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Abstract: Plants are a major source of food for the world population. Plant diseases contribute to
production loss, which can be tackled with continuous monitoring. Manual plant disease monitoring
is both laborious and error-prone. Early detection of plant diseases using computer vision and
artificial intelligence (AI) can help to reduce the adverse effects of diseases and also overcome the
shortcomings of continuous human monitoring. In this work, we propose the use of a deep learning
architecture based on a recent convolutional neural network called EfficientNet on 18,161 plain and
segmented tomato leaf images to classify tomato diseases. The performance of two segmentation
models i.e., U-net and Modified U-net, for the segmentation of leaves is reported. The comparative
performance of the models for binary classification (healthy and unhealthy leaves), six-class classifica-
tion (healthy and various groups of diseased leaves), and ten-class classification (healthy and various
types of unhealthy leaves) are also reported. The modified U-net segmentation model showed
accuracy, IoU, and Dice score of 98.66%, 98.5%, and 98.73%, respectively, for the segmentation of
leaf images. EfficientNet-B7 showed superior performance for the binary classification and six-class
classification using segmented images with an accuracy of 99.95% and 99.12%, respectively. Finally,
EfficientNet-B4 achieved an accuracy of 99.89% for ten-class classification using segmented images. It
can be concluded that all the architectures performed better in classifying the diseases when trained
with deeper networks on segmented images. The performance of each of the experimental studies
reported in this work outperforms the existing literature.

Keywords: smart agriculture; automatic plant disease detection; deep learning; CNN; classification;
segmentation of leaves

1. Introduction

Agriculture contributed to the domestication of today’s major food crops and animals
thousands of years ago. Food insecurity [1], which is a major cause of plant diseases [2], is
one of the major global problems that humanity faces today. According to one study, plant
diseases account for around 16 percent of global crop yield loss [3]. Pest losses are projected
to be about 50 percent for wheat and 26–29 percent for soybeans globally [3]. Fungi, fungus-
like species, bacteria, viruses, viroid, virus-like organisms, nematodes, protozoa, algae, and
parasitic plants are the main classes of plant pathogens. Many applications have benefited
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from artificial intelligence (AI), machine learning (ML), and computer vision, including
power prediction from renewable resources [4,5] and biomedical applications [6,7]. During
the COVID-19 pandemic, AI was used extensively for the identification of lung-related
diseases [8–11] as well as other prognostic applications [12]. Similar advanced technologies
can be used to mitigate the negative effects of plant diseases by detecting and diagnosing
them at an early level. The application of AI and computer vision to automatic detection
and diagnosis of plant diseases is currently being extensively studied because manual plant
disease monitoring is tedious, time-consuming, and labor-intensive. Sidharth et al. [13]
applied a Bacterial Foraging Optimization-based Radial Basis Function Network (BRBFNN)
to automatically identify and classify plant disease, achieving classification accuracy of
83.07%. Convolutional neural network (CNN) is a very popular neural network architecture
that is used successfully for a variety of computer vision tasks in diverse fields [14].
Researchers have used CNN architecture and its various versions for the classification and
identification of plant diseases. Sunayana et al. [15] compared different CNN architectures
for disease detection in potato and mango leaves, with AlexNet achieving 98.33% accuracy
and a shallow CNN model achieving 90.85% accuracy. Guan et al. [15,16] used a pre-trained
VGG16 model to predict disease severity in apple plants and achieved a 90.40% accuracy
rate. Jihen et al. [17] used the LeNet model to accurately distinguish healthy and diseased
banana leaves, achieving a 99.72% accuracy rate.

Tomatoes are a major food crop in many parts of the world, with a per capita consump-
tion of 20 kg per year, accounting for around 15% of total vegetable consumption. North
America consumes 42 kg of tomatoes per person per year, while Europe consumes 31 kg
per person per year [18,19]. To meet global demand for tomatoes, techniques for the crop
yield and early detection of pests, bacterial, and viral infections must be created. Several
studies have been performed to enhance tomato plant survival through early disease de-
tection and subsequent disease management using artificial intelligence-based techniques.
Manpreet et al. [20] classified seven tomato diseases with an accuracy of 98.8% using a
pre-trained CNN-based architecture known as Residual Network or generally known as
ResNet. Rahman et al. [21] proposed a fully-connected deep learning-based network to
distinguish Bacterial Spot, Late Blight, and Septorial Spot disease from tomato leaf im-
ages with a 99.25% accuracy. Fuentes et al. [22] used three types of detectors to identify
10 diseases from tomato leaf images: Faster Region-based Convolutional Neural Network
(Faster R-CNN), Region-based Completely Convolutional Network (R-FCN), and Single
Shot Multibox Detector (SSD). For real-time disease and pest recognition, these detectors
were combined with different variants of deep feature extractors VGG16, ResNet50, and
ResNet152 for Faster R-CNN, ResNet-50 for SSD, and ResNet-50 for R-FCN, with VGG16
on top of FRCNN achieving the highest Average Precision of 83%. Agarwal et al. [23]
proposed the Tomato Leaf Disease Detection (ToLeD) model, a CNN-based architecture for
the classification of 10 diseases from tomato leaf photographs, with a 91.2% accuracy rate.
Durmuş et al. [24] used AlexNet and SqueezeNet architectures to classify 10 diseases from
photographs of tomato leaves and achieved a 95.5% accuracy. While disease classification
and identification in plant leaves have been extensively studied in tomatoes and other
plants, there has been little research on segmenting leaf images from the context. Since
real-world images can differ greatly in terms of lighting conditions, better segmentation
techniques can assist AI models in learning from the correct region of interest rather than
the context.

U-net is a cutting-edge deep learning-based image segmentation architecture. It was
created with biomedical image segmentation in mind [25]. The U-shape network architec-
ture gives U-net its name. Unlike traditional CNN models, U-net includes convolutional
layers that are used to up-sample or recombine feature maps into a complete image.

The authors have published articles using the state-of-the-art U-Net for segmenta-
tion [25] with very promising results [8]. EfficientNet is a recent classification network [26]
and has not been used for the application intended in the paper. Thus, the authors used it
in this application and have obtained promising results.
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The paper has the following main contributions:

1. Different variants of U-net architecture are investigated to propose the best segmen-
tation model by comparing the model predictions to the ground truth segmented
images.

2. Investigation of the classification tasks for different variants of CNN architecture for
binary and different multi-class classifications of tomato diseases. Several experiments
employing different CNN architectures were conducted. Three different types of
classifications were done in this work: (a) Binary classification of healthy and diseased
leaves, (b) Five-class classification of healthy and four diseased leaves, and finally,
(c) Ten-class classification with healthy and nine different diseases classes.

3. The performance achieved in this work outperforms the existing state-of-the-art
works in this domain.

The rest of the paper is organized in the following manner: Section 1 gives a brief
introduction, literature review, and motivation for the study. Section 2 describes the
different types of plant pathogens. Section 3 provides the methodology of the study with
technical details such as the dataset description, pre-processing techniques, and details of
the experiments. Section 4 reports the results of the studies, followed by discussions in
Section 5 and finally, the conclusion is provided in Section 6.

2. Background Study
2.1. Deep Convolutional Neural Networks (CNN)

For detecting tomato leaf diseases, we fine-tuned the EfficientNet CNN proposed by
Tan et al. [26]. The authors make sure that the network’s width, depth, and resolution
are all balanced. They are the first to empirically measure the relationship between all
three dimensions, unlike other CNN scaling approaches that use one-dimension scaling.
The authors developed their baseline architecture using the MnasNet network [27], which
employs a multi-objective neural architecture search that prioritizes accuracy and FLOPS.
They build the EfficientNet-B0 network, which is similar to MnasNet [27] but much larger
due to the higher FLOPS target. The mobile inverted bottleneck MBConv [28] is its
key building block, and it also includes squeeze and excitation optimization [29]. The
authors use the compound scaling method, which uses a compound coefficient ϕ to
uniformly scale the network width, depth, and resolution, based on EfficientNet-B0. By the
following equation:

Depth, D = aϕ

Width, W = bϕ

Resolution, R = cϕ

a ≥ 1, b ≥ 1, c ≥ 1

(1)

where a, b, and c are constants that can be identified through a quick grid scan. ϕ is a
user-specified coefficient that regulates the number of additional resources used for model
scaling, while a, b, and c specify how those extra resources would be allocated to network
width, depth, and resolution, respectively.

EfficientNet-B0 scales up the baseline network by fixing a, b, and c as constants and
scaling up the baseline network with different ϕ to build a family of EfficientNets (B0
to B7); the baseline network is shown in Table 1. EfficientNet-B7 achieves state-of-the-
art performance on ImageNet, with a top-five accuracy of 97.1%, while being 8.4 times
smaller and 6.1 times faster on inference than the best current ConvNets like SENet [29]
and Gpipe [30].

To build our model, we used EfficientNet-B0, EfficientNet-B4, and EfficientNet-B7. To
enhance accuracy and minimize overfitting, we added a Global Average Pooling (GAP) to
the network’s final convolution layer. Following GAP, we added a Dense layer with a size
of 1024 and a 25% dropout. Finally, the probability prediction scores for detecting tomato
leaf diseases are given by a Softmax layer.



AgriEngineering 2021, 3 297

Table 1. EfficientNet baseline network.

Stage Operator Resolution Channels Layers

1 Conv3 × 3 224 × 224 32 1

2 MBConv 1, k3 × 3 112 × 112 16 1

3 MBConv 6, k3 × 3 112 × 112 24 2

4 MBConv 6, k5 × 5 56 × 56 40 2

5 MBConv 6, k3 × 3 28 × 28 80 3

6 MBConv 6, k5 × 5 14 × 14 112 3

7 MBConv 6, k5 × 5 14 × 14 192 4

8 MBConv 6, k3 × 3 7 × 7 320 1

9 Conv1 × 1 & Pooling & FC 7 × 7 1280 1

Starting with EfficientNet as a baseline, we use our compound scaling method to scale
it up in two steps:

The first step—assuming twice more resources available, we first fix ϕ = 1. In particu-
lar, we find the best values for EfficientNet-B0 are a = 1.2, b = 1.1, c = 1.15.

Second step—then we fix a, b, c as constants and scale-up baseline network with
different ϕ using Equation (1), to obtain EfficientNet-B0 to B7.

Notably, searching for a, b, and c directly around a large model will yield even better
results, but the search cost becomes prohibitively costly on larger models. Our approach
overcomes this problem by performing a single search on a small baseline network (first
step) and then applying the same scaling coefficients to all other models (second step).

2.2. Segmentation

In the literature, there are many variants of segmentation models based on U-nets. In
order to use the best performing one, two separate variants of the original U-Net [25] and
Modified U-Net [31] were investigated in this study. The design of the original U-Net and
the Modified U-Net is shown in Figure 1. A contracting path and an expanding path make
up the initial U-net. The contracting path consists of two 3 × 3 convolutions (unpadded
convolutions) that are applied repeatedly, each followed by a ReLU and a 2 × 2 max
pooling operation with stride 2 for downsampling. The expanding path consists of an
upsampling of the feature map, a 2 × 2 convolution (“up-convolution”) that halves the
number of feature channels, a concatenation with the contracting path’s correspondingly
cropped feature map, and two 3 × 3 convolutions, each accompanied by a ReLU. The
network employs a total of 23 convolutional layers.

The Modified U-Net, also a U-Net model with small variation in its decoding part, is
utilized [31]. A contracting path with four encoding blocks is followed by an expanding
path with four decoding blocks in the U-Net model. Each encoding block is made up of two
consecutive 3 × 3 convolutional layers, followed by a downsampling max pooling layer
with a stride of 2. The decoding blocks are made up of two 3 × 3 convolutional layers, a
transposed convolutional layer for upsampling, and concatenation with the corresponding
feature map from the contracting path. The decoding block uses three convolutional layers
instead of two in the modified U-Net architecture. An upsampling layer is followed by
two 3 × 3 convolutional layers, a concatenation layer, and another 3 × 3 convolutional
layer in the modified decoder. Batch normalization and ReLU activation are extended to all
convolutional layers. A pixel-wise SoftMax is applied to map each pixel into a binary class
of background at the final layer, which uses 1 × 1 convolution to map the output from the
last decoding block to two channel feature maps.
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Figure 1. Architecture of (A) original U-Net and (B) modified U-Net.

2.3. Visualization Techniques

The development of visualization techniques has resulted from an increased interest
in the internal mechanisms of CNNs and the logic behind a network making particular
decisions. The visualization techniques aid in the interpretation of CNN decision-making
processes by providing a more visual representation. This also improves the model’s clarity
by visualizing the reasoning behind the inference in a way that is readily understood by
humans, thus raising trust in the neural network’s outcomes. Among the numerous visual-
ization techniques available, such as SmoothGrad [32], Grad-CAM [33], Grad-CAM++ [34],
and Score-CAM [35], the recently proposed Score-CAM was used in this study due to its
promising output. The weight of each activation map is obtained through its forward pass-
ing score on the target class, and the final result is obtained through a linear combination
of weights and activation maps. Score-CAM eliminates the dependency on gradients by
obtaining the weight of each activation map through its forward passing score on the target
class. Figure 2 shows a sample image visualization with Score-CAM, with the heat map
showing that the leaf regions controlled the decision making in CNN. This can help users
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understand how the network makes decisions and can also raise end-user trust if it can be
verified that the network always makes decisions based on the leaf area.

Figure 2. Score-CAM visualization of tomato leaf images, to show where the CNN model is mainly
taking the decision.

2.4. Pathogens of Tomato Leaves

The most common plant pathogens are fungi, which can cause a variety of diseases
such as early blight, septoria leaf spot, target spot, and leaf mold. Fungi can invade
plants from a variety of places, including infected soil and seeds. Animals, humans,
equipment, and soil pollution may all spread fungal infections from one plant to another.
The fungus that causes early blight disease in tomato plants affects the plant leaves. Collar
rot, stem lesion, and fruit rot are the terms for the rot that affects the seedlings’ basal
stems, adult plant stems, and fruits, respectively [36,37]. The most important methods for
controlling early blight are cultural control, which involves effective soil, nutrient, and
crop management, as well as the use of fungicidal chemicals. Fungus induces Septoria leaf
spot on tomato plants [38,39], which releases tomatinase enzyme, which speeds up the
degradation of tomato steroidal glycoalkaloids α-tomatine [40,41]. The fungus induces the
target spot disease in tomato plants [42,43]. In tomato plants, necrotic lesions with a light
brown color in the middle are symptoms of target spot disease [44,45]. Early defoliation
occurs when the lesions spread to a wider blighted leaf region [44,45]. The goal spot also
does direct damage to the fruit by penetrating the pulp [44,45]. The fungus is responsible
for plant leaf mold disease [46,47], which happens when the leaves are damp for a long
time. Bacteria are a major plant pathogen as well. They get into plants through wounds
like insect bites, pruning, and cuts, as well as natural openings like stomata. Temperature,
humidity, soil conditions, nutrient availability, weather conditions, and airflow are all
important factors in bacterial growth on plants and the harm they cause. Bacterial spot is
a bacterial-caused plant disease [48,49]. Molds are also a significant contributor to plant
disease. Mold causes late blight disease in tomato and potato plants [50,51]. A few of the
symptoms include the presence of dark uneven blemishes on leaf tips and plant stems. The
Tomato Yellow Leaf Cur Virus (TYLCV) is a disease-causing virus that affects tomatoes.
The plant is infected by this virus, which is spread by another insect. Despite the fact
that tomato plants have diseased leaves and a ten-class classification. Different types of
tomato leaf diseases were categorized into disease categories in study 2, while different
classes of unhealthy and stable leaf photos were classified in study 3. Similar studies have
shown that the virus can infect a number of plants, including beans and peppers, tobacco,
potatoes, and eggplants [52,53]. Owing to the disease’s rapid spread in recent decades,
the focus of research has changed to damage control of yellow leaf curl disease [54–57].
Tomato mosaic virus is another viral disease that directly affects tomato plants (ToMV).
This virus is present all over the world and affects not only tomatoes but also other plants.
Twisted and fern-like stems, infected fruit with yellow patches, and necrotic blemishes are
all symptoms of ToMV infection [58,59].
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3. Methodology

The overall methodology of the study of the paper is summarized in Figure 3. This
study used tomato leaf data from the Plant Village dataset [60,61], where tomato leaf images
and corresponding segmented tomato leaf masks are provided. As explained earlier, the
paper has three different studies: (i) binary classification of healthy and unhealthy seg-
mented leaves; (ii) five-class classification of healthy and were performed using segmented
leaf images. The paper also explored different variants of U-net segmentation models to
investigate the best segmentation network for leaf segmentation from the background.
Segmented tomato leaf images leveraging in the classification is further verified with the
Score-Cam visualization technique, which has been found very reliable in different applica-
tions. The classification is done using EfficientNet networks that have been comparatively
successful in previous publications by the authors.

Figure 3. Overall Methodology of the study.

3.1. Datasets Description

In this study, Plant Village tomato leaf images and corresponding leaf mask dataset
were used [60,61], where 18,161 tomato leaf images and corresponding segmented leaf
masks are available. The dataset was used for training the tomato leaf segmentation models
and classification models as well. All images were divided into 10 different classes, where
one class is healthy and the other nine classes are unhealthy (such as bacterial spot, early
blight, leaf mold, septoria leaf spot, target spot, two-spotted spider mite, late bright mold,
mosaic virus, and yellow leaf curl virus), and nine unhealthy classes are categorized into
five subgroups (namely-bacterial, viral, fungal, mold, and mite disease). Some sample
tomato leaf images, for healthy and different unhealthy classes, and leaf masks from the
Plant Village dataset are shown in Figure 4. Moreover, a detailed description of the number
of images in the dataset is also shown in Table 2, which is useful for classification tasks
discussed in detail in the next section.
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Figure 4. Sample images of healthy and different unhealthy tomato leaves from the Plant Village
database.

Table 2. The number of tomato leaf images for healthy and different unhealthy classes.

Class Healthy Fungi Bacteria Mold Virus Mite

Sub Class
Healthy
(1591)

Early blight
(1000)

Bacterial
spot (2127)

Late bright
mold (1910)

Tomato Yellow
Leaf Curl Virus

(5357)
Two-spotted
spider mite

(1676)

Septoria leaf
spot (1771)

Tomato Mosaic
Virus (373)

Target spot
(1404)

Leaf mold
(952)

Tomato (18,161)

3.2. Preprocessing

Resizing and Normalizing: The various CNN network (both for segmentation and
classification experiments) has input image size requirements. Thus, the images were
resized to 256 × 256 for the various variants of U-net segmentation networks. Similarly,
the images were resized to 224 × 224 for EfficientNet (EfficientNet-B0, EfficientNet-B4,
and EfficientNet-B7). Using the mean and standard deviation of the images of the dataset,
z-score normalization was used to normalize the images.

Augmentation: Since the dataset is not balanced and the dataset does not have a
similar number of images for the different categories, training with an imbalanced dataset
can produce a biased model. Thus, data augmentation can help in having a similar number
of images in the various classes, which can provide reliable results as stated in many
recent publications [6–9,11]. In this study, three augmentation strategies (rotation, scaling,
and translation) were utilized to balance the training images. The rotation operation
used for image augmentation was done by rotating the images in the clockwise and
counterclockwise direction with an angle between 5 to 15 degrees. The scaling operation
is the magnification or reduction of the frame size of the image and 2.5% to 10% image
magnifications were used in this work. Image translation was done by translating images
horizontally and vertically by 5% to 20%.

3.3. Experiments

Leaf Segmentation: Different U-net models were used separately on Plant Village
tomato leaf images and leaf mask dataset to identify the best performing segmenta-
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tion model for leaf segmentation. Five-fold cross-validation was used, where 80% of
18,161 tomato leaf images and their corresponding ground truth masks were randomly
selected and used for training, and the remaining 20% were used for testing (Table 3). The
class distribution in the test set is similar to the train set. Out of the 80% training dataset,
90% was used for actual training, and 10% for validation, which helps in avoiding the
overfitting problem. In this study, three different loss functions (Negative Log-Likelihood
(NLL) loss, Binary Cross-Entropy (BCE) loss, and Mean-Squared Error (MSE) loss) were
used to achieve the best performance metrics and to identify the best tomato leaf segmen-
tation, model. Moreover, an early stopping criterion of five maximum epochs with no
improvement in validation loss was used as reported in some of the recent works [9,11].

Table 3. Summary of the U-net segmentation experiment.

Dataset
Number of Tomato Leaf

Images and Their
Corresponding Mask

Train Set
Count/Fold

Validation Set
Count/Fold

Test Set
Count/Fold

Plant Village
tomato leaf

images
18161 13076 1453 3632

Tomato leaf disease classification:
The study investigated a deep learning architecture based on a recent convolutional

neural network called EfficientNet to classify segmented tomato leaf disease images. Three
different classification experiments were carried out in this study. Table 4 summarizes the
details of the images in the experiments for three different classification using segmented
leaf images. The summary of parameters of the classification and segmentation experiments
is reported in Table 5.

Table 4. Summary of different classification experiments.

Classification Types Total No. of
Images/Class

For Both Segmented and Unsegmented Experiment

Train Set
Count/Fold

Validation Set
Count/Fold

Test Set
Count/Fold

Binary-class
Healthy 1591 1147 × 10 = 11470 127 317

Unhealthy (9 diseases) 16,570 11930 1326 3314

Six-class

Healthy 1591 1147 × 3 = 3441 127 317

Fungi 5127 3692 410 1025

Bacteria 2127 1532 × 2 = 3064 170 425

Mold 1910 1375 × 3 = 4125 153 382

Virus 5730 4126 458 1146

Mite 1676 1207 × 3 = 3621 134 335

Ten-class

Healthy 1591 1147 × 3 = 3441 127 317

Early Blight 1000 720 × 5 = 3600 80 200

Septoria Leaf Spot 1771 1275 × 3 = 3825 142 354

Target Spot 1404 1011 × 3 = 3033 112 281

Leaf Mold 952 686 × 5 = 3430 76 190

Bacterial Spot 2127 1532 × 2 = 3064 170 425

Late Bright Mold 1910 1375 × 3 = 4125 153 382

Tomato Yellow Leaf Curl Virus 5357 3857 429 1071

Tomato Mosaic Virus 373 268 × 13 = 3484 30 75
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Table 5. Summary of training parameters for segmentation and classification experiments.

Parameters Segmentation Model Classification Model

Batch size 16 16

Learning rate 0.001 0.001

Epochs 50 15

Epochs patience 8 6

Stopping criteria 8 5

Loss function NLL/BCE/MSE BCE

Optimizer ADAM ADAM

All the experiments were conducted using PyTorch library with Python 3.7 on Intel®

Xeon® CPU E5-2697 v4 @ 2,30GHz and 64 GB RAM, with a 16 GB NVIDIA GeForce GTX
1080 GPU.

3.4. Performance Matrix

Tomato leaf Segmentation: Important performance metrics for the segmentation
experiment is stated in Equations (2)–(4).

Accuracy =
TP + TN

(TP + FN) + (FP + TN)
(2)

IoU (Jaccard Index) =
(TP)

(TP + FN + FP)
(3)

Dice Coefficient( F1 score) =
(2∗TP)

(2∗TP + FN + FP)
(4)

Tomato leaf disease Classification: Important performance metrics for the classification
experiment is stated in Equations (5)–(9):

Accuracy =
TP + TN

(TP + FN) + (FP + TN)
(5)

Sensitivity =
(TP)

(TP + FN)
(6)

Specificity =
(TN)

(TN + FP)
(7)

Precision =
(TP)

(TP + FP)
(8)

F1_score =
(2∗TP)

(2∗TP + FN + FP)
(9)

Here, true positive (TP) is the number of correctly classified healthy leaf images and
true negative (TN) is the number of correctly classified unhealthy leaf images. False-
positive (FP) and false-negative (FN) are the misclassified healthy and unhealthy leaf
images, respectively.

Moreover, segmentation and classification networks were also compared in terms of
the testing time per image, i.e., time taken by each network to segment or classify an input
image, represented in Equation (10):

T = t” − t’ (10)
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where t’ is the starting time for a network to segment or classify an image, I and t” is the
end time when the network has segmented or classified the same image, I.

4. Results

The performance of various networks in the different experiments is reported in
this section.

4.1. Tomato Leaf Segmentation

In this study, three different segmentation models, the original U-net [25], and mod-
ified U-net [31] were trained, validated, and tested for the segmentation of tomato leaf
images. Table 6 shows the comparative performance of the two segmentation models using
three different loss functions (namely, NLL, BCE, and MSE loss function) in image seg-
mentation. It can be noted that the Modified U-net with NLL loss function outperformed
the original U-net in the segmentation of the leaf region on the whole images quantita-
tively and qualitatively. The test loss, test accuracy, IoU, and dice for the segmentation
of tomato leaves using Modified U-net with NLL loss function were found to be 0.0076,
98.66, 98.5, and 98.73, respectively. Figure 5 shows some example test tomato leaf images,
corresponding ground truth masks, and segmented leaf images generated by the Modified
U-net model with NLL loss function for the Plant Village dataset.

Table 6. Comparative performance of the original U-net and the modified U-net. (Best results are
highlighted as bold).

Loss Function Network Test Loss Test Accuracy IoU Dice Inference Time
T (s)

NLL loss Unet 0.0168 97.25 96.83 97.11 14.05

BCE loss Unet 0.0162 97.32 96.9 97.02 13.89

MSE loss Unet 0.0134 97.52 97.25 97.35 13.66

NLL loss Modified Unet 0.0076 98.66 98.5 98.73 12.12

BCE loss Modified Unet 0.016 97.12 96.82 97.1 12.04

MSE loss Modified Unet 0.089 98.19 98.25 98.43 11.76

4.2. Tomato Leaf Disease Classification

In this study, three different experiments were conducted for segmented tomato leaf
images. The comparative performance for three different EfficientNet families (such as
EfficientNet-B0, EfficientNet-B4, and EfficientNet-B7) for the three classification schemes
for segmented leaf images is shown in Table 7. It is apparent from Table 7 that all the
evaluated pre-trained models perform very well in classifying healthy and unhealthy
tomato leaf images in two-class, six-class, and ten-class problems. The performance also
improved when using non-segmented images (see Supplementary Table S1).

Among the networks trained with leaf images with and without segmented two-
class, six-class, and ten-class problems, EfficientNet-B7 outperformed other trained models,
except for ten-class where EfficientNet-B4 was slightly better than EfficientNet-B7. It can
also be seen that as the EfficientNet model’s scale, the testing time (T) increases due to
scaled depth, width, and resolution of the network. The authors have tried the different
versions of EfficientNet and it was seen that as the network is scaled in terms of depth,
width, and resolution, the performance becomes better. However, as the classification
scheme becomes complicated, the performance does not improve much with the scaled
version of EfficientNet.

For segmented tomato leaf images, EfficientNet-B7 outperforms others and for two-
class and six-class problems showed accuracy, sensitivity, and specificity of 99.95%, 99.95%,
99.77%, and 99.12%, 99.11%, 99.81%, respectively. In contrast, EfficientNet-B4 produced the
best result for ten-class with accuracy, sensitivity, and specificity of 99.89%, 99.44%, and
99.94%, respectively. It is evident from Figure 5 that network performances are slightly
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improved with more parameters for 2-class, 6-class, and 10-class problems.Figure 6 clearly
shows that the Receiver operating characteristic (ROC) curves for two-class, six-class, and
ten-class problems using segmented tomato leaf images. However, deep networks can
provide better performance gain for 2-class and 6-class problems.

Figure 5. Samples tomato leaf images from a database (left), generated masks by the trained modified
U-net model with NLL loss function (second from left), corresponding segmented leaf (second from
right), and the ground truth from the database (right).

Table 7. Summary of the tomato leaf disease classification performance using segmented and original leaf images. (Best
results are highlighted as bold).

Classification
Scheme Models

Result with 95% CI

Overall Weighted

Accuracy Precision Sensitivity F1-Score Specificity Inference Time
(T)

2 Class

EfficientNet-b0 99.74 ± 0.07 99.75 ± 0.07 99.73 ± 0.08 99.73 ± 0.08 99.75 ± 0.07 19.32

EfficientNet-b4 99.82 ± 0.06 99.83 ± 0.06 99.82 ± 0.06 99.82 ± 0.06 98.74 ± 0.16 34.25

EfficientNet-b7 99.95 ± 0.03 99.94 ± 0.03 99.95 ± 0.03 99.95 ± 0.03 99.77 ± 0.07 44.12

6 Class

EfficientNet-b0 97.34 ± 0.23 97.38 ± 0.23 97.34 ± 0.23 97.33 ± 0.23 99.47 ± 0.11 20.45

EfficientNet-b4 98.49 ± 0.18 98.51 ± 0.18 98.49 ± 0.18 98.49 ± 0.18 99.73 ± 0.08 38.02

EfficientNet-b7 99.12 ± 0.14 99.1 ± 0.14 99.11± 0.14 99.1 ± 0.14 99.81 ± 0.06 45.18

10 Class

EfficientNet-b0 99.71 ± 0.08 98.69 ± 0.17 98.68 ± 0.17 98.68 ± 0.17 99.87 ± 0.05 22.16

EfficientNet-b4 99.89 ± 0.05 99.45 ± 0.11 99.44 ± 0.11 99.4 ± 0.11 99.94 ± 0.04 41.24

EfficientNet-b7 99.84 ± 0.06 99.15 ± 0.13 99.13 ± 0.14 99.13 ± 0.14 99.92 ± 0.04 51.23
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Figure 6. Comparison of the ROC curves for (A) binary classification for segmented leaf, (B) six-class classification
segmented leaf, and (C) ten-class classification segmented leaf.

The confusion matrix for the best performing networks for the different classification
problems using tomato leaf images is shown in Figure 7. It can be noticed that even with
the best performing network EfficientNet-B7 for two-class tomato leaf images, 6 out of
16,570 unhealthy tomato leaf images were misclassified as healthy and 4 out of 1591 healthy
tomato leaf images were miss-classified as unhealthy images.

For the six-class problem, which consisted of one healthy class and five different
unhealthy classes, only 3 out of 1591 healthy tomato leaf images were miss-classified as
unhealthy images, and 159 out of 16,570 unhealthy tomato leaf images were miss-classified
as healthy or any other unhealthy classes. Moreover, for the ten-class problem, which
consisted of one healthy class and nine different unhealthy classes, it can be noticed
that the best performing network was EfficientNet-B4, only 4 out of 1591 healthy tomato
leaf images were miss-classified as unhealthy images and 105 out of 16,570 unhealthy
tomato leaf images of nine different categories were miss-classified as healthy or any other
unhealthy classes.
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Figure 7. Confusion matrix for healthy, and unhealthy tomato leaf image classification using compound scaling CNN-based
models for segmented leaf images for (A) binary-class, (B) six-class, and (C) ten-class classification.

4.3. Visualization Using Score-Cam

In this study, the reliability of the trained networks was investigated using visualiza-
tion techniques. Score-CAM- of five different categories were misclassified as healthy or
any other unhealthy classes. For the ten-class problem, heat maps for segmented tomato
leaf images were used. Figure 8 shows the original tomato leaf samples along with the heat
maps on segmented leaves. As can be seen from Figure 8, the networks are learning from
the leaf images in the segmented leaf, which makes the network decision more reliable.
This helps to counter the criticism that CNN takes decision from the non-relevant region
and are not reliable [62]. It can also be seen in Figure 9 that segmentation has helped in a
classification where the network learns from the region of interest. This reliable learning has
helped incorrect classification. In addition, the authors have also experimented to confirm
that segmentation helps in learning and taking decisions from relevant areas compared to
non-segmented images (see Supplementary Figure S1).
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Figure 8. Score-CAM visualization of correctly classified tomato leaf images: Original leaves, score-
CAM heat map on segmented leaves.

Figure 9. Score-CAM visualization to confirm how segmentation has helped in classification.

5. Discussion

Plant diseases are a major threat to global food security. The latest technologies
need to be applied to the agriculture sector to curb diseases. Artificial intelligence-based
technologies are extensively investigated in plant disease detection. Computer vision-
based disease detection systems are popular for their robustness, ease of acquiring data,
and quick results. This research investigates how model scaling CNN-based architectures
perform against each other in two tasks i.e., segmentation and classification of tomato leaf
images. The study was divided into three sub-studies of 2-class classification (Healthy,
and Unhealthy), 6-class classification (Healthy, Fungi, Bacteria, Mold, Virus, and Mite),
and 10-class classification (Healthy, Early blight, Septoria leaf spot, Target spot, Leaf mold,
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Bacterial spot, Late bright mold, Tomato Yellow Leaf Curl Virus, Tomato Mosaic Virus,
and Two-spotted spider mite). Overall, the EfficientNet-B7 model outperformed every
other model, except for binary classification, and 6-class classification with segmented
images, where the EfficientNet-B4 model outperformed others in 10-class classification. In
the binary classification of healthy and diseased tomato leaves, EfficientNet-B7 showed an
overall accuracy of 99.95% with segmented images. In 6-class classification, EfficientNet-B7
showed an overall accuracy of 99.12% with segmented images. Furthermore, in the 10-
class classification, EfficientNet-B4 showed an overall accuracy of 99.89% with segmented
images. The results in the paper are comparable to the state-of-the-art results and are also
summarized in Table 8. Although the Plant Village dataset used in this study contains
images taken in diverse environmental conditions, the dataset is collected in a specific
region and is of specific breeds of tomatoes. A study conducted using a dataset containing
images of other breeds of tomato plants from different regions of the world may result
in a more robust framework for early disease detection in tomato plants. Furthermore,
the lighter architecture of CNN models with non-linearity in the feature extraction layers
might be useful to investigate for portable solutions.

Table 8. Results in the paper compared with other state-of-the-art results.

Paper Classification Dataset Accuracy Precision Recall F1-Score Results

Mohit et al. [23] Ten-class Plant Village 91% 90% 92% 91% Non-Segmented

P. Tm et al. [63] Ten-class Plant Village 94% 94.81% 94.78% 94.8% Segmented

Keke et al. [64] Two-class Own dataset 95% - - - Non-segmented

Madhavi et al. [65] Two-class Own dataset 85% - 84% - Non-Segmented –

Proposed study

Two-class Plant Village 99.95% 99.94% 99.95% 99.95% Segmented

Six-class Plant Village 99.12% 99.10% 99.11% 99.10% Segmented

Ten-class Plant Village 99.89% 99.45% 99.44% 99.4% Segmented

6. Conclusions

In this work, we developed a deep convolutional neural network (CNN) based on
a recently developed EfficientNet CNN model. The model was fine-tuned and trained
for the detection of healthy and different unhealthy tomato leaf images. The obtained
results show that our model outperforms some recent deep learning techniques by using
the most popular publicly available Plant Village dataset [60,61]. It was also found that the
Modified U-net was best suited for segmentation of leaf images from the background and
EfficientNet-B7 was better at extracting discriminative features from images compared to
other architecture. Besides, the performance of the networks generally further improved
when trained with more parameters. The trained models can be used in the early automatic
detection of plant diseases. Experts need years of training and knowledge to early disease
detection with visual inspection but our model can be used by anybody who is not an
expert. Any new users will have the network working in the background which will take
input from the visual camera and immediately inform the user of the output so that the
user can take necessary action. Thus, preventive actions can be taken earlier. This work can
be beneficial in early and automatic disease detection of tomato crops enabled by the latest
technologies such as smartphones, drone cameras, and robotic platforms. The proposed
framework can be incorporated with a feedback system that gives valuable suggestions,
remedies, disease management, and control strategies, thus ensuring better crop yields.
The authors would work on an extension of the work to validate the performance of the
proposed solution on a real-time application where microcontrollers with cameras will
be used to check the performance. The future work would have a much more diverse
environment and the authors are confident that it will work better even over there.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agriengineering3020020/s1, Figure S1: Score-CAM visualization to confirm how segmentation
has helped in classification even incorrectly classified images, Table S1: Summary of the tomato leaf
disease classification performance using non-segmented original leaf images.
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