table 10. Evaluation of BP prediction in Experiment 1 in terms of Association for the Advancement
of Medical Instrumentation (AAMI) standard.

ME (mmHg) STD (mmHg) Number of Subjects

Our Results
SBP 0.09 0.94

942DBP −0.019 2.876

AAMI Standard ≤5 mmHg ≤8 mmHg ≥85
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Error measurements for all SBP and DBP predictions are plotted in Supplementary
Figure S3. It can be seen that the error is normally distributed following the Central Limit
Theorem. The SBP predictions are more widely distributed than the DBP predictions
implying their higher deviation and lower accuracy.

Statistical Analysis:
The response plots for SBP and DBP regression outcomes are shown in Figure 7a.

From the plots, a high correlation between the target values and the ground truths is
evident. The Pearson correlation coefficients for SBP and DBP predictions are 0.991 and
0.996, respectively, indicating a strong positive correlation between the target variables and
the ground truths for both cases. On the other hand, p-values of approximately 0.01 for
both cases indicate the statistical significance of the outcomes of this experiment when the
test set contains 53,043 samples. Thus, the null hypothesis, which was rejected, stated that
there is no relation between the predictions and the ground truths.
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Figure 7. (a) Regression plots for DBP (left) and SBP (right) predictions vs. respective ground truths;
(b) Bland–Altman plots for DBP (left) and SBP (right) predictions.

Figure 7b represents the Bland–Altman plots for DBP and SBP predictions, respectively.
The 95% significance level, which is shown by the dashed lines, spans the segment from
µ − 1.96σ to µ + 1.96σ, where µ and σ are population mean and standard deviation of the
distribution, respectively. For SBP and DBP, the means are 5.618 and 1.933, respectively
while the standard deviations are 2.89 and 0.894, respectively. Therefore, SBP and DBP
spanned within the range [−0.046:11.282] and [0.181:3.685], respectively. It can be under-
stood from Figure 7b that even though SBP samples deviated more (which is expected),
in both cases most error terms fell within the dash marked 5 mmHg range. The presence
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of outliers is not severe, in fact very low for DBPs. Another important observation from
the Bland–Altman plot is that the error magnitudes remain almost similar over the SBP
and DBP ranges. Therefore, the error performances of ABP signals with extreme BP values
(severe hypertension) were not affected by their high magnitude.

4.2. Experiment 2 (Validating on an External “BCG” Dataset)

In this experiment, after training on the whole pre-processed UCI dataset, the created
model has been tested on the whole (similarly pre-processed) BCG dataset. The main aim
was to prove the effectiveness of the shallow U-Net model trained on a large dataset on an
external dataset.

Performance Evaluation:
MAE for SBP and DBP was found to be 2.728 and 1.166, respectively, after testing

the whole BCG dataset with 1872 samples by the model trained on the whole UCI dataset.
MAE was slightly higher than the results obtained from Experiment 1 with the UCI dataset
but still better than any past study. The performance is excellent considering that the BCG
dataset is completely unknown compared to the MIMIC-II (UCI repository) from all aspects
of the data acquisition setup to data pre-processing. However, when there was no transfer
learning, the MAE for five-Fold CV on the BCG dataset was found to be 6.336 and 2.658 for
SBP and DBP, respectively. This can imply that the autoencoder requires a good amount
of nicely varying balanced datasets to extract quality features. Therefore, it is important
to train the proposed model using a large, general dataset that contains an ample number
of features. Note that BHS and AAMI metrics information for external validation have
not been provided since the number of patients in the BCG dataset does not suffice the
minimum requirements for these metrics.

4.3. Comparison with Existing Works

Various research groups around the world attempted to predict BP from PPG and
ECG signals separately or in combination using various machine learning techniques. It is
hard to directly compare and evaluate the performances of those studies due to multiple
factors such as the number of patients, data pre-processing, signal length, machine learning
models, so on and so forth. In Table 11, only papers reporting their error performance in
MAE have been reported. The entries in Table 11 are sorted in ascending order by the year
of publication of the respective papers. Some works have low performance in terms of BHS
and other metrics due to high standard deviation even though their error is low, which are
reported in Table 12.

Table 11. Comparison of past studies based on MAE performance.

Study Year
Published Dataset

Input
Signals Method

MAE (mmHg)

SBP DBP

Kurylayak et al. [18] 2013 MIMIC, 15,000 Pulsations PPG ANN 3.80 2.21

Wang et al. [19] 2018 MIMIC, 72 Subjects PPG ANN 4.02 2.27

Slapničar et al. [24] 2019 MIMIC, 510 Subjects PPG CNN 9.43 6.88

Miao et al. [40] 2019 1711 ICU and 30 Arrythmia
Patients ECG CNN + LSTM 7.10 4.61

Esmaelpoor et al. [39] 2020 MIMIC-II (200 Subjects) PPG CNN + LSTM 1.91 0.67

Ibtehaz et al. [13] 2020 MIMIC-II (942 Subjects) PPG CNN + CNN 5.73 3.45

Li et al. [22] 2020 MIMIC-II (3000 Records from
UCI Repository) PPG, ECG LSTM 4.63 3.15

Hsu et al. [21] 2020 MIMIC-II (9000 Records from
UCI Repository) PPG, ECG ANN 3.21 2.23
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Table 11. Cont.

Study Year
Published Dataset

Input
Signals Method

MAE (mmHg)

SBP DBP

Athaya et al. [25] 2021 MIMIC-II (100 Subjects) PPG CNN 3.68 1.97

Harfiya et al. [23] 2021 MIMIC-II (5289 Records from
UCI Repository) PPG LSTM 4.05 2.41

Baker et al. [65] 2021 MIMIC-III PPG, ECG CNN + LSTM 4.41 2.91

Rong et al. [66] 2021 MIMIC-II (UCI Repository) PPG CNN + LSTM 5.59 3.36

Sagirova et al. [64] 2021 512 Patients ECG, PPG

Qin et al. [41] 2021 MIMIC-II (1227 Records from
UCI Repository) PPG VAE 7.95 4.11

This Study 2021

MIMIC-II (942 Subjects–
12,000 Recordings from UCI

Repository) PPG, ECG CNN + ANN

2.333 0.713

MIMIC-II + BCG
(942 + 40 = 982 Subjects) 2.728 1.166

AAMI Standard ≤5

Note: It is important to mention that Hsu et al. [23] in their paper reported that they used 9000 subjects’ data for
BP prediction from the UCI repository, but it was 9000 out of 12,000 instances or recordings of data collected from
the MIMIC-II dataset. These are the data from 942 patients as reported by Kachuee et al. [14], the originator of
this dataset. A similar occurrence happened for the case of Harfiya et al. [25] where they reported 5289 signal
instances from the UCI repository as 5289 patients. In comparison, this study fully utilized all 12,000 instances.

Table 12. Comparison of past studies based on their performance of BHS metrics.

Study

SBP (%) in BHS Metrics DBP (%) in BHS Metrics

Grade A Grade B Grade C Attained
Grade Grade A Grade B Grade C Attained

Grade

Esmaelpoor et al. [39] 74 94 98 A 93 99 100 A

Ibtehaz et al. [13] 71 85 91 B 83 92 96 A

Li et al. [22] 60 80 89 B 77 96 100 A

Hsu et al. [21] 81 96 98 A 90 98 100 A

Athaya et al. [25] 76 94 99 A 94 99 100 A

Harfiya et al. [23] 71 94 99 A 91 99 100 A

Miao et al. [40] 50 76 90 B 66 90 97 A

Baker et al. [65] 68 90 97 A 83 96 99 A

Rong et al. [66] 54 87 94 B 83 95 98 A

Qin et al. [41] 59 86 95 B 82 96 99 A

This Study 92 99 99 A 99 ∼100 100 A

*%: The percentage of predicted signals falling within 5 (Grade A), 10 (Grade B), and 15 (Grade C) mmHg of their
respective ground truth signals, respectively.

Performance metrics such as MAE do not always show the complete picture of the
performance of a study. For this reason, many studies in this domain represent their
results in terms of BHS metrics. A comparison of BHS metrics of the current work with
some past studies is shown in Table 12. As can be seen, only a handful of very recent
studies could reach BHS Grade A for both SBP and DBP predictions. It is noticeable from
Tables 11 and 12 that even though some recent studies gained close or even better MAE
than this study, they have lower performance in BHS metrics due to high deviation in
the result (this can be further confirmed by comparing the respective AAMI metric). In
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terms of BHS, AAMI, and other metrics, our performance is the best so far, even with a
larger dataset than almost all of these studies in terms of total signal duration. Moreover,
the best performing shallow U-Net architecture proposed in this study as an autoencoder
is also very lightweight. For example, the level-4, general version of U-Net used by
Ibtehaz et al. [13] has approximately 10.5 million parameters without deep supervision
(and it is just one of the two CNN networks used in the pipeline, the other one being the
MultiResUNet [29]) while the shallow, level-1 U-Net model used for this experiment has
only around 0.55 million parameters, around 19 times lighter.

4.4. Conclusions

This study aimed at developing a novel pipeline for BP prediction from PPG and ECG
signals by experimenting with the U-Net architecture being used as an autoencoder to
extract optimal features. Instead of the raw signals, the extracted features were regressed
using machine learning techniques to predict SBP and DBP. The strength of this work lies in
how the U-Net architecture was utilized for feature extraction, thereby achieving very high
performance from the shallowest version of the U-Net architecture on the current largest
possible dataset from the UCI repository. The extracted features were efficient enough
in predicting the SBP and DBP, causing a significant performance boost compared to any
previous study. Our lightweight network can be helpful for deployment in a resource-
constrained setting. Independent test sets were used for evaluation purposes for both
experiments performed in this study proving the robustness of the proposed pipeline.
The dataset used for the second experiment was acquired through a completely differ-
ent process (e.g., ABP was recorded non-invasively), but still our model achieved high
performance when evaluated thereon thereby showing the generalizability thereof. This
strongly suggests that extracting features from this large dataset using the shallow autoen-
coder provided the trained model with enough generalizable features to perform robustly
even on external datasets. Some studies (e.g., [13]) reported that avoiding ECG signals
as the second predictor, while maintaining high performance, could help in simplifying
the hardware design, device implementation, and patient monitoring. The current study
showed that even without the ECG signal, the model can perform similarly by just using
the first two derivatives of PPG instead. MAE for SBP and DBP predictions with three
channels were 2.74 and 0.96, respectively, which is still one of the best performances so far
compared to the past studies. Therefore, a three-channel model (PPG and two derivatives)
can easily be used for deployment without any ECG signal provided that the model is
trained on a large general dataset (like the UCI dataset). One limitation in our approach
can be the presence of motion artifacts or baseline wandering in the acquired signal for a
mobile device such as wearables. Since the model was mostly trained on very clean signals
collected in a clinical setup, it could greatly affect the model performance. While baseline
wandering can be solved following many approaches (e.g., the one proposed in this paper)
and motion artifact can also be corrected in many ways, one of which is proposed in this
study for PPG signals [66]. Modern electronics have signal processing circuitry that can
easily preprocess signals to get rid of this type of distortions before using them for BP
prediction [67]. Moreover, for real-time, continuous BP monitoring, instead of the regressor,
LSTM can be used instead according to these recent studies [37,40–42]. This approach will
perform well given that the input features to the LSTM layers are optimal. To make the
model robust enough to deal with data from various sources, it can be retrained with new
data as a means of transfer learning. In conclusion, the proposed model and framework
can be suitable for deployment in remote monitoring servers and mobile applications for
real-time non-invasive BP monitoring applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22030919/s1, Figure S1: Some examples of bad signals auto-
matically detected by the algorithm and removed.; Figure S2: Histogram of the MAE for SBP (left)
and DBP (right) (a) and histogram of Mean Error (ME) for SBP (left) and DBP (right) (b). Table S1:
PPG-to-PPG Performance for Variable Channels (1 to 4).
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