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ABSTRACT Tuberculosis (TB) is a chronic lung disease that occurs due to bacterial infection and is one of
the top 10 leading causes of death. Accurate and early detection of TB is very important, otherwise, it could
be life-threatening. In this work, we have detected TB reliably from the chest X-ray images using image pre-
processing, data augmentation, image segmentation, and deep-learning classification techniques. Several
public databases were used to create a database of 3500 TB infected and 3500 normal chest X-ray images
for this study. Nine different deep CNNs (ResNet18, ResNet50, ResNet101, ChexNet, InceptionV3, Vgg19,
DenseNet201, SqueezeNet, and MobileNet) were used for transfer learning from their pre-trained initial
weights and were trained, validated and tested for classifying TB and non-TB normal cases. Three different
experiments were carried out in this work: segmentation of X-ray images using two different U-net models,
classification using X-ray images and that using segmented lung images. The accuracy, precision, sensitivity,
F1-score and specificity of best performing model, ChexNet in the detection of tuberculosis using X-ray
images were 96.47%, 96.62%, 96.47%, 96.47%, and 96.51% respectively. However, classification using
segmented lung images outperformed that with whole X-ray images; the accuracy, precision, sensitivity,
F1-score and specificity of DenseNet201 were 98.6%, 98.57%, 98.56%, 98.56%, and 98.54% respectively
for the segmented lung images. The paper also used a visualization technique to confirm that CNN learns
dominantly from the segmented lung regions that resulted in higher detection accuracy. The proposed method
with state-of-the-art performance can be useful in the computer-aided faster diagnosis of tuberculosis.

INDEX TERMS Tuberculosis detection, TB screening, deep learning, transfer learning, lungs segmentation,
image processing.

I. INTRODUCTION
Tuberculosis (TB) is a communicable disease caused by
a bacterium called Mycobacterium tuberculosis. It is the
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leading cause of death from a single infectious disease [1].
Fortunately, this bacterial infectious disease can be well
treated by antimicrobial drugs. Early diagnosis of tubercu-
losis and consequent administration of proper medication
can cure this deadly disease [2]. Chest X-rays (CXR) are
commonly used for detection and screening of pulmonary
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tuberculosis [3], [4]. In clinical practice, chest radiographs
are examined by experienced physicians for the detection
of TB. However, this is time consuming and a subjective
process. Subjective inconsistencies in disease diagnosis from
radiograph is inevitable [5], [6]. Importantly, CXR images
of tuberculosis are often misclassified to other diseases of
similar radiologic patterns [7], [8], which may lead to wrong
medication to the patients and thereby worsening the health
condition. There is also a lack of trained radiologists in the
low resource countries (LRC), especially in the rural areas.
In this perspective, computer aided diagnosis (CAD) systems
can play important role in the mass screening of pulmonary
TB by analysing the chest X-ray images. The accessibility
of large-scale labelled datasets and deep convolutional neural
networks (CNNis) has led to huge success in image recogni-
tion. CNNs allow data-driven, highly representative, hierar-
chical image features to be learned from adequate training
data, but obtaining data sets in the medical imaging domain
as comprehensively annotated, as ImageNet remains a chal-
lenge [9]-[11]. It is also worth noting that the healthcare
sector is entirely different from any other field being a high
priority sector with customers willing to pay for highest
quality of care and services. The healthcare sector has not
fulfilled the aspirations of society, while the industry absorbs
a large percentage of national budgets [12]. The medical
experts examining medical data which substantially suffer
from subjective differences and the quality of the images and
by the fatigue caused due to heavy workload. Thus, applica-
tion of machine learning in health care sector is gathering a lot
of attention in recent times. Artificial intelligence (AI) based
solutions have been proposed for many biomedical applica-
tions including brain tumor, lungs nodule, pneumonia, breast
cancer detection, physiological monitoring and social sens-
ing [13]-[19]. Among the deep machine learning (ML) tech-
niques, convolutional neural networks (CNNs) have shown
great promise in image classification and therefore widely
adopted by the research community [20]-[22]. X-ray radio-
graphy is a low-cost imaging technique and there is an
abundance of data available for training different machine
learning models making deep learning techniques popular for
the automatic detection of lung diseases from chest radio-
graphs. Moreover, we have a team of medical doctors who
are experts in interpreting chest X-ray images put us in a
favourable condition for computer-aided diagnostic system
development.

CNNs have been used in several recent studies for the
detection of lungs diseases including pneumonia and tuber-
culosis by analysing chest X-ray images. In response to
the COVID-19 pandemic situation in 2020, CNN based
techniques have been used for the detection of the novel
coronavirus infection form CXR images. Tahir ef al. [23]
classified different coronavirus families (SARS, MERS and
COVID-19) using transfer learning of various pre-trained
CNN models with sensitivity values greater than 90%.
Chowdhury et al. [24] developed a trained model using chest
X-ray dataset to distinguish COVID-19 pneumonia, viral
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pneumonia and normal cases. Chhikara et al. [21] explored
the possibility of detecting pneumonia from CXR images
and evaluated the performance of some pre-trained models
(Resnet, ImageNet, Xception, and Inception) applying pre-
processing techniques like filtering and gamma correction.
Abbas et al. [25] reported a modified transfer learning CNN
termed as Decompose, Tranfer and Compose (DeTraC) that
can deal with data imbalance in medical image classifica-
tion. This CNN architecture was shown to have improved
performance in detecting normal and abnormal x-rays with
an accuracy of 99.8 %.

Several research groups used classical machine learning
techniques for classifying TB and non-TB cases from CXR
images [26]-[31]. The use of deep machine learning algo-
rithms have been reported in the detection of tuberculosis
by varying the parameters of deep-layered CNNs [32]-[37].
Concept of transfer learning in deep learning framework was
used for the detection of tuberculosis utilizing pre-trained
models and their ensembles [38]-[42]. Hooda et al. [32] pre-
sented a deep learning approach to classify CXR images into
TB and non-TB categories with an accuracy of 82.09%. Eval-
gelista and Guedes [34] reported a computer-aided approach
based on intelligent pattern recognition using CNNs for
TB detection from chest X-ray images with an accuracy
of 88.76%. Pasa et al. [35] proposed a deep network archi-
tecture optimized for the screening of tuberculosis with an
accuracy of 86.82%. They also reported a tool for interactive
visualization of TB cases. Nguyen et al. [36] evaluated the
performance of a pre-trained model, DenseNet, to classify
normal and tuberculosis images from Shenzhen (CHN) and
Montgomery County (MC) databases [43] using fine-tuned
model, and reported the Area Under the Curve (AUC) values
of 0.94 and 0.82 respectively. Hernandez et al. [37] proposed
a method for the automatic classification of TB from X-Ray
images using an ensemble of CNN models with an accuracy
of 86%. Lopes and Valiati [39] used different pre-trained
CNN models to classify the chest radiographs into TB pos-
itive and TB negative classes. The performance of the sys-
tem was evaluated on two publicly available chest X-ray
datasets (CHN and MC) and achieved an accuracy of 80%.
Meraj et al. [40] used four different CNN models (VGG-16,
VGG-19, RestNet50, and GoogLeNet) and explored the
limits of accuracies for small-scale and large-scale CNN
models in the classification of TB from chest X-rays.
Ahsan et al. [41] proposed a generalized pre-trained CNN
model for TB detection and achieved accuracies of 81.25%
and 80% with and without the application of image aug-
mentation respectively. Yadav et al. [42] reported the detec-
tion of tuberculosis using transfer learning technique, which
showed an accuracy of 94.89%. Abbas et al. [25] proposed a
CNN architecture based on a class decomposition approach
to improve the performance of ImageNet pre-trained CNN
models using transfer learning and achieved high accuracy
in TB detection on Japanese Society of Radiological Tech-
nology (JSRT) database. It is worth mentioning that trans-
fer learning methods have also been used to classify the
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images of TB culture test. Chang et al. [22] used transfer
learning technique on labelled tuberculosis culture images
and achieved precision and sensitivity values of 99% and 98%
respectively. However, classification of TB culture image
requires specific samples from the patients and is not as
robust compared to classification from chest X-rays which
are readily available.

In clinical applications, an increase in accuracy of TB
detection from chest radiographs with a robust and versatile
method can make computer aided automatic diagnostic tools
more reliable. The classification accuracy can be improved
either by using different deep learning algorithms or by mod-
ifying the existing outperforming algorithms or combining
several outperforming algorithms as an ensemble model.
Typically, whole X-ray images were used for the detection
of lung disorders using CNN. However, the X-ray images
contains lungs as well as other regions of the thorax although
the disease like TB is manifested in the lung region only.
Thus, focusing on the lung region of the X-ray images during
training and classification may significantly improve the
performance of TB detection. To the best of our knowledge,
no such work regarding the use of deep learning networks
on segmented lungs for TB detection is reported. This paper
focuses on the detection of TB using transfer learning based
technique of CNNs on the original and segmented lungs
in X-ray images. CNN based visualization techniques are
also implemented to confirm that the deep networks perform
classification using the main region of interest, i.e., lungs
minimizing learning from irrelevant regions in chest
X-rays.

Several important contributions were reported in this study.
Firstly, two different U-net models were investigated for
the segmentation of the chest X-ray images. Secondly, nine
different pre-trained CNNs were applied for the detection of
TB from the original and segmented lungs of X-ray images
and their performances were analysed. Then, the perfor-
mance of TB detection by the pre-trained networks using
non-segmented X-ray images and segmented images were
compared. Finally, state-of-the-art score class activation map-
ping (Score-CAM) based visualization technique was imple-
mented and used to demonstrate the regions of X-ray images
that contribute in the classification by the CNNs to confirm
whether the segmented lungs X-ray images based classi-
fication is more reliable than that of whole X-ray images
or not.

The rest of the paper is divided in the following sec-
tions: Section 2 summarizes different pre-trained networks
for image classification, U-net models for lung segmen-
tation and Score-CAM based visualization techniques.
Section 3 describes dataset, pre-processing steps and method-
ology of this study, while Section 4 summarizes the results of
the classification using whole X-ray images and segmented
lung images and results are discussed and compared with
some other recent studies. Finally, Section 5 concluded the
study.
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Il. BACKGROUND

A. DEEP CONVOLUTIONAL NEURAL NETWORKS (CNNS)
BASED TRANSFER LEARNING

As discussed earlier, deep CNNs have been popular due
to their improved performance in image classification. The
convolutional layers in the network along with filters help
in extracting the spatial and temporal features in an image.
Transfer learning can be useful in those applications of CNN
where the dataset is not large. Recently, transfer learning
has been successfully used in various field applications such
as manufacturing, medical and baggage screening [44]-[46].
This removes the requirement of having large dataset and also
reduces the long training period as is required by the deep
learning algorithm when developed from scratch [47], [48].

Nine popular pre-trained deep learning CNNs such
as ResNetl8, ResNet50, ResNetl01 [49], DenseNet201
[50], ChexNet [51], SqueezeNet [52], InceptionV3 [53],
VGG19 [54] and MobileNetV2 [55] were used for TB detec-
tion. All of these networks apart from ChexNet were ini-
tially trained on ImageNet database. Residual Network (in
short ResNet) was originally developed to solve vanishing
gradient and degradation problem [49]. ResNet has sev-
eral different variants: ResNet18, ResNet50, ResNet101 and
ResNet152 based on the number of layers in the residual
network. ResNet was successfully used in biomedical image
classification for transfer learning. Typically, deep neural
network layers learn low or high level features during training
while ResNet learns residuals instead of features [56].

Dense Convolutional Network (in brief DenseNet) needs
less number of parameters than a conventional CNN,
as it does not learn redundant feature maps. The layers
in DenseNet are very narrow, which add a lesser set of
new feature-maps. DenseNet has four different common
variants: DenseNet121, DenseNet169, DenseNet201 and
DenseNet264. Each layer in DenseNet has direct access to
the original input image and gradients from the loss func-
tion. Therefore, the computational cost significantly reduced,
which makes DenseNet a better choice for image classifi-
cation. ChexNet Pretrained model is a modified version of
DenseNet121 and this network is specially trained on large
number of chest X-ray images [51].

SqueezeNet and MobileNetv2 are very compact net-
work compared to the other networks. The foundation of
SqueezeNet network is a fire module, which consists of
Squeeze Layer and Expand layer. The Squeeze layer has
only 1 x 1 filters, which is feeding to an Expand layer, which
has a mixture of 1 x 1 and 3 x 3 convolution filters [52].
VGG [54] addresses a very important aspect of CNNs, which
is depth. The convolutional layers in VGG network use a very
small receptive field. There are 1 x 1 convolution filters which
act as a linear transformation of the input, which is followed
by a rectified linear unit (ReLU) layer. The convolution stride
is fixed to 1 pixel so that the spatial resolution is preserved
after convolution. VGG has different variants: VGG16, and
VGGI19.
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MobileNet structure is built on depth-wise separable con-
volutions except for the first layer which is a full convolution.
All layers are followed by a batch normalization and ReLU
nonlinearity with the exception of the final fully connected
layer which has no nonlinearity and feeds into a Softmax
layer for classification. A final average pooling reduces the
spatial resolution to 1 before the fully connected layer. Count-
ing depth-wise and pointwise convolutions as separate layers,
MobileNet has 28 layers. Inception modules are used in
Convolutional Neural Networks to allow for more efficient
computation and deeper networks through a dimensionality
reduction with stacked 1 x 1 convolutions. The modules were
designed to solve the problem of computational expense,
as well as over-fitting, among other issues.

B. SEGMENTATION

There are several variants of segmentation models based on
U-nets are available in the literature. Two different vari-
ants of called original U-Net [57] and Modified U-Net [58]
were investigated in this work to utilize best performing
one. Figure 1 shows the architecture of original U-Net and
Modified U-Net. The original U-net consists of a contracting
path and an expanding path. The contracting path consists of
the repeated application of two 3 x 3 convolutions (unpadded
convolutions), each followed by a ReLLU and a 2 x 2 max pool-
ing operation with stride 2 for down sampling. The expanding
path consists of an up sampling of the feature map followed
by a 2 x 2 convolution (“‘up-convolution’) that halves the
number of feature channels, a concatenation with the corre-
spondingly cropped feature map from the contracting path,
and two 3 x 3 convolutions, each followed by a ReLU. Total
23 convolutional layers are used in the network. Modified
U-Net also consists of a contracting path and an expanding
path as U-Net. The contracting path includes four steps. Each
step consists of two convolutional 3 x 3 filters followed by a
2 x 2 max pooling function and ReLU. The U-Net might learn
redundant features in successive convolution layers. How-
ever, modified U-Net uses densely connective convolutions to
mitigate this problem. Each step in the expanding path starts
by performing an up-sampling function over the output of
the previous layer. In the modified U-Net, the correspond-
ing feature maps in the contracting path are cropped and
copied to the expanding path. These feature maps are then
concatenated with the output of the up-sampling function.
Instead of a simple concatenation in the skip connection of
U-Net, Modified Unet employs bidirectional Convolutional
Long Short Term Memory (BConvLSTM) to combine the
feature maps extracted from the corresponding contracting
path and the previous expanding up-convolutional layer in a
non-linear way.

C. VISUALIZATION TECHNIQUES

Increasing interest on the internal mechanisms of the CNNs
and the reasoning behind a network making specific decisions
have led to the developments of visualization techniques. The
visualization techniques help in better visual representation
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for interpreting the decision-making process of CNNs. These
also increase the model’s transparency by visualizing the
logic behind the inference that can be interpreted in a way
easily understandable to human, thereby increasing the con-
fidence on the outcomes of the neural networks. Amongst
the various visualization techniques like SmoothGrad [59],
Grad-CAM [60], Grad-CAM++ [61], and Score-CAM [62].
Recently proposed Score-CAM was used in this work due
to its promising performance in comparison to other tech-
niques. Score-CAM gets rid of the dependence on gradients
by obtaining the weight of each activation map through its for-
ward passing score on target class, the final result is obtained
by a linear combination of weights and activation maps.
A sample image visualization with Score-CAM is shown in
Figure 2, where the heat map indicates that the lungs regions
dominantly contributed in the decision making in CNN. This
can be helpful to understand how the network is taking its
decision and also to improve the confidence of the end-user
when it can be confirmed that all the time the network is
taking decisions using the lungs of the chest X-rays.

In order to further confirm the deep layers can produce
discriminating features between the TB and Normal patients,
we have used t-Distributed Stochastic Neighbor Embedding
(t-SNE) visualization technique. It is a variant of Stochas-
tic Neighbor Embedding and performs better in visualizing
high dimensional data into two dimensional map [63]. This
technique helps in a graphical analysis of deep learned fea-
tures and have been very popularly used in many recent
works [64]-[67].

lIl. METHODOLOGY

The overall methodology of this study is illustrated using
Figure 3. Two different databases were created for this study.
One was for lung segmentation while the other one was for
TB classification. Three major experiments were carried out
in this study. Firstly, two different U-Net models were inves-
tigated to identify the suitable network for segmenting lung
regions of the X-ray images. Secondly, original chest X-ray
images were used for TB classification using nine different
pre-trained networks and evaluate classification reliability
using Score-CAM technique. Thirdly, segmented lungs of
X-ray images were used for TB classification using same
networks and evaluated their performance using Score-CAM
technique. Finally, the t-SNE technique was implemented
on a python platform and dimensions, maximum iterations,
perplexity- effective number of neighbors etc. parameters
were modified from default values in order to confirm the
performance of the best network [68].

A. DATASETS DESCRIPTION

1) LUNG SEGMENTATION

In this work, Kaggle Chest X-ray images and corresponding
lung mask dataset [69] were used for training the lung seg-
mentation models, where 704 X-ray images and their corre-
sponding ground truth lung masks are available. All masks
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FIGURE 1. Architecture of A) original U-Net and B) modified U-Net.

FIGURE 2. Score-CAM heat map on a chest X-ray image showing that
different regions of the image were used in decision making by the CNN.

were annotated by expert radiologists; sample X-ray images
and masks are shown in Figure 4. There are 360 normal
X-ray images and 344 abnormal (infected lung) X-ray images
available in the dataset. Therefore, U-Net networks were
trained with both normal and abnormal images.

191590

2) TB CLASSIFICATION

Four publicly accessible databases were used for TB classi-
fication problem. These are NLM dataset, Belarus dataset,
NIAID TB dataset and RSNA dataset:

NLM dataset: National Library of Medicine (NLM)
in U.S. [25] has made two lung X-ray datasets publicly
available: the Montgomery and Shenzhen datasets. The
Montgomery County (MC) and the Shenzhen, China (CHN)
databases are comprised of 138 and 667 posterior-anterior
(PA) chest X-ray images respectively. The resolution of
the images of MC database was either 4, 020 x 4.892
or 4, 892 x 4.020 pixels whereas that for CHN database
was variable but around 3000 x 3000 pixels. In the MC
database, out of 138 chest X-ray images, 58 images were
taken from different TB patients and 80 images were from
normal subjects. In the CHN database, out of 662 chest X-ray
images, 336 images were taken from different TB patients
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FIGURE 4. Example of X-ray images and corresponding ground truth lung
masks from Kaggle dataset.

and 324 images were from normal subjects. Therefore, in this
NLM database, there are 406 normal and 394 TB infected
X-ray images.

Belarus dataset: Belarus Set [70] was collected for a
drug resistance study initiated by the National Institute of
Allergy and Infectious Diseases, Ministry of Health, Repub-
lic of Belarus. The dataset contains 306 CXR images of
169 patients. Chest radiographs were taken using the Kodak
Point-of-Care 260 system and the resolution of the images
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* MobileN etv2

Normal

Tuberculo sis

was 2248 x 2248 pixels. All the images of this database are
TB infected images.

NIAID TB dataset: NIAID TB portal program dataset [71],
which contains about 3000 TB positive CXR images from
about 3087 cases. All images were collected from seven
different countries and all images are in Portable Network
Graphics (PNG) format. In this study, we have used 2800 TB
positive CXR images out of 3000 images. 200 poor quality
images were discarded from this database.

RSNA CXR dataset: RSNA pneumonia detection chal-
lenge dataset [72], which is comprised of about 30,000 chest
X-ray images, where 10,000 images are normal and others are
abnormal and lung opacity images. All images are in Digital
Imaging and Communications in Medicine (DICOM) format.
To create a normal database of 3,500 chest X-ray images for
this study, 3,094 normal images were taken from this database
and rest of the 406 normal images were taken from the
NLM database. However, the number of TB infected images
by combining NLM and Belarus dataset was 700 and from
NIAID TB dataset was 2800. In total, there were 3500 TB
infected and 3500 normal X-ray images were used in this
study. Samples of the X-ray images is shown in Figure 5.

B. PREPROCESSING

The size of the input images for different CNNs were
different and therefore the datasets were preprocessed to
resize the X-Ray images. In segmentation problem, for orig-
inal U-Net and modified U-Net, the images were resized
to 256 x 256 pixels. In classification problem, for Incep-
tionV3 the images were resized to 227 x 227 pixels whereas
for ResNet, DenseNet, ChexNet, VGG, MobileNetV2 and
SqueezeNet, the images were resized to 224 x 224 pixels.
All images were normalized using Z-score normalization
using image database mean and standard deviation.
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TABLE 1. Details of Training, Validation and Test set for U-Net segmentation models.

No. of CXR | Train Validation
Dataset images & masks set/fold | set/fold LGS I
Kaggle lung x-ray & masks dataset 704 451 112 141

TABLE 2. Details of Training, Validation and Test set for classification problem.

Database Types Total No. of X- :ra%nfng w1\t,h(;-1;t ‘t& with image augmentation
ray images/ class | Iraining alidation .
y g set/fold | /fold Test image/ fold
NLM, Normal 3500 2240 560 700
Belarus,
NIAID and | Tyberculosis | 3500 2240 560 700
RSNA

FIGURE 5. Example of CXR images from different datasets. (A) CHN
dataset, (B) MC dataset, (C) Belarus dataset and (D) RSNA dataset.

C. EXPERIMENTS

1) LUNG SEGMENTATION

Original U-Net and modified U-Net were used separately
on Kaggle CXR images and lung mask dataset for lung
segmentation. Out of 704 CXR images and lung masks, 80%
images and masks were used for training and 20% for testing
as summarized in Table 1. Five-fold cross validation was used
for training, validation and testing the entire dataset.

The networks were implemented using PyTorch library
with Python 3.7 on Intel® Xeon® CPU E5-2697 v4 @
2,30GHz and 64 GB RAM, with a 16 GB NVIDIA GeForce
GTX 1080 GPU. Both the U-Net models were trained using
Stochastic Gradient Descent (SGD) with momentum opti-
mizer with learning rate, « = 1073, dropout rate = 0.2,
momentum update, 8 = 0.9, mini-batch size of 32 images
with 50 back propagation epochs; early stopping criterion of
5 maximum epochs when no improvement in validation loss
is seen.

2) TB CLASSIFICATION

Nine different CNN models were trained, validated and tested
separately using non-segmented and segmented X-ray images
for the classification of TB and non-TB normal images to
investigate if data segmentation can improve classification
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accuracy. The complete image set were divided into 80%
training and 20% testing sub-sets for five-fold cross valida-
tion and 20% of training data were used for validation. For
example, 80% (2800) of 3500 normal X-ray images were
used for training and 20% (700) images were used for testing.
However, 20% (560) of 2800 training images were used for
validation and therefore, remaining 2240 images were used
for training a fold. Table 2 shows the number of training,
validation and test images used in the two experiments of
non-segmented and segmented lungs images.

All nine CNNs were implemented using PyTorch library
with Python 3.7 on Intel® Xeon® CPU E5-2697 v4 @
2,30GHzand 64 GB RAM, with a 16 GB NVIDIA GeForce
GTX 1080 GPU. Three comparatively shallow networks
(MobileNetv2, SqueezeNet and ResNetl8) and six deep
networks (Inceptionv3, ResNet 50, ResNet101, CheXNet,
VGG19 and DenseNet201) were evaluated in this study to
investigate whether shallow or deep networks are suitable
for this application. Three different variants of ResNet were
used to compare specifically the impact of shallow and deep
networks with similar structure. Performance difference due
to initially trained on different image classes other than X-ray
images were compared with CheXNet, which is a 121-layer
DenseNet variant and the only network pre-trained on X-ray
images. Nine pre-trained CNN models were trained using
same training parameters and stopping criteria as mentioned
earlier. However, only 15 back propagation epochs were
used for classification problem. Five-fold cross-validation
results were averaged to produce the final receiver operating
characteristic (ROC) curve, confusion matrix, and evaluation
matrices. Using image augmentation and having a validation
image set, helps in avoiding overfitting of the models [73].
Table 3 shows comparative performance of both U-Net mod-
els in terms of the variable parameters such as Optimizer,
Loss Function and Batch Size for image segmentation. Other
segmentation parameters such as number of epochs and learn-
ing rate were programmed to change in case no improvement
of performance was observed.
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TABLE 3. Comparative performance of original U-Net and modified U-Net.

Batch Size Loss Function | Optimizer Network Test loss| Test accuracy | IoU Dice
4 Dice Loss SGD U-Net 0.039 | 98.03 92.4 96.0
8 Dice Loss SGD U-Net 0.277 | 97.46 90.5 94.94
16 Dice Loss SGD U-Net 0.0921 | 97.59 90.88 95.13
4 BCE Loss SGD U-Net 0.21 97.51 90.52 94.95
8 BCE Loss SGD U-Net 0.183 | 98.03 92.2 95.7
16 BCE Loss SGD U-Net 0.895 | 97.96 92.08 95.75
4 Dice Loss Adam U-Net 0.0385 | 98.11 92.72 96.14
8 Dice Loss Adam U-Net 0.0385 | 98.14 92.82 96.19
16 Dice Loss Adam U-Net 0.0407 | 98.12 92.8 96.19
4 BCE Loss Adam U-Net 0.051 | 98.11 92.65 96.09
8 BCE Loss Adam U-Net 0.3241 | 84.55 79.46 88.26
16 BCE Loss Adam U-Net 0.3352 | 84.15 78.9 87.86
4 Dice Loss SGD Modified U-Net 0.043 | 97.88 91.8 95.6
8 Dice Loss SGD Modified U-Net 0.0415 | 98.1 92.71 96.08
16 Dice Loss SGD Modified U-Net 0.042 | 98.02 92.7 96.01
4 BCE Loss SGD Modified U-Net 0.0789 | 97.87 91.88 95.55
8 BCE Loss SGD Modified U-Net 0.247 | 97.88 91.85 95.67
16 BCE Loss SGD Modified U-Net 0.0664 | 97.98 92,25 | 95.88
4 Dice Loss Adam Modified U-Net 0.1099 | 84.75 80.02 88.47
8 Dice Loss Adam Modified U-Net 0.1116 | 84.14 79.68 88.21
16 Dice Loss Adam Modified U-Net 0.1191 | 84.09 78.75 87.75
4 BCE Loss Adam Modified U-Net 0.3185 | 84.79 79.73 88.4
8 BCE Loss Adam Modified U-Net 0.3322 | 84.78 79.4 88.22
16 BCE Loss Adam Modified U-Net 0.3176 | 84.88 79.9 88.48
TABLE 4. Details of training parameter for segmentation and shown in equation (1-3).
classification.
(TP+1N)
Accuracy =
Training parameter (TP + FN) + (FP+1IN)
Segmentation model Classification model (D
batch size 8 32 IoU (Jaccardindex) = L 2)
- (TP + FN + FP)
learning rate 0.001 0.001 . . (2 % TP)
epochs 20 15 Dice Coefficient(F1 — score) = O +TP 1 FN 1+ FP) 3)
epochs patience | 3 3
stopping criteria | 5 5 2) TB CLASSIFICATION
Stochastic gradient The performance of different CNNs for testing dataset was
optimizer Adam descent (SGD) evaluated after the completion of training and validation

D. PERFORMANCE MATRIX

1) LUNG SEGMENTATION

The performance of different networks in image segmenta-
tion for the testing dataset was evaluated after the completion
of training and validation phase and was compared using four
performance metrics: loss, accuracy, IoU, Dice. The equa-
tions used to calculate accuracy, Intersection-Over-Union
(IoU) or Jaccard Index and Dice coefficient (or F1-score) are
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phase and was compared using six performance metrics:
accuracy, sensitivity or recall, specificity, precision, area
under curve (AUC), F1 score. The matrices were calculated
using the following equations (4-8):

(TP +1N)
Accuracy = 4
(TP+FN)+ (FP+1N)
sonsirivimy — __(TP) S
ensitivity = m (5)
. (IN)
Specificity = —(FP TN (6)
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. (TP)
Precision = ————— 7)
(TP 4 FP)
2=*TP)
F1Score = ®)

(2*TP + FN + FP)

Here, true positive (TP), true negative (TN), false pos-
itive (FP) and false negative (FN) were used to denote
number of tuberculosis images identified as tuberculosis,
number of normal images identified as normal, number of
normal images incorrectly identified as tuberculosis images
and number of tuberculosis images incorrectly identified as
normal, respectively.

In addition, the networks can be compared in terms of
processing time for a test image 6¢,)( and also the training
time per epoch (8¢,). The processing time for a test image (5¢,)
is the time taken by a network to classify an image (I) and the
training time per epoch is the time taken by a network to train
one epoch represented in equation 9 and 10 respectively.

8ty = th — 11 9
Sty =ty — 13 (10)

where t1 and t, are the start and end time for a network to
classify an image I, respectively and ¢3 and t4 are the start
and end time of training an epoch by a network. All the time
is measured in seconds.

IV. RESULTS AND DISCUSSIONS

A. LUNG SEGMENTATION

Original U-Net and modified U-Net networks were trained,
validated and evaluated on the test data for the segmentation
of lungs of X-ray images. The best performing segmentation
parameters are stated in Table 4 and can also be seen in the
highlighted row of Table 3. Figure 6 shows some example
test X-ray images, corresponding ground truth masks and
segmented lung images generated by the two trained U-Net
models for kaggle dataset. It can be noted that the original
U-Net outperformed modified U-Net in the segmentation of
lung regions on CXR images quantitatively and qualitatively.

Modified U-net

Original X-ray Ground truth Comparison

-

Original U-net
N\
i
g )
> Vi

"
]
A

FIGURE 6. Sample test X-ray images, segmented lungs using two U-net
models and ground truth were compared.

—
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The better performing original U-Net model was then
used to segment the classification database (3500 normal and
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Segmented Lungs

Segmented Mask

*

FIGURE 7. Samples X-ray images from classification database (left),
generated masks by the trained original U-Net model (middle) and
corresponding segmented lung (right).

3500 TB images), which was used for classification of TB and
non-TB normal cases. It is important to see on a completely
unseen image-set with TB infection and normal images how
well the trained segmentation model works. It can be seen
from Figure 7 that the original U-net model trained on Kaggle
chest X-ray dataset can segment the lung areas of the X-ray
images of the classification database very reliably. However,
the quantitative evaluation on the classification dataset is not
possible as there is no ground truth masks available for this
database and therefore, qualitative evaluation was done to
confirm that each X-ray image was segmented correctly.

B. TB CLASSIFICATION

As mentioned earlier, there are two different experiments
(using non-segmented and segmented lungs X-ray images)
were conducted for the classification of TB and normal
(non-TB) cases. The comparative performance for different
CNNss for the binary classification is shown in Table 5. It is
apparent from Table 5 that all the evaluated pre-trained mod-
els perform very well in classifying TB and normal images
in this two-class problem. Among the networks trained with
X-ray images without segmentation, CheXNet is perform-
ing better for classifying the X-ray images. Even though
CheXNet is shallower than DenseNet201, it was originally
trained on X-ray images provides it additional benefits in
classifying X-ray images and it is showing better performance
than DenseNet201. It is not necessary that deeper network
will perform better rather CheXNet is a very good example
of transfer learning and it outperforms other networks for this
problem. Similar performance was observed by the authors
in the COVID-19 classification problem [24]. CheXNet is
also fast in classify an image, evident from the processing
time for testing an image (8¢,) being the smallest amongst
all the other competing networks. The training time taken
per epoch (6t;) is also amongst the average compared with
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TABLE 5. Comparative performance of different models for TB classification using with and without segmented data.

Scheme Weighted Average
Processing Training time
Model Overall time per test | per epoch
Accuracy | Precision | Sensitivity | Fl-score Specificity | image (6t,) | (6t,)
ResNet18 93.85 94.08 93.85 93.84 93.91 0.2 39.24
ResNet50 93.11 934 93.11 93.09 93.16 0.35 427
. ResNet101 94.55 94.74 94.55 94.54 94.59 0.68 49.6
Without 43.85
Segmentation ChexNet 96.47 96.62 96.47 96.47 96.51 0.4 .
InceptionV3 95.72 95.92 95.73 95.73 95.92 1.02 75.59
Vggl9 95.8 95.95 95.8 95.8 95.85 1.51 62.2
DenseNet201 95.07 95.27 95.07 95.07 95.12 0.58 93.6
SqueezeNet 94.18 9431 94.18 94.17 94.21 0.19 38
MobileNet 94.33 94.65 94.33 94.32 94.39 0.13 39.42
ResNetl8 96.84 97.14 96.48 96.96 97.42 0.24 3243
With
. ResNet50 97.07 97.34 97.07 97.14 97.36 0.4 33.45
Segmentation
ResNet101 97.96 98 97.96 97.96 97.93 0.75 43.45
ChexNet 98.14 98.15 98.14 98.14 98.13 0.78 38.29
InceptionV3 98.54 98.57 98.54 98.54 98.52 1.15 70.38
Vegl9 97.91 97.95 97.92 97.92 97.89 1.7 59.5
DenseNet201 98.6 98.57 98.56 98.56 98.54 0.8 88.67
SqueezeNet 96.58 97.08 96.75 96.66 97.32 0.22 342
MobileNet 96.9 97.29 96.68 96.86 97.62 0.15 33.23
ROC curves for TB classification with non-segmented lung ROC curves for TB classification with segmented lung
ol -
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0951 o8l
097
o9r 0.96
z =
;.?; .% 0.95
3= N 4 5 o4 Reseror
ﬁ?;::‘::t ResNet18
08 ——— ChexNet i M et
32352:3 0.92 InceptionV3
0.75 Vgg1e 0.91 S;qu‘m
e DenseNet201 —Der\s-eNet2D1
09
0 0.02 0.04 0.06 U;}B U“l 0‘12 DIM EI} D"]Z D.‘Dd U‘DG D.IUB 0‘1 0. ‘12

1- Specificity

1-Specificity

FIGURE 8. Comparison of the ROC curves for Normal, and Tuberculosis classification using CNN based models for non-segmented (A) and

segmented (B) CXR images.

other networks which can also be attributed to the number of
layers in this network being lesser than deeper networks such
as InceptionV3, Vggl19, DenseNet201 and being deeper than
ResNet18, and ResNet50. Even though CheXNet has more
layers than ResNetlO1, however, faster than ResNetl01,
which could be linked to the number of network parameters.
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Figure 8(A) clearly shows that the ROC curves for CheXNet
is the best when considering non-segmented lungs.

On the other hand, segmented lung chest X-ray images
provided a clear performance boost for all of the tested net-
works. This reflect the fact that shallow or deep, all CNNs can
distinguish TB and normal lungs with very high reliability
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A Training and Validation loss Versus Epochs for non-segmented CXR’s
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FIGURE 9. Training and Validation Losses versus Epoch for non-segmented (A) and segmented (B) CXR Images.

when only lung images are used as input to the CNNs.
This is apparent from the ROC curves of Figure 8 as well
where a comparable performance from all the networks were
shown. Although all the CNNs provide better performance
in classification, DenseNet201 showed the most outstanding
performance in classifying TB and normal images. Even
though performance-wise DenseNet201 was the best per-
former, however, it was comparatively slow in training and
takes more time to process a test image being the deepest
network in the group. It is also interesting to see that &z,
increases and §¢; decreases for all the networks when dealing
with segmented lung images compared to when working
with non-segmented image. Figure 9 shows the training and
validation loss versus epochs for the three best performing
networks for segmented and non-segmented lung X-rays.
It can also be seen that the networks reach and stabilizes
with the lowest loss earlier when dealing with the segmented
lungs CXR.

In summary, CheXNet and DenseNet201 are producing
the highest classification accuracies of 96.47% and 98.6%
for non-segmented and segmentation images respectively.
DenseNet201 is performing well on the segmented lungs,
which reflects that the deeper network can classify more
accurately for segmented lung X-ray images. It is evident that
segmentation improves overall performance of classification
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significantly. However, as this problem is a binary problem
and the lungs’ regions of TB images are significantly dif-
ferent than that of normal images, all the tested networks
performed well.

Figure 10 shows the confusion matrix for outperform-
ing ChexNet model without segmented X-ray images and
DenseNet201 model with segmented lungs X-ray images.
It can be noticed that even with the best performing net-
work, 115 out of 3500 TB images were miss-classified as
normal and 132 out of 3500 normal X-ray images were
miss-classified as TB image when the non-segmented X-ray
images were used as input to the classifier. On the other
hand, only 39 out of 3500 TB images were miss-classified
as normal and 59 normal images were miss-classified as
TB when the segmented lungs were used as input to the
classifier. This is clearly an outstanding performance from
any computer aided classifier and this can significantly help
in the fast screening of TB by the radiologist immediately
after acquiring the X-ray images.

C. VISUALIZATION USING SCORE-CAM

As mentioned earlier, it is important to see where network
is learning for the relevant area of the X-ray images or it
is learning from anywhere and any non-relevant information
for classification. Therefore, Score-CAM based heat maps
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Confusion Matrix for CheXNet using non-segmented CXR image

Normal
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Confusion Matrix for DenseNet201 using segmented CXR image

Normal

True Class

B

Normal B
Predicted Class

FIGURE 10. Confusion matrix for Normal and Tuberculosis (TB)
classification for ChexNet model without segmented X-ray (A), and
DenseNet201 model with segmented X-ray (B).

were generated for original (non-segmented) X-ray images
and segmented X-ray images. Figure 11 shows the original
X-ray samples along with the heat maps on non-segmented
and segmented lung. In each of the non-segmented images,
CNN is learning from the regions other than the lungs and the
areas which are mostly contributing to take decision are not
part of the lungs always or most of the cases. Therefore, even
though the performance of the CNNs is quite good in clas-
sification of TB and normal images, the reliability of these
networks would be criticized and several researchers have
recently criticized CNNs for learning from non-relevant areas
of the image [74]. However, classification using segmented
lungs can overcome this drawback and it is evident from
Figure 11 that the heat maps for segmented lungs indicate that
the dominantly contributing region in the decision making
of CNN are within the lung. As TB changes opacities of the
lung regions on the CXR, thus learning by the deep networks
with segmented lung images provided higher classification
accuracies. Since network is now only learning from lung
areas, it can learn differences of normal and TB infected lung
images only and therefore, it can distinguish them with very
high accuracy. We have further confirmed the performance
of the best performing network with t-SNE visualization
in Figure 12, using the 3500 TB and 3500 Normal seg-
mented CXR images and the best trained Denset201 network.
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Score-CAM Heat map
Non-segmented X-ray Segmented X-ray

Original X-ray
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FIGURE 11. Score-CAM visualization of correctly classified TB infected
chest X-ray: Original X-ray (left), Score-CAM heat map on original X-ray
(middle) and Score-CAM heat map on segmented lungs (right).
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FIGURE 12. Feature Space obtained using the best trained Densenet201
network and visualized using t-SNE visualization.

The graphical representation can be seen in Figure 12 which
shows the clear distinction between TB and Normal classes
represented by 1 and 0 respectively.

As mentioned earlier, out 3500 normal X-ray images,
59 was miss-classified to TB infected image while 39 out of
3500 TB images were miss-classified to normal by the CNN
model trained with segmented lungs. It is therefore, impor-
tant to investigate these four miss-classified images whether
these are early stage of TB and therefore, CNN consider
them normal or there is any potential reason of this miss-
classification. Figure 13 shows that in some miss-classified
images CNN took decision from the lower edge of the lungs
and only from a smaller area of lungs and that portion of
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TABLE 6. Comparison of findings of this study with other recent similar works.

Author Year Number of Method Database Evaluation Matrix
TB images
Hrudya et al. [26] 2015 138 Support Vector MC Not stated
Machine (SVM)
2016 392 Statistical Analysis 392 records collected AUC - 0.84,
Jaime et al. [27] from Cape Town in Specificity - 49% and
South Africa Sensitivity 95 %
Rahul et al. [32] 2017 805 CNN MC and CHN Accuracy 82.09 %
Anuyj et al. [38] 2017 805 CNN Transfer Learning  MC and CHN Accuracy > 80 %
Lopes et al. [39] 2017 805 CNN Transfer Learning MC and CHN Accuracy 84.7% and
AUC - 0.926
Abbas et al. [75] 2018 138 Knowledge transferred  MC AUC-99.8
via Alexnet
Lucas et al. [34] 2018 1052 CNN and two JSRT,MC and CHN Accuracy 88.76 %
ensembles
Ojasvi et al. [42] 2018 805 Transfer learning MC and CHN Accuracy 94.89 %
(ResNet)
Niharika et al. [28] 2019 805 Support Vector MC and CHN AUC - 0.96 and
Machine specificity - 100%
Pasa et al. [35] 2019 1111 Optimized CNN MC, CHN and AUC -0.811 for MC,
Belarus Dataset 0.9 for CHN and 0.925
for combined
Syeda et al. [40] 805 Transfer Learning MC and CHN AUC-0.85
Mostofa et al. [41] 2019 805 Transfer Learning MC and CHN Accuracy 80% and
(VGG 16 model) 81.25% without and
with augmentation
Quang et al. [36] 2019 805 Tuning of DenseNet MC and CHN AUC-0.94 for CHN
model and 0.82 for MC
Alfonso et al. [37] 2019 805 3 pre-trained CNNs MC and CHN Accuracy 86%
Abbas et al. [25] 2020 247 DeTraC: Class JSRT Accuracy 99.8%
decomposition
This paper 2020 3500 Nine pre-trained CNN NLM (MC and CHN), Accuracy 98.6%
models with lungs Belarus, NIAID TB
segmentation portal & RSNA

Score-CAM Hert map  Miss-clawsified TH auage

FIGURE 13. Miss-classified TB infected images and their corresponding
Score-CAM heat map.

the lungs was normal for all of the images. First case of
TB miss-classified image was very similar to normal image
and radiologist was classified them as normal and therefore,
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it may be very early stage of TB as it was labelled as TB
infected image in the original dataset. However, second to
fourth TB infected images are from mild to moderate TB
patients and CNN miss-classified them as it is learning from
wrong area of the lungs. Therefore, if the segmented lungs
can be further segmented into patches which can be used
as input to CNN model, which might further enhance the
performance. This is the future direction of investigation of
this work.

This state-of-the-art performance of our proposed method
was compared with the recently published works in the same
problem domain. Table 6 summarizes the comparison of
the results presented in this paper to that of others for the
detection of tuberculosis from chest X-ray images. In few
studies [43], [75], the detection accuracies have been reported
to be 99.8% using databases consisting of small number
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of images. However, in our study we used larger datasets
than others and found consistent results. We also used image
segmentation techniques and evaluated classification perfor-
mance using nine different CNN models that makes our
method more robust and versatile with 98.6% accuracy.
Moreover, the performance of our model is justified using
Score-CAM based visualization technique to emphasize the
importance of segmentation of X-ray images for CNN based
classification tasks.

V. CONCLUSION

This work presents a transfer learning approach with deep
Convolutional Neural Networks for the automatic detection
of tuberculosis from the chest radiographs. The performance
of nine different CNN models were evaluated for the clas-
sification of TB and normal CXR images. ChexNet model
outperforms other deep CNN models for the datasets with-
out image segmentation whereas DenseNet201 outperforms
for the segmented lungs. The classification accuracy, pre-
cision and recall for the detection of TB were found to
be 96.47%, 96.62%, and 96.47% without segmentation and
98.6%, 98.57%, and 98.56% with segmentation respectively.
It was also shown that image segmentation can significantly
improve classification accuracy. The Score-CAM visualiza-
tion output confirms that lung segmentation helps in taking
decisions from the lung region unlike the original x-rays
where decision can be taken based on features outside the
lung region. Therefore, segmentation of lungs is very crucial
for computer aided diagnosis using radiographs. This state-
of-the-art performance can be a very useful and fast diagnos-
tic tool, which can save significant number of people who
died every year due to delayed or improper diagnosis.
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image and 3500 normal images were released. This database
was created from the 4 publicly available databases, which
are referenced in the database. https://www.kaggle.com/
tawsifurrahman/tuberculosis-tb-chest-xray-dataset

VOLUME 8, 2020

REFERENCES

[1]1 Global Tuberculosis Report 2019, WHO, Geneva, Switzerland, 2019.

[2] S.K.Sharmaand A. Mohan, “Tuberculosis: From an incurable scourge to a
curable disease-journey over a millennium,” Indian J. Med. Res., vol. 137,
no. 3, p. 455, 2013.

[3] C.Silverman, “An appraisal of the contribution of mass radiography in the
discovery of pulmonary tuberculosis,” Amer. Rev. Tuberculosis, vol. 60,
no. 4, pp. 466-482, 1949.

[4] A.H.van’tHoog, H. K. Meme, K. F. Laserson, J. A. Agaya, B. G. Muchiri,
W. A. Githui, L. O. Odeny, B. J. Marston, and M. W. Borgdorff, “Screening
strategies for tuberculosis prevalence surveys: The value of chest radiogra-
phy and symptoms,” PLoS ONE, vol. 7, no. 7, Jul. 2012, Art. no. e38691.

[S] A.P.Brady, “Error and discrepancy in radiology: Inevitable or avoidable?”
Insights Imag., vol. 8, no. 1, pp. 171-182, Feb. 2017.

[6] A. J. Degnan, E. H. Ghobadi, P. Hardy, E. Krupinski, E. P. Scali,
L. Stratchko, A. Ulano, E. Walker, A. P. Wasnik, and W. F. Auffer-
mann, “‘Perceptual and interpretive error in diagnostic radiology—Causes
and potential solutions,” Academic Radiol., vol. 26, no. 6, pp. 833-845,
Jun. 2019.

[7] M. van Cleeft, L. Kivihya-Ndugga, H. Meme, J. Odhiambo, and P. Klatser,
“The role and performance of chest X-ray for the diagnosis of tubercu-
losis: A cost-effectiveness analysis in Nairobi, Kenya,” BMC Infectious
Diseases, vol. 5, no. 1, p. 111, Dec. 2005.

[8] S. Graham, K. D. Gupta, J. R. Hidvegi, R. Hanson, J. Kosiuk,
K. A. Zahrani, and D. Menzies, “Chest radiograph abnormalities asso-
ciated with tuberculosis: Reproducibility and yield of active cases,” Int.
J. Tuberculosis Lung Disease, vol. 6, no. 2, pp. 137-142, 2002.

[9] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao,
D. Mollura, and R. M. Summers, “Deep convolutional neural networks
for computer-aided detection: CNN architectures, dataset characteris-
tics and transfer learning,” IEEE Trans. Med. Imag., vol. 35, no. 5,
pp. 1285-1298, May 2016.

[10] H.Greenspan, B. van Ginneken, and R. M. Summers, ““Guest editorial deep
learning in medical imaging: Overview and future promise of an exciting
new technique,” IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1153-1159,
May 2016.

[11] H. Ravishankar et al., “Understanding the mechanisms of deep transfer
learning for medical images,” in Deep Learning and Data Labeling for
Medical Applications. DLMIA, LABELS (Lecture Notes in Computer Sci-
ence), vol. 10008, G. Carneiro et al., Eds. Cham, Switzerland: Springer,
2016, doi: 10.1007/978-3-319-46976-8_20.

[12] M. L. Razzak, S. Naz, and A. Zaib, “Deep learning for medical image
processing: Overview, challenges and the future,” in Classification in
BioApps (Lecture Notes in Computational Vision and Biomechanics), vol.
26, N. Dey, A. Ashour, and S. Borra, Eds. Cham, Switzerland: Springer,
2018, doi: 10.1007/978-3-319-65981-7_12.

[13] A. Hosny, C. Parmar, J. Quackenbush, L. H. Schwartz, and
H. J. W. L. Aerts, “Artificial intelligence in radiology,” Nature Rev.
Cancer, vol. 18, no. 8, pp. 500-510, 2018, doi: 10.1038/s41568-018-
0016-5.

[14] M. E. H. Chowdhury, K. Alzoubi, A. Khandakar, R. Khallifa,
R. Abouhasera, S. Koubaa, R. Ahmed, and M. A. Hasan, “Wearable
real-time heart attack detection and warning system to reduce road
accidents,” Sensors, vol. 19, no. 12, p. 2780, Jun. 2019.

[15] M.E. H. Chowdhury, A. Khandakar, K. Alzoubi, S. Mansoor, A. M. Tahir,
M. B. I. Reaz, and N. Al-Emadi, ‘“Real-time smart-digital stethoscope
system for heart diseases monitoring,” Sensors, vol. 19, no. 12, p. 2781,
Jun. 2019.

[16] K. Kallianos, J. Mongan, S. Antani, T. Henry, A. Taylor, J. Abuya, and
M. Kohli, “How far have we come? Artificial intelligence for chest radio-
graph interpretation,” Clin. Radiol., vol. 74, no. 5, pp. 338-345, May 2019.

[17] T.Rahman, M. E. H. Chowdhury, A. Khandakar, K. R. Islam, K. F. Islam,
Z.B. Mahbub, M. A. Kadir, and S. Kashem, “Transfer learning with deep
convolutional neural network (CNN) for pneumonia detection using chest
X-ray,” Appl. Sci., vol. 10, no. 9, p. 3233, May 2020.

[18] M. H. Chowdhury, M. N. I. Shuzan, M. E. H. Chowdhury, Z. B. Mahbub,
M. M. Uddin, A. Khandakar, and M. B. I. Reaz, “Estimating blood
pressure from the photoplethysmogram signal and demographic features
using machine learning techniques,” Sensors, vol. 20, no. 11, p. 3127,
Jun. 2020.

[19] A. Al Amin, S. Parvin, M. Kadir, T. Tahmid, S. K. Alam, and
K. S.-E. Rabbani, “Classification of breast tumour using electrical
impedance and machine learning techniques,” Physiol. Meas., vol. 35,
no. 6, p. 965, 2014.

191599


http://dx.doi.org/10.1007/978-3-319-46976-8_20
http://dx.doi.org/10.1007/978-3-319-65981-7_12
http://dx.doi.org/10.1038/s41568-018-0016-5
http://dx.doi.org/10.1038/s41568-018-0016-5

IEEE Access

T. Rahman et al.: Reliable TB Detection Using CXR With Deep Learning, Segmentation, and Visualizatio

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst. (NIPS), 2012, pp. 1097-1105.

P. Chhikara, P. Singh, P. Gupta, and T. Bhatia, “Deep convolutional neural
network with transfer learning for detecting pneumonia on chest X-rays,”
in Advances in Bioinformatics, Multimedia, and Electronics Circuits and
Signals (Advances in Intelligent Systems and Computing), vol. 1064,
L. Jain, M. Virvou, V. Piuri, and V. Balas, Eds. Singapore: Springer, 2020,
doi: 10.1007/978-981-15-0339-9_13.

R.-1. Chang, Y.-H. Chiu, and J.-W. Lin, “Two-stage classification of tuber-
culosis culture diagnosis using convolutional neural network with transfer
learning,” J. Supercomput., vol. 76, pp. 8641-8656, Jan. 2020.

A. Tahir, Y. Qiblawey, A. Khandakar, T. Rahman, U. Khurshid,
F. Musharavati, M. T. Islam, S. Kiranyaz, and M. E. H. Chowdhury,
“Coronavirus: Comparing COVID-19, SARS and MERS in the eyes of
AL” 2020, arXiv:2005.11524. [Online]. Available: http://arxiv.org/abs/
2005.11524

M. E. H. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar,
M. A. Kadir, Z. B. Mahbub, K. R. Islam, M. S. Khan, A. Igbal,
N. Al-Emadi, M. B. I. Reaz, and T. L. Islam, “Can Al help in screening
viral and COVID-19 pneumonia?” 2020, arXiv:2003.13145. [Online].
Auvailable: http://arxiv.org/abs/2003.13145

A. Abbas, M. M. Abdelsamea, and M. M. Gaber, “DeTrac: Transfer
learning of class decomposed medical images in convolutional neural
networks,” IEEE Access, vol. 8, pp. 74901-74913, 2020.

H. Das and A. Nath, “An efficient detection of tuberculosis from chest
X-rays,” Int. J. Adv. Res. Comput. Sci. Manage. Studies, vol. 3, no. 5,
pp. 149-154, May 2015.

J. Melendez, C. 1. Sanchez, R. H. H. M. Philipsen, P. Maduskar, R. Dawson,
G. Theron, K. Dheda, and B. van Ginneken, ‘“An automated tuberculosis
screening strategy combining X-ray-based computer-aided detection and
clinical information,” Sci. Rep., vol. 6, no. 1, p. 25265, Jul. 2016.

N. Singh and S. Hamde, ‘““Tuberculosis detection using shape and texture
features of chest X-rays,” in Innovations in Electronics and Communi-
cation Engineering (Lecture Notes in Networks and Systems), vol. 65,
H. Saini, R. Singh, G. Kumar, G. Rather, and K. Santhi, Eds. Singapore:
Springer, 2019, doi: 10.1007/978-981-13-3765-9_5.

B. van Ginneken, S. Katsuragawa, B. M. ter Haar Romeny, K. Doi, and
M. A. Viergever, “Automatic detection of abnormalities in chest radio-
graphs using local texture analysis,” IEEE Trans. Med. Imag., vol. 21,
no. 2, pp. 139-149, 2nd Quart., 2002.

S. Jaeger, A. Karargyris, S. Antani, and G. Thoma, “‘Detecting tuberculosis
in radiographs using combined lung masks,” in Proc. Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc., Aug. 2012, pp. 4978-4981.

J. Melendez, C. I. Séanchez, R. H. Philipsen, P. Maduskar, and
B. van Ginneken, “Multiple-instance learning for computer-aided detec-
tion of tuberculosis,” Proc. SPIE, vol. 9035, Mar. 2014, Art. no. 90351J.
R. Hooda, S. Sofat, S. Kaur, A. Mittal, and F. Meriaudeau, ‘“‘Deep-learning:
A potential method for tuberculosis detection using chest radiography,”
in Proc. IEEE Int. Conf. Signal Image Process. Appl. (ICSIPA), Kuching,
Malaysia, Sep. 2017, pp. 497-502.

P. Lakhani and B. Sundaram, “Deep learning at chest radiography: Auto-
mated classification of pulmonary tuberculosis by using convolutional
neural networks,” Radiology, vol. 284, no. 2, pp. 574-582, Aug. 2017.

L. G. C. Evalgelista and E. B. Guedes, “Computer-aided tuberculosis
detection from chest X-ray images with convolutional neural networks,”
in Proc. Anais do XV Encontro Nacional de Inteligéncia Artif. e Computa-
cional (ENIAC), Oct. 2018, pp. 518-527.

F. Pasa, V. Golkov, E. Pfeiffer, D. Cremers, and D. Pfeiffer, “Efficient
deep network architectures for fast chest X-ray tuberculosis screening and
visualization,” Sci. Rep., vol. 9, no. 1, pp. 1-9, Dec. 2019.

Q. H. Nguyen, B. P. Nguyen, S. D. Dao, B. Unnikrishnan, R. Dhingra,
S. R. Ravichandran, S. Satpathy, P. N. Raja, and M. C. H. Chua, “Deep
learning models for tuberculosis detection from chest X-ray images,” in
Proc. 26th Int. Conf. Telecommun. (ICT), Apr. 2019, pp. 381-386.

A. Herndndez, A. Panizo, and D. Camacho, “An ensemble algorithm based
on deep learning for tuberculosis classification,” in Proc. Int. Conf. Intell.
Data Eng. Automated Learn., Manchester, U.K., 2019, pp. 145-154.

A. Rohilla, R. Hooda, and A. Mittal, “Tb detection in chest radiograph
using deep learning architecture,” in Proc. ICETETSM, Aug. 2017, vol. 6,
no. 8, pp. 1073-1085.

U. K. Lopes and J. F. Valiati, ‘‘Pre-trained convolutional neural networks as
feature extractors for tuberculosis detection,” Comput. Biol. Med., vol. 89,
pp. 135-143, Oct. 2017.

191600

(40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

(48]

(49]

(50]

(51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

(591

[60]

[61]

S. S. Meraj, R. Yaakob, A. Azman, S. N. Rum, A. Shahrel, A. Nazri, and
N. F. Zakaria, “Detection of pulmonary tuberculosis manifestation in chest
X-rays using different convolutional neural network (CNN) models,” Int.
J. Eng. Adv. Technol. (IJEAT), vol. 9, no. 1, pp. 2270-2275, Oct. 2019.
M. Ahsan, R. Gomes, and A. Denton, “Application of a convolutional
neural network using transfer learning for tuberculosis detection,” in Proc.
IEEE Int. Conf. Electro Inf. Technol. (EIT), May 2019, pp. 427-433.

0. Yadav, K. Passi, and C. K. Jain, “Using deep learning to classify X-ray
images of potential tuberculosis patients,” in Proc. IEEE Int. Conf. Bioinf.
Biomed. (BIBM), Dec. 2018, pp. 2368-2375.

S. Jaeger, S. Candemir, S. Antani, Y.-X. Wang, P.-X. Lu, and G. Thoma,
“Two public chest X-ray datasets for computer-aided screening of pul-
monary diseases,” Quant. Imag. Med. Surg., vol. 4, no. 6, p. 475, 2014.
S. Christodoulidis, M. Anthimopoulos, L. Ebner, A. Christe, and
S. Mougiakakou, ‘“Multisource transfer learning with convolutional neural
networks for lung pattern analysis,” IEEE J. Biomed. Health Inform.,
vol. 21, no. 1, pp. 76-84, Jan. 2017.

H. Yang, S. Mei, K. Song, B. Tao, and Z. Yin, “Transfer-learning-based
online Mura defect classification,” IEEE Trans. Semicond. Manuf., vol. 31,
no. 1, pp. 116-123, Feb. 2018.

S. Akgay, M. E. Kundegorski, M. Devereux, and T. P. Breckon, “Trans-
fer learning using convolutional neural networks for object classification
within X-ray baggage security imagery,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), 2016, pp. 1057-1061.

N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall,
M. B. Gotway, and J. Liang, “Convolutional neural networks for medical
image analysis: Full training or fine tuning?”’ IEEE Trans. Med. Imag.,
vol. 35, no. 5, pp. 1299-1312, May 2016.

S. Jialin Pan and Q. Yang, ““‘A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010.

ResNet, AlexNet, VGGNet, Inception: Understanding Various Architec-
tures of Convolutional Networks. Accessed: Jul. 5, 2020. [Online]. Avail-
able: https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘“Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700-4708.

P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding,
A. Bagul, C. Langlotz, K. Shpanskaya, M. P. Lungren, and A. Y. Ng,
“CheXNet: Radiologist-level pneumonia detection on chest X-Rays
with deep learning,” 2017, arXiv:1711.05225. [Online]. Available:
http://arxiv.org/abs/1711.05225

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and < 0.5 MB model size,” 2016, arXiv:1602.07360. [Online].
Available: http://arxiv.org/abs/1602.07360

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “‘Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818-2826.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556. [Online]. Avail-
able: http://arxiv.org/abs/1409.1556

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510-4520.

Y. LeCun, K. Kavukcuoglu, and C. Farabet, ““Convolutional networks and
applications in vision,” in Proc. IEEE Int. Symp. Circuits Syst., Jun. 2010,
pp. 253-256.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent., 2015, pp. 234-241.

R. Azad, M. Asadi-Aghbolaghi, M. Fathy, and S. Escalera, ‘“Bi-directional
ConvLSTM U-Net with densley connected convolutions,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW), Oct. 2019,
pp. 406-415.

D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, ““Smooth-
Grad: Removing noise by adding noise,” 2017, arXiv:1706.03825.
[Online]. Available: http://arxiv.org/abs/1706.03825

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 618-626.

A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian,
“Grad-CAM++: Generalized gradient-based visual explanations for deep
convolutional networks,” in Proc. IEEE Winter Conf. Appl. Comput. Vis.
(WACV), Mar. 2018, pp. 839-847.

VOLUME 8, 2020


http://dx.doi.org/10.1007/978-981-15-0339-9_13
http://dx.doi.org/10.1007/978-981-13-3765-9_5

T. Rahman et al.: Reliable TB Detection Using CXR With Deep Learning, Segmentation, and Visualizatio

IEEE Access

[62]

[63]

[64]

[65]

[66]

[67]

[68]

H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and
X. Hu, “Score-CAM: Score-weighted visual explanations for convolu-
tional neural networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2020, pp. 24-25.

L. van der Maaten and G. Hinton, ‘“Visualizing data using t-SNE,” J. Mach.
Learn. Res., vol. 9, pp. 2579-2605, Nov. 2008.

P. Perera and V. M. Patel, “Learning deep features for one-class classi-
fication,” IEEE Trans. Image Process., vol. 28, no. 11, pp. 5450-5463,
Nov. 2019.

A.D.Baxevanis, G. D. Bader, and D. S. Wishart, Bioinformatics. Hoboken,
NJ, USA: Wiley, 2020.

M. A. Myszczynska, P. N. Ojamies, A. M. B. Lacoste, D. Neil, A. Saffari,
R. Mead, G. M. Hautbergue, J. D. Holbrook, and L. Ferraiuolo, “Appli-
cations of machine learning to diagnosis and treatment of neurode-
generative diseases,” Nature Rev. Neurol., vol. 16, no. 8, pp. 440-456,
Aug. 2020.

J. Wang, C. Jiang, H. Zhang, Y. Ren, K.-C. Chen, and L. Hanzo, “Thirty
years of machine learning: The road to Pareto-optimal wireless net-
works,” IEEE Commun. Surveys Tuts., vol. 22, no. 3, pp. 1472-1514,
3rd Quart., 2020.

S. Jaju. (2017). Comprehensive Guide on t-SNE Algorithm
With Implementation in R & Python. Accessed: Sep. 1, 2020.
[Online]. Available: https://www.analyticsvidhya.com/blog/2017/01/t-
sne-implementation-r-python

VOLUME 8, 2020

[69]

[70]

(71]

(72]

(73]

[74]

[75]

Pandey. Chest Xray Masks and Labels. Accessed: Jun. 9, 2020. [Online].
Available: https://www.kaggle.com/nikhilpandey360/chest-xray-masks-
and-labels

B. P. Health. (2020). Belarus Tuberculosis Portal. Accessed: Jun. 9, 2020.
[Online]. Available: http://tuberculosis.by/

A. Rosenthal et al. The TB Portals: An Open-Access, Web-Based Plat-
form for Global Drug-Resistant-Tuberculosis Data Sharing and Analy-
sis. Accessed: Sep. 1, 2020. [Online]. Available: https://data.tbportals.
niaid.nih.gov/

kaggle. RSNA Pneumonia Detection Challenge. Accessed: Jun. 9, 2020.
[Online]. Available: https://www.kaggle.com/c/rsna-pneumonia-
detection-challenge/data

E. D. Science. Overfitting in Machine Learning: What It Is and
How to Prevent It. Accessed: Jul. 7, 2020. [Online]. Available:
https://elitedatascience.com/overfitting-in-machine-learning

J. Schlemper, O. Oktay, M. Schaap, M. Heinrich, B. Kainz, B. Glocker,
and D. Rueckert, “Attention gated networks: Learning to leverage salient
regions in medical images,” Med. Image Anal., vol. 53, pp. 197-207,
Apr. 2019.

A. Abbas and M. M. Abdelsamea, “Learning transformations for auto-
mated classification of manifestation of tuberculosis using convolutional
neural network,” in Proc. 13th Int. Conf. Comput. Eng. Syst. (ICCES),
Dec. 2018, pp. 122-126.

191601



