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A B S T R A C T

This work investigated the use of an ensemble deep random vector functional link (edRVFL) network for
electroencephalogram (EEG)-based driver fatigue recognition. Against the low feature learning capability of
the edRVFL network from raw EEG signals, two strategies were exploited in this work. Specifically, the first
one was to exploit the advantages of the feature extractor module in CNNs, i.e., use CNN features as the
input of the edRVFL network. The second one was to improve the feature learning capability of the edRVFL
network. An enhanced edRFVL network named FGloWD-edRVFL was proposed, in which four enhancements
were implemented, including random forest-based Feature selection, Global output layer, Weighting and
entropy-based Dynamic ensemble. The proposed FGloWD-edRVFL network was evaluated on the challenging
cross-subject driver fatigue recognition tasks. The results indicated that the proposed model could boost
the recognition performance, significantly outperforming all strong baselines. The step-wise analysis further
demonstrated the effectiveness of the proposed enhancements in the edRVFL network.
. Introduction

Driving fatigue is a physiological phenomenon in which the driver’s
ttention and alertness decrease after a long driving task (Wang et al.,
021). It is one of the main contributors to crashes and casualties (Fed-
rico et al., 2005). According to the study of Byeon (2020), driver
atigue caused at least 10%–15% of traffic accidents. For road safety,
t is necessary to develop effective and efficient driver fatigue mon-
toring systems. In recent years, electroencephalogram (EEG), which
an reflect human brain activities, has been widely used for driver
atigue detection (Koay et al., 2022; Liu et al., 2022). For the pur-
ose of practical use, it is essential to establish a calibration-free
river fatigue recognition system with robust generalization capabil-
ty and high performance. However, EEG has the disadvantages of
on-stationary, high-level complexity, and subject variability. Conse-
uently, the performance of cross-subject EEG-based classification is
imited, and further investigation is still required to improve the per-
ormance of calibration-free EEG decoding in driver fatigue recognition
asks.

There are mainly two categories in the literature to perform EEG-
ased classification tasks. The first way is to perform hand-engineering
eature extraction based on the prior knowledge of the signals, fol-
owed by classifier training. Many studies have analyzed, processed,
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and classified EEG-based tasks through artificially designed features
such as spatio-spectral analysis (Bang et al., 2022) and other nonlinear
methods. Particularly for fatigue recognition, some hand-engineering
features have been investigated as well. For instance, Gao et al. (2020)
exploited the traditional differential entropy and power spectral den-
sity (PSD) features to represent the characteristics associated with
driver fatigue states. A coincidence-filtering-based convolutional neural
network (CNN) was proposed to classify the extracted features. Fan
et al. (2022) extracted numerous features including energy, entropy,
rhythmic energy ratio and frontal asymmetry ratio from the EEG signals
to study the use of forehead EEG for fatigue recognition. Zhang et al.
(2023) extracted statistical features, PSD and entropy-related features
from the decomposed EEG signals. Feature selection and feature fusion
were then performed to achieve a good performance of fatigue recog-
nition. Tuncer et al. (2021b) used binary pattern (BiPa) and statistical
features of the one-dimensional discrete wavelet transform. ReliefF and
neighborhood component analysis were exploited to perform feature
selection. Furthermore, a dynamic center based BiPa (DCBiPa) was also
proposed by Tuncer et al. (2021a). A novel textural feature extractor
module was developed based on DCBiPa and a multi-threshold ternary
pattern. Although the great fatigue recognition performance was pre-
sented by exploiting the hand-engineering features, the extraction of
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the features and the possible feature selection followed could have a
high time cost for EEG decoding. Besides, the hand-engineering features
may only cover partial information and could not comprehensively
reflect the human states of alert or fatigue.

With the success of deep learning in image processing, the use
of deep neural networks (DNNs) for end-to-end EEG decoding has
also shown great improvement compared with the conventional hand-
engineering feature-based models. The automatic feature extraction
from raw data provided by DNNs highlights its advantage of cost-
saving. Moreover, the better learning ability of deep learning helps to
extract more distinctive features. Among the different architectures of
DNNs, deep CNNs have made an outstanding performance in learning
from EEG signals automatically. Schirrmeister et al. (2017) first studied
the design and training of CNN to classify raw EEG data. Then, a
shallow and a deep CNN architecture were proposed. Better perfor-
mance was obtained on motor imagery (MI) classification as compared
with the filter-bank common spatial pattern-based model. Besides MI
application, researchers also investigated different CNN architectures
for various EEG-based recognition tasks. For instance, Thuwajit et al.
(2022) proposed a multi-scale CNN, EEGWaveNet, to address epileptic
seizure detection. Khare and Bajaj (2021) transformed the EEG sig-
nals into the time–frequency domain and exploited a CNN to perform
emotion recognition. However, these models were only analyzed in
specific domains. In 2017, Lawhern et al. (2018) proposed a compact
CNN named EEGNet and performed experiments on different brain-
computer interface paradigms. Comparable results were achieved in
subject-dependent and subject-independent settings. Recently, Cui et al.
(2022) proposed an InterpretableCNN (ICNN) which performed spatial
and temporal convolution operations. The model was superior to pre-
vious models such as EEGNet in drowsiness classification based on EEG
signals. Furthermore, Li et al. (2023) proposed a hybrid decomposition-
based ensemble CNN framework. This framework was to deal with
the high complexity of EEG signals. The ensemble CNN model could
effectively decode the decomposed EEG signals and achieve better per-
formance than ICNN. However, almost all existing deep learning-based
EEG decoding methods rely heavily on conventional back-propagation
(BP) to train the model. Consequently, the CNN models may suffer from
the local minima problem.

Randomized neural networks (RNNs) can remedy the problem men-
tioned above by randomly fixing the network configurations and com-
puting the closed-form solution in the output layers. Random vector
functional link (RVFL), proposed by Pao and Takefuji (1992), has
gained substantial attention due to its simplicity and outstanding per-
formance in different fields (Elsheikh et al., 2021a,b, 2023). RVFL
is proven as a universal approximator for continuous functions with
bounded finite dimensions and closed-form solutions (Igelnik and Pao,
1995). In RVFL, the weights and biases of the hidden layer are ran-
domly generated; The direct link propagates the input data directly to
the output layer. This direct link serves as a form of regularization for
the randomization (Zhang and Suganthan, 2016a) and helps to keep the
model’s complexity low (Shi et al., 2021). We refer the readers to the
recent survey (Malik et al., 2022a) for more information on this topic.
To boost the performance of the RVFL network, the ensemble deep vari-
ant of the RVFL network (Shi et al., 2021) was further proposed. The
input features can be mapped to different feature spaces by stacking
the hidden layers. The diverse features are used in ensemble learning
to improve the classification performance further. This ensemble deep
RVFL (edRVFL) has shown its superiority in various applications such
as modeling ultrasonic welding of polymers (Elsheikh et al., 2022).

Although RVFL (Pao and Takefuji, 1992) is one of the oldest ran-
domized single-hidden layer feedforward network, researchers have
also investigated other RNN models such as extreme learning ma-
chine (ELM) (Huang et al., 2006), stochastic configuration network
(SCN) (Wang and Li, 2017) and broad learning system (BLS) (Chen and
Liu, 2018). ELM (Huang et al., 2006) is a variant of the RVFL without
bias and direct connections. ELM has been widely used in various
2

applications such as online sequential learning (Cao et al., 2021b).
Several variants of ELM have been proposed. For example, Zou et al.
(2022a) proposed a BP-ELM that could automatically assign better pa-
rameters for each coming hidden neuron by applying the BP of iterative
least squares. However, recent comparative evaluations (Suganthan and
Katuwal, 2021; Zhang et al., 2019) have shown that RVFL variants with
direct links, in general, outperformed comparable ELM variants.

SCN (Wang and Li, 2017) is a type of RNN generated by a stochas-
tic configuration algorithm. Cao et al. (2021a) proposed a bidirec-
tional SCN, which proposed backward learning to configure the added
neurons based on the residual error feedback. However, recent re-
search (Hu and Suganthan, 2022) has shown that incorporating direct
links to SCN improved its performance and employing Bayesian op-
timization to perform hyper-parameter tuning was superior to the
proposed stochastic configuration algorithm. BLS (Chen and Liu, 2018)
is another RNN with dense connections, which performs the broad
expansion in both the feature layer and the enhancement layer. BLS
is a variant of a flat neural network proposed by Pao et al. (1992).
Zou et al. (2022b) proposed an improved BLS with the driving amount
and optimization solution. An iterative least squares method was used
to avoid the selection of the regularization parameter. Chen and Liu
(2018) presented that BLS underperformed ELM variants in terms of
classification accuracy on MNIST dataset as demonstrated in Table 1
of their work. Hu et al. (2022) showed that BLS underperformed RVFL
variants based on pairwise statistical comparison on UCI datasets as
demonstrated in Table 6 of their work. In this work, the state-of-the-
art (SOTA) RVFL variant, edRVFL, was used for EEG-based cross-subject
driver fatigue recognition.

In EEG processing, previous works usually employed the hand-
engineering features as the input of RNNs (Yin and Zhang, 2018).
However, for time-series data, RNNs lack the strong ability to ex-
tract beneficial features because of the simple architecture and the
random mapping of the enhancement nodes (Cheng et al., 2021). Con-
sequently, if the input was raw EEG signals which are high-dimensional
and high-complexity, the low feature learning capability of the RNNs
could deteriorate the classification performance. In this work, based on
the edRVFL network, two strategies were employed to deal with this
problem.

The first one was to exploit the advantages of CNNs to extract
distinctive and representative features from raw EEG signals and to use
them as the input of the edRVFL network. This was inspired by the work
of Niu and Suen (2012), which presented that the hybrid CNN-support
vector machine (SVM) model outperformed each individual classifier
by exploiting the strong feature extraction ability of the CNN model
and the global optimum solution of SVM. Recently, Cheng et al. (2021)
also showed that the use of edRVFL was beneficial in boosting the per-
formance of the CNN model. This type of hybrid system has also been
used in different applications to help boost performance. For example,
transfer learning is a popular way to generate image representations in
medical image analysis. Lu et al. (2021b) exploited transfer learning
to generate image representations by fine-tuning a pre-trained deep
CNN model on the target small-sized dataset. Their CNN-ELM hybrid
model achieved good performance in Covid-19 detection. Lu et al.
(2021a) also exploited a hybrid AlexNet-ELM model for the detection of
abnormal brain. A fine-tuned AlexNet was used to generate satisfactory
image representations. Overall, the hybrid structure can compensate
for the limitation of the CNN and edRVFL by incorporating the merits
of both classifiers. Therefore, we employed this structure to boost the
performance of both the CNN model and the edRVFL network in this
work.

The second strategy is to enhance the feature learning capability of
the edRVFL network. Specifically, four enhancements to the edRVFL
network were proposed. Firstly, we proposed to exploit a random
forest (RF) (Ho, 1995)-based feature selection to reduce the effects
of noisy and redundant information that may be contained in the

random features. The trivial features and less useful information can be
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filtered out by feature selection such that the more beneficial features
can be used for classification. Secondly, the weighting technique was
employed in the edRVFL network, which was beneficial to diversify
the trained classifiers in ensemble learning and boost the classification
performance. Thirdly, a global output layer was added which used a
global state that combined the features of all enhancement layers as the
input. This contributed the global combination to the edRVFL network,
which was neglected in the output layers previously. This further
increased the diversity in ensemble learning. Lastly, instead of using
a static ensemble module, we proposed to utilize an entropy-based
dynamic ensemble to integrate the outputs of all output layers, includ-
ing dynamic selection and dynamic weighting for each testing sample.
With all the enhancements proposed, this enhanced edRVFL was named
as FGloWD-edRVFL which included Feature selection, Global output
ayer, Weighting and entropy-based Dynamic ensemble in the edRVFL
etwork.

The contributions of this work can be summarized as follows:

• This work investigated the use of the hybrid CNN-edRVFL model
for driver fatigue recognition. The merits of both CNN and the
edRVFL networks were exploited to achieve better performance
than the SOTA models.

• Four enhancements for the edRVFL network were further pro-
posed, including (1) two techniques that can improve the ex-
ploitation efficiency of randomized hidden features: RF-based
Feature selection and Global output layer; and (2) two techniques
that can boost the generalization capability of ensemble learning:
Weighting and entropy-based Dynamic ensemble.

The remaining sections of this paper are organized as follows:
ection 2 introduces the proposed FGloWD-edRVFL in detail. Section 3
resents information about the datasets, comparison results, and abla-
ion study. Then, the advantages of the proposed model are discussed
n Section 4. Finally, conclusions are drawn in Section 5.

. Methodology

The architecture of the proposed FGloWD-edRVFL is shown in
ig. 1. The four proposed enhancements for the edRVFL network,
ncluding RF-based feature selection, weighting, global output layer
nd entropy-based dynamic ensemble, are introduced in this section.
ollowing that, the overall pipeline of the FGloWD-edRVFL input with
NN features is presented.

.1. Ensemble deep random vector functional link with feature selection

The edRVFL network (Shi et al., 2021) is a deep feed-forward RNN
n which the hidden layers are randomized and frozen during training.
he input space of the learning task is denoted as 𝑿 ∈ R𝐾×𝑑 (i.e.,

extracted EEG features), the output space is denoted as 𝒀 ∈ R𝐾×𝐶 (i.e.,
categories of EEG signals), where 𝐾, 𝑑 and 𝐶 represent the number of
samples, feature dimension and categories, respectively. For an edRVFL
network that has 𝐿 hidden layers and 𝑁 𝑙 hidden nodes in the 𝑙th layer,
the hidden features of the 𝑙th layer are calculated by Eq. (1).

𝑯 𝒍 =

{

tanh(𝑿𝑾 𝟏), 𝑖𝑓 𝑙 = 1,

tanh(𝑫𝒍−𝟏𝑾 𝒍), 𝑖𝑓 𝑙 > 1,
(1)

where tanh(⋅) is the used nonlinear activation function in this work. The
term 𝑫𝒍 is the concatenation of the input data (direct link) and the
hidden features in the 𝑙th layer, which is represented as Eq. (2).

𝑫𝒍 = [𝑯 𝒍 𝑿]. (2)

There are 𝐿 output layers and the classification in each output layer is
performed independently by using the calculated enhancement features
𝑫𝒍 as the input. This is elaborated by Eq. (3).

𝒍 𝒍
𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑫 𝜷 , (3)

3

where 𝜷𝒍 represents the weights of the 𝑙th output layer. In this work,
a regularized least square method, Ridge regression, was exploited to
solve the weights of the output layers. Specifically, the output weights
𝜷𝒍 of Ridge regression are given by Eqs. (4) and (5).

prime space: 𝜷𝒍 = [(𝑫𝒍)𝑻𝑫𝒍 + 𝝀𝒍𝑰]
−𝟏

(𝑫𝒍)𝑻 𝒀 , (4)

dual space: 𝜷𝒍 = (𝑫𝒍)𝑻 [𝑫𝒍(𝑫𝒍)𝑻 + 𝝀𝒍𝑰]−𝟏𝒀 , (5)

here 𝜆𝑙 denotes the regularization parameter in the 𝑙th layer. Lastly,
nsemble learning integrates 𝐿 different outputs. Specifically, in the
riginal edRVFL network (Shi et al., 2021), the mean of 𝐿 outputs is
aken as the final output of the classification.

Although the hierarchical representations enlarge the space of ran-
om features, the noise generated by the nature of randomization
ropagates from the bottom to the top layer in the original edRVFL
etwork. These inferior features may deteriorate performance eventu-
lly. To reduce the effect of noisy and redundant features, this work
roposed to implement a RF-based feature selection in the edRVFL
etwork due to its excellent performance for classification, fast com-
utation and great interpretability. Specifically, the importance of the
nhancement features 𝑫𝒍 was measured in terms of their contributions
o decrease the overall impurity. The criterion Gini index was exploited
s the impurity function in this work. For the 𝑖th enhancement feature
𝑖 ∈ [1, 𝑑+𝑁 𝑙]) that is evaluated at the node 𝑛 of the 𝑡th tree of the RF,
he impurity decrease is calculated by Eq. (6).

𝛼𝑡𝑖,𝑛 = 𝐺𝑛 − 𝐺𝑒 − 𝐺𝑟, (6)

here 𝐺𝑛 represents the Gini index calculated at the node 𝑛. 𝐺𝑟 and 𝐺𝑒
epresent the Gini index for the resulting right and left children nodes
f the node 𝑛, respectively. Then, the overall feature importance of the
th enhancement feature in RF is calculated by Eq. (7).

𝛼𝑖 =

∑𝑇
𝑡 𝛼𝑡𝑖,𝑛

∑𝑑+𝑁
𝑖=1

∑𝑇
𝑡 𝛼𝑡𝑖,𝑛

. (7)

The numerator represents the impurity decrease of the 𝑖th enhance-
ment feature in RF. The denominator means the sum of the impurity
decreases of all enhancement features in RF. The term 𝛼𝑖 represents the
normalized impurity decrease of the 𝑖th enhancement feature. In the
proposed edRVFL network with feature selection, a hyper-parameter
𝑚𝑙 was set to define the number of selected features. Specifically, 𝑚𝑙

features with higher feature importance were selected and then fed into
the 𝑙th output layer. The enhancement features obtained after feature
selection are denoted as 𝑫𝒍

𝒇𝒔.

2.2. Weighting

The weighting algorithm is a promising method to improve the
recognition performance in ensemble learning. It has been used in
boosting algorithms (Hu et al., 2022; Freund and Schapire, 1997),
which can force a model to better learn the hard samples during train-
ing. To take advantage of ensemble learning in the edRVFL network,
the original edRVFL network was improved by performing weighting to
process the enhancement features. The graphical flowchart is presented
in Fig. 2. Specifically, the weights for all samples were initially set as 1
in the first output layer during training. After training, the prediction
results of the training data were used to identify the wrongly classified
samples which were then denoted as the hard samples. Following that,
for the training in the second output layer, a new weight was assigned
to the hard samples identified in the previous layer. This process
was iterated for all the following layers. For simplicity, the weight
computation in the 𝑙th hidden layer is described as follows. Assuming
that the number of samples classified correctly and wrongly is 𝐶𝑟 and
𝐶𝑤, respectively, we have

𝐶 + 𝐶 = 𝐾. (8)
𝑟 𝑤
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Fig. 1. Architecture of the FGloWD-edRVFL network. 𝑥𝑘 represents the input data. ℎ𝑙
𝑁 represents the 𝑁th hidden neuron in the 𝑙th hidden layer. The term 𝑾 𝒍 represents the

randomly initialized hidden weights in the 𝑙th hidden layer. 𝒓𝒍 represents the randomly initialized bias in the 𝑙th hidden layer. 𝑭𝑺 𝒍 represents the RF-based feature selection in the
𝑙th output layer. 𝑨𝒍 represents the weight matrix of the 𝑙th output layer. 𝜷𝒍 represents the output weights of the 𝑙th output layer. 𝒐𝒍 represents the output probabilities of the 𝑙th
utput layer. The orange, blue and green lines represent the processes of feature selection, weighting and the combination of the local features for the global state, respectively.
he weight for the correctly classified samples 𝜃𝑟 and the weight for the
rongly classified samples 𝜃𝑤 obey the rule that the size of the samples

s kept the same, which is represented as Eq. (9).

𝜃𝑟𝐶𝑟 + 𝜃𝑤𝐶𝑤 = 𝐾. (9)

hen, by setting the weight for the wrongly classified samples 𝜃𝑤 as the
yper-parameter, the weight of the correctly classified samples in the
eighting scheme is represented as

𝜃𝑟 =
𝐾 − 𝐶𝑤𝜃𝑤

𝐶𝑟
. (10)

To calculate the output weights 𝜷𝒍, Eqs. (4) and (5) are rewritten as

prime space: 𝜷𝒍 = [(𝑫𝒍
𝑨)

𝑇𝑫𝒍
𝑨 + 𝝀𝒍𝑰]−1(𝑫𝒍

𝑨)
𝑇 𝒀 , (11)

dual space: 𝜷𝒍 = (𝑫𝒍
𝑨)

𝑇 [𝑫𝑙
𝑨(𝑫

𝒍
𝑨)

𝑇 + 𝝀𝒍𝑰]−1𝒀 , (12)

where 𝑫𝒍
𝑨 represents the enhancement features by multiplying the

selected features and a weight matrix, which is represented as

𝑫𝒍
𝑨 = 𝑨𝒍𝑫𝒍

𝒇𝒔, (13)

where 𝑨𝒍 is the diagonal (𝐾 ×𝐾) weight matrix in the 𝑙th output layer
that includes the weights for all samples.

2.3. Global output layer

In the original edRVFL network, the local information of each layer
is exploited to compute the output weights. However, the model may
neglect the function of combining different levels of features. Therefore,
it was proposed to add a global output layer, of which the input was a
global state that combined the features of all hidden layers obtained af-
ter feature selection. Moreover, the global state-based output layer with
a different regularization parameter can increase the diversity of the
obtained classifiers for the final ensemble learning. The regularization
parameter in the global output layer is denoted as 𝜆𝑔 .

Specifically, the global state is the combination of local features
obtained after feature selection, which is represented as Eq. (14).

𝟏 𝟐 𝒍 𝑳
𝑫𝒈 = [𝑫𝒇𝒔 𝑫𝒇𝒔 ⋯ 𝑫𝒇𝒔 ⋯ 𝑫𝒇𝒔]. (14)

4

It has to be noted that the global state should be constructed after
feature selection such that the global state is the combination of the
beneficial enhancement features from the output layers and has proper
dimensions for output weights computing. Hence, the classifier in
the global output layer can positively contribute to the final ensem-
ble learning. Otherwise, it may lead to overfitting if the model has
over-high dimensional input features for training.

2.4. Entropy-based dynamic ensemble

For ensemble learning in the original edRVFL network, not every
classifier of the output layers is an expert in classifying all unknown
samples (i.e., testing samples) (Cruz et al., 2018). In other words, low-
competence classifiers may deteriorate the performance of ensemble
learning. Therefore, in this work, a dynamic ensemble was performed
that included a dynamic selection of high-competence classifiers and a
dynamic weighting of the classifiers’ outputs in the block of ensemble
learning. The entropy of the testing samples was used as the criteria
to estimate the competence level of a classifier. The two steps of the
proposed dynamic ensemble are explained in the following.

Firstly, for the dynamic selection, suppose that the output probabil-
ities of the classifier 𝑏 for the 𝑗th testing sample are represented as

𝑷 𝒃
𝒋 = {𝑝𝑏𝑗,1, 𝑝

𝑏
𝑗,2,… , 𝑝𝑏𝑗,𝑐 ,… , 𝑝𝑏𝑗,𝐶}, (15)

where the number of 𝑏 ∈ [0, 𝐿+1], the entropy of this classifier 𝑏 input
with the 𝑗th sample is formulated as

𝑆𝑏
𝑗 =

𝐶
∑

𝑐=1
−𝑝𝑏𝑗,𝑐 ln 𝑝

𝑏
𝑗,𝑐 . (16)

A lower entropy output represents a higher confidence of the corre-
sponding model to classify the testing sample correctly. Therefore, the
competence level of the classifier 𝑏 for the 𝑗th testing sample is defined
as 1 − 𝑆𝑏

𝑗 .
A set of classifiers 𝑩 with higher competence levels is selected. The

number of classifiers selected 𝑞 is set as a hyper-parameter.
For the dynamic weighting in this entropy-based dynamic ensemble,

for each testing sample, the estimated competence level of each selected
classifier was exploited to weight the output probability. The weight 𝑧𝑏
𝑗
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Fig. 2. Graphical flowchart of weighting in the 𝑙th output layer. 𝑫𝒍
𝑨 = 𝑨𝒍𝑫𝒍 and 𝑨𝒍 is the diagnosed (𝐾×𝐾) weight matrix in the 𝑙th output layer. 𝜃𝑤 was set as a hyper-parameter

in the 𝑙th output layer.
3

3

u

for a classifier 𝑏 input with the 𝑗th sample is computed by normalizing
the corresponding competence level:

𝑧𝑏𝑗 =
1 − 𝑆𝑏

𝑗
∑

𝑏∈𝐵(1 − 𝑆𝑏
𝑗 )
. (17)

Finally, the weighted ensemble output of the 𝑗th sample is expressed
as

𝑷 𝒋 =
∑

𝑏∈𝐵
𝑧𝑏𝑷 𝒃

𝒋 . (18)

2.5. FGloWD-edRVFL input with convolutional neural network (CNN) fea-
tures

The graphical flowcharts of the FGloWD-edRVFL network which
involved the combined implementations of the four introduced en-
hancements to the edRVFL network are shown in Fig. 3. Specifically,
during training, in each hidden layer, the beneficial features were
first selected from the obtained enhancement features. Then, a weight
generated based on the classification results of the previous layer was
posed on each sample. To train the output layer, the weighted sam-
ples with selected features were used to calculate the output weights.
Besides, the output weights of the global output layer were also calcu-
lated. Finally, the output parameters of hidden layers and output layers
were obtained. During testing, after feature selection, weighting was
not performed. The outputs of each hidden layer and the global output
layer were obtained. Finally, the entropy-based dynamic ensemble was
used to calculate the final classification output. The algorithm for
training and testing the FGloWD-edRVFL network is also presented in
Algorithms 1 and 2.

To cope with the low feature learning capability of the edRVFL
network, the features extracted from the last convolutional layer in the
 r

5

Table 1
The hyper-parameter search space of the classification methods.

Classification method Hyper-parameter Space

SVM Regularization parameter 𝐶𝑆𝑉𝑀 [2−8 , 28]

LR Regularization parameter 𝐶𝐿𝑅 [2−8 , 28]

RF
The number of trees in the forest [10, 100]
The maximum depth of the tree [3, 10]
Max_samplesa [0.6, 1]

RVFL-based networks

Regularization parameter 𝜆 [2−5 , 24]
Number of selected features 𝑚 [5, 100]
Weighting parameter 𝐶𝑤 [0, 2]
Regularization parameter 𝜆𝑔 [2−2 , 22]
Number of the selected classifiers 𝑞 {2, 3, 4}

aThe maximum number of samples to train each base estimator, which is the product
of a float number and the number of training samples.

CNN were utilized as the input of the FGloWD-edRVFL network after
normalization. Specifically, the extracted features 𝑿 were normalized
by MinMax function:

𝑿𝑛𝑜𝑟𝑚 =
𝑿 − min(𝑿)

max(𝑿) − min(𝑿)
. (19)

. Experiments

.1. Introduction of sustained-attention driving (SAD) dataset

The sustained-attention driving (SAD) dataset (Cao et al., 2019) was
tilized in this work. In the experiment, lane-departure events were
andomly induced to make the car drift from the original cruising lane
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Fig. 3. Graphical flowchart of (a) training and (b) testing process of the FGloWD-edRVFL network.
Algorithm 1: Training algorithm for the FGloWD-edRVFL
network

Input: 𝑿 ∈ R𝐾×𝑑 which is the extracted CNN features of training data
Output: Output weights [𝜷𝒍]𝑙∈[1,𝐿+1]
𝑙 = 1
for 𝑙 ≤ 𝐿 do

Initialize the hidden weights 𝑾 𝑙 and bias 𝐫𝑙 randomly
if 𝑙 == 1 then

Set 𝑨𝒍 as an identity matrix
Calculate the hidden features 𝑯 𝒍 by either equation in Eq. (1)
Generate the enhancement features 𝑫𝒍 by concatenating 𝑯 𝒍 and
𝑿

Calculate the feature importance of 𝑫𝒍 by Eq. (7)
Obtain 𝑫𝒍

𝒇𝒔 by selecting 𝑚𝑙 features with higher feature
importance

Multiply 𝑨𝒍 with 𝑫𝒍
𝒇𝒔 (Weighting)

Calculate output weights 𝜷𝒍 by Eqs. (11) and (12)
Update the weight matrix 𝑨𝒍+𝟏 of correctly classified samples

using (10)
𝑙 + +

Generate the global state 𝑫𝒈 by combining the local features
Calculate the weights 𝜷𝐿+1 of the global output layer by Eqs. (4) and

(5)

towards the left or right side (deviation onset). Each participant was
instructed to quickly compensate for this perturbation by steering the
wheel (response onset) to cause the car to move back to the original
cruising lane (response offset). Deviation onset, response onset, and
response offset events were all included in a complete trial. During
the experiment, the EEG activity of each subject was recorded using
a 32-channel Quik-Cap following the International 10–20 system of
6

Algorithm 2: Testing algorithm for the FGloWD-edRVFL
network

Input: 𝑿 ∈ R𝐽×𝑑 which is the extracted CNN features of test data
Output: Predicted probability 𝑷 of test data
Load the randomly generated hidden weights [𝑾 𝑙]𝑙∈[1,𝐿+1] and bias
[𝐫𝑙]𝑙∈[1,𝐿+1]

Calculate the hidden features by either equation in Eq. (1)
Select the same set of enhancement features as training data for test

data
Generate the global state by combining the local features
for 𝑗 ≤ 𝐽 do

Calculate output probabilities 𝑷 𝒃
𝒋 of the classifier in 𝑙𝑡ℎ layer

Calculate the entropy of each classifier’s output by Eq. (16)
Select 𝑞 base classifiers with higher competence level
Calculate the final output probability by weighting the

probabilities of the selected classifiers by Eq. (18)
𝑗 + +

electrode placement. Processed data provided by Cao et al. (2019)
were used in this work. Specifically, the pre-processing steps included
bandpass filtering and artefact rejection. The bandpass finite impulse
response filters of 1–50 Hz were applied to remove the low-frequency
direct current drifts and power line noise. For artefact rejection, the
apparent eye blink contamination in the EEG signals was manually
removed by visual inspection. Following that, the artefacts were re-
moved by the Automatic Artifact Removal plug-in for EEGLAB, which
provided automatic correction of ocular and muscular artefacts in the
EEG signals.

Three-second EEG data prior to the deviation onset, which was
commonly exploited in previous works (Wei et al., 2018; Cui et al.,
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Fig. 4. The architecture of the FGloWD-edRVFL network input with ICNN features.
022), was adopted to perform classification for the upcoming lane-
eparture event. Then, we followed Wei et al. (2018) to adopt the
ocal reaction time (RT) and the global RT to label data. Specifically,
he RT was defined as the time between the deviation onset and the
esponse onset. For each subject, the RT in each lane-departure event
as named as the local RT, while the global RT was calculated by
veraging the RTs across all trials within a 90 second window before
he upcoming deviation onset. The ‘alert-RT’ was calculated as the
th percentile of the local RTs for each driving session. When both
he local and global RT were shorter than 1.5 times the alert-RT, the
orresponding extracted EEG data was labeled as ‘alert’. When both the
ocal and global RT were longer than 2.5 times the alert-RT, the data
as labeled as ‘fatigue’. Transitional states with moderate performance
ere excluded, and the neutral state was not considered in this work.
hen there was more than one dataset for a subject, the most balanced

ne was chosen to execute the filtering. Then, we further down-sampled
he data to 128 Hz. Finally, we obtained a balanced driver fatigue
ataset which included 2022 samples of 11 subjects. The data size of
ne sample was 30 (channels) × 384 (time steps).

.2. Introduction of SEED–VIG dataset

The public SEED-VIG dataset recorded from a monotonous driving
ask in a virtual reality-based simulated driving system (Zheng and Lu,
017) was also used in this work. The EEG data were recorded using the
euroscan system. The electrode placement followed the International
0–20 electrode system. In parallel with the EEG recording, the per-
entage of eye closure (PERCLOS) (Federal Highway Administration,
998) was measured with the Senso-Motoric-Instrument eye-tracking
lasses with a window size of 60 s and a moving step of 10 s.

In this work, we further down-sampled the EEG signals to 128 Hz
nd processed the data with a low-pass filter of 1 Hz. EEG samples of a
-second length were extracted prior to the PERCLOS evaluation event.
he procedure adopted by Zheng and Lu (2017) was followed. The
amples were labeled as ‘alert’ when PERCLOS was lower than 0.35.
he samples were labeled as ‘fatigue’ when PERCLOS was higher than
.7, while the samples in the middle range were discarded. We further
iscarded the sessions with less than 50 samples of either class and
alanced the classes for each session by selecting the most ‘alert’ and

fatigue’ ones. Finally, we obtained a balanced driver fatigue dataset
hich included 3536 samples of 12 subjects. The data size of one

ample is 17 (channels) × 384 (time steps).

.3. Experiment settings and hyper-parameter optimization

The experiment was conducted using an Alienware Desktop with a
4-bit Windows 10 operation system powered by Intel(R) Core(TM) i7-
700 CPU and an NVIDIA GeForce GTX 1080 graphics card. The codes
ere implemented and tested on Python 3.7.0. Pytorch framework was
mployed in this work.

In the proposed model, the inputs were the features extracted
rom the ICNN (Cui et al., 2022) which has shown its great clas-
ification capability in different EEG paradigms (Li et al., 2022b).
pecifically, the architecture of the proposed FGloWD-edRVFL net-
ork input with the ICNN features is shown in Fig. 4. For evaluating
7

the performance of the FGloWD-edRVFL network on the challenging
cross-subject driver fatigue recognition tasks, the leave-one-subject-out
(LOSO) cross-validation (CV) was conducted. The proposed model was
compared with six baselines for the cross-subject driver fatigue recog-
nition: (1) SVM (Cervantes et al., 2020) with the extracted PSD features
as the input; (2) RF (Ho, 1995) with the PSD features as the input; (3)
EEGNet (Lawhern et al., 2018); (4) ShallowCNN (Schirrmeister et al.,
2017); (5) Subject machine (SM) model (Li et al., 2022a); (6) ICNN (Cui
et al., 2022); and (7) the original edRVFL network (Shi et al., 2021). To
achieve a fair comparison, the (7) original edRVFL network also used
the ICNN features as the input, i.e., the FGloWD-edRVFL block in Fig. 4
was replaced with the original edRVFL network.

The PSD features used in this work were computed via Fast Fourier
Transform on each EEG epoch from these four spectral bands: delta (1–
4 Hz), theta (4–8 Hz), alpha (8–12 Hz) and beta (12–30 Hz). The final
feature vector was a concatenation of the spectral powers extracted
from the four bands and all available channels. In this study, the final
feature vector was of 4 (frequency bands) × 30 (channels) = 120
dimensions.

Regarding the hyper-parameter setting of the BP-based CNN models,
we used Adam optimizer with momentum 𝛽1 = 0.9 and 𝛽2 = 0.99. The
mini-batch was 50, and the learning rate was 0.001. The model was
trained for 50 epochs and the early stop was employed based on the
LOSO CV on the training set. Cross-entropy was employed as the cost
function for training. The mentioned hyper-parameters were kept the
same for all the evaluated CNN models, and the other specific settings
followed the original works of the baseline models. In addition, for
the hyper-parameter setting of SVM, Logistic Regression (LR), and the
RVFL-based networks, a LOSO CV was implemented on the training set
to select the optimal hyper-parameters in the pre-defined search space
during validation. Then, with the optimal hyper-parameters, the models
were trained with all training data and tested on the testing set to
obtain the testing accuracy. The search space of the hyper-parameters
is presented in Table 1. For the edRVFL-based networks, the number
of hidden layers 𝐿 was set as 4. The number of hidden nodes 𝑁1 of
the first hidden layer was set as 512 for the SAD dataset and 1024 for
the SEED-VIG dataset. This was based on the following consideration. A
higher number of hidden nodes means a higher possibility of generating
more beneficial features. However, the over-high feature dimension
may lead to overfitting during the classification in RF-based feature se-
lection. This may result in the low generalization ability of the selected
features for the testing data. A higher feature dimension was preferred
for the SEED-VIG dataset due to its relatively larger sample size than
the SAD dataset. For the second to the last hidden layer, the number
of hidden nodes was tuned in a fine range in the neighborhood of the
number of hidden nodes 𝑁1 and kept the same across these hidden
layers. This setting increased the time efficiency of hyper-parameter
optimization.

3.4. Cross-subject driver fatigue recognition results

The proposed FGloWD-edRVFL network input with the extracted
ICNN features was first evaluated on the SAD dataset. The average
accuracy and standard deviation of the 11 subjects’ data are shown

in Table 2. The results are discussed from two aspects. The first one
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Table 2
Comparison results (%) of LOSO driver fatigue recognition on the SAD dataset. ‘ICNN+model’ means that the input of the model is the extracted ICNN features.
‘Avg. Acc.’ represents average accuracy. ‘Std.’ represents standard deviation.

Methods Subjects Avg. Std.
1 2 3 4 5 6 7 8 9 10 11

SVM (Wei et al., 2018) 77.66 75.76 66.67 66.22 83.04 75.90 59.80 67.80 88.54 70.37 59.73 71.95 9.16
RF (Ho, 1995) 85.11 55.30 66.67 75.68 73.66 80.12 71.57 65.91 87.26 78.70 68.58 73.51 9.29
EEGNet (Lawhern et al., 2018) 56.38 71.97 46.67 65.54 53.57 63.86 67.65 53.79 71.66 79.63 58.41 62.65 9.82
ShallowCNN (Schirrmeister et al., 2017) 82.98 48.48 80.67 69.59 80.36 76.51 62.75 70.08 84.08 63.89 81.86 72.84 11.11
SM model (Li et al., 2022a) 78.72 68.18 79.33 68.24 85.27 83.73 64.71 57.2 78.03 82.41 71.68 74.32 8.94
ICNN (Cui et al., 2022) 85.11 45.45 80 77.7 91.52 85.54 65.69 81.06 88.85 65.74 69.91 76.05 13.44

ICNN+edRVFL (Shi et al., 2021) 85.11 52.27 80.00 79.73 89.73 87.95 67.65 81.44 88.54 64.81 72.12 77.21 11.78
ICNN+FGloWD-edRVFL 87.23 60.61 82.67 79.05 90.63 85.54 67.65 79.92 90.45 75.00 74.34 79.37 9.46
Table 3
Comparison results (%) of LOSO driver fatigue recognition on the SEED-VIG dataset. ‘ICNN+model’ means that the input of the model is the extracted ICNN
features. ‘Avg. Acc.’ represents average accuracy. ‘Std.’ represents standard deviation.

Methods Subject Avg. Acc. Std.
1 2 3 4 5 6 7 8 9 10 11 12

SVM (Wei et al., 2018) 92.11 74.07 78.76 60.42 94.85 68.70 77.57 94.37 84.41 87.96 59.35 88.83 80.12 12.48
RF (Ho, 1995) 92.98 86.42 84.73 83.59 96.39 86.48 81.62 90.14 86.63 90.88 67.27 49.51 83.05 12.80
EEGNet (Lawhern et al., 2018) 85.53 61.11 71.02 71.09 79.90 77.96 80.51 85.21 78.71 93.80 85.97 89.32 80.01 9.01
ShallowCNN (Schirrmeister et al., 2017) 92.54 93.83 78.10 78.91 72.16 92.96 81.25 90.85 89.85 93.43 73.02 85.92 85.24 8.17
ICNN (Cui et al., 2022) 95.18 89.51 89.16 84.64 85.05 95.00 84.93 92.25 93.32 91.97 87.05 90.29 89.86 3.82
SM (Li et al., 2022a) 92.98 91.98 87.39 85.42 92.78 95.37 71.69 97.18 91.09 92.34 91.01 89.81 89.92 6.55

ICNN+edRVFL (Shi et al., 2021) 93.42 88.89 89.60 84.38 96.91 95.56 82.72 89.44 90.10 91.97 91.73 89.32 90.34 4.07
ICNN+FGloWD-edRVFL 94.74 93.83 88.72 88.54 95.88 94.63 83.82 97.89 93.56 91.97 88.13 89.81 91.79 4.03
is to compare the original edRVFL and the proposed FGloWD-edRVFL
network with the baseline methods. We can observe that the proposed
FGloWD-edRVFL network outperformed all strong baseline methods
for driver fatigue recognition and the improvement in average ac-
curacy ranged from 3.32% to 16.72%. It is worth noticing that the
original edRVFL network input with the ICNN features showed an
approximately 1.16% increase in average accuracy compared with the
SOTA method ICNN, demonstrating the superiority of the edRVFL net-
work based on the closed-form solution. Then, comparing the original
edRVFL with the FGloWD-edRVFL networks, the proposed FGloWD-
edRVFL network gained an improvement of 2.16% and achieved a new
SOTA average accuracy of 79.37% on the cross-subject driver fatigue
recognition.

Furthermore, the proposed model was evaluated on the SEED-
VIG dataset. The performance of the 12 subjects’ data is presented
in Table 3. From the comparison between the baseline methods and
the edRVFL-based models (i.e., the original edRVFL network and the
FGloWD-edRVFL network), the edRVFL variants outperformed all the
baseline methods. In particular, the proposed FGloWD-edRVFL network
achieved improvements in average accuracy ranging from 1.87% to
11.78% over the baseline methods. Then, in the comparison with the
original edRVFL network, the FGloWD-edRVFL network achieved the
new SOTA average accuracy of 91.79%. The superior performance of
the proposed model on both public datasets demonstrated the effective-
ness of the enhancements proposed in the FGloWD-edRVFL network.
The analysis of each component in the FGloWD-edRVFL network is
introduced in Section 3.5.

To better understand the capability of the proposed FGloWD-
edRVFL network for driver fatigue recognition, Precision, Sensitivity,
Specificity, and F1-score of the proposed model and the baseline
methods on the two datasets are compared in Tables 4 and 5. The
class ‘alert’ was set as positive, while the class ‘fatigue’ was set as
negative in the calculation of these metrics. Comparison results showed
the outstanding Precision and F1-score of the FGloWD-edRVFL network
over the baseline methods. In particular, the best F1-scores of 81.74%
and 91.50% were achieved by the FGloWD-edRVFL network on the SAD
and the SEED-VIG datasets, respectively. Furthermore, the Specificity of
the proposed model was also higher than that of the baseline methods

on both datasets. This demonstrated that the proposed model could

8

ensure a higher probability that the ‘fatigue’ subjects are correctly
classified as ‘fatigue’. This is extremely meaningful in practice. Lastly,
the proposed model showed higher Sensitivity than most of the baseline
methods.

After presenting the classification metrics, the statistical Friedman
and post-hoc Nemenyi tests were performed to differentiate the meth-
ods (Demšar, 2006). The Nemenyi test utilizes the critical distance (CD)
to characterize the difference among the models, which is presented
by:

𝐶𝐷 = 𝑎

√

𝑟(𝑟 + 1)
6𝑁𝑠

, (20)

where 𝑎 represents the critical value obtained from the studentized
range statistic divided by

√

2, 𝑟 is the number of methods and 𝑁𝑠 is
the number of subjects (Demšar, 2006). The calculated CDs for the SAD
dataset and the SEED-VIG dataset were 2.90 and 2.79, respectively.
Based on the CDs, the results of the statistical tests on the two datasets
are shown in Fig. 5. We can observe that the proposed model had the
highest ranking on both datasets.

To compare the proposed model with the baseline methods in a
pair-wise manner, the one-tailed Wilcoxon paired signed-rank test was
conducted. The 𝑝-values of the Wilcoxon test on the two datasets
are shown in Tables 6 and 7. It was observed that the proposed
FGloWD-edRVFL network performed significantly better than most of
the baseline methods (𝑝 < 0.05).

Based on all the comparison results presented above, we conclude
that the proposed FGloWD-edRVFL network showed an outstanding
performance on the challenging cross-subject driver fatigue recognition
tasks over the SOTA methods which included ICNN, SM model and the
original edRVFL network. Statistically significant improvements and a
higher average rank were achieved by the proposed FGloWD-edRVFL
network. Lastly, the comparison on the four classification performance
metrics further demonstrated the superiority of our method. Therefore,
the proposed FGloWD-edRVFL network input with the ICNN features
can be considered as a highly competitive classifier for the EEG-based
cross-subject driver fatigue recognition tasks.

3.5. Ablation study

To investigate the effectiveness of each proposed enhancement
in the FGloWD-edRVFL network, the LOSO average accuracy of the
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Table 4
Precision, Sensitivity, Specificity and F1-score (%) of the proposed FGloWD-edRVFL network and
the baseline methods on the SAD dataset.

Precision Sensitivity Specificity F1-Score

SVM (Wei et al., 2018) 73.76 73.39 73.89 73.57
RF (Ho, 1995) 76.14 71.02 77.74 73.49
EEGNet (Lawhern et al., 2018) 57.59 88.92 34.52 69.91
ShallowCNN (Schirrmeister et al., 2017) 74.21 76.85 73.29 75.51
SM model (Li et al., 2022a) 70.66 82.89 65.58 76.28
ICNN (Cui et al., 2022) 77.62 80.61 76.76 79.09

ICNN+edRVFL (Shi et al., 2021) 77.48 83.38 75.77 80.32
ICNN+FGloWD-edRVFL 79.89 83.68 78.93 81.74
Table 5
Precision, Sensitivity, Specificity and F1-score (%) of the proposed FGloWD-edRVFL network and
the baseline methods on the SEED-VIG dataset.

Precision Sensitivity Specificity F-score

SVM (Wei et al., 2018) 74.00 85.46 69.97 79.32
RF (Ho, 1995) 84.62 81.56 85.18 83.06
EEGNet (Lawhern et al., 2018) 74.00 90.16 68.33 81.29
ShallowCNN (Schirrmeister et al., 2017) 84.73 85.69 84.56 85.21
ICNN (Cui et al., 2022) 89.05 91.52 88.74 90.26
SM model (Li et al., 2022a) 88.57 91.12 88.24 89.82

ICNN+edRVFL (Shi et al., 2021) 87.43 94.46 86.43 90.81
ICNN+FGloWD-edRVFL 90.76 92.25 90.61 91.50
Table 6
𝑝-values of the Wilcoxon results on the SAD dataset.

SVM RF EEGNet ShallowCNN ICNN SM model ICNN+edRVFL

ICNN+FGloWD-edRVFL 0.021 0.016 0.006 0.005 0.006 0.042 0.046
Table 7
𝑝-values of the Wilcoxon results on the SEED-VIG dataset.

SVM RF EEGNet ShallowCNN ICNN SM model ICNN+edRVFL

ICNN+FGloWD-edRVFL < 0.001 < 0.001 < 0.001 0.001 0.143 0.031 0.088
Fig. 5. Friedman and Nemenyi test results.
RVFL network, the edRVFL network and its variants with the pro-
posed enhancements were compared. Specifically, the variants included
(1) F-edRVFL: the edRVFL with feature selection; (2) FW-edRVFL: the
edRVFL network with feature selection and weighting; (3) FGloW-
edRVFL: the edRVFL network with feature selection, weighting and
global output layer; (4) FGloWD-edRVFL which involved the entropy-
based dynamic ensemble in the FGloW-edRVFL network. We normal-
ized the average accuracy to [0, 1] for ease of comparison. The results
are shown in Fig. 6. Overall, the average accuracy was boosted in
a step-wise manner. This demonstrated that the proposed implemen-
tation of all the enhancements to the edRVFL network was essential
9

for achieving the best possible performance of the cross-subject driver
fatigue recognition tasks.

Furthermore, the use of different normalization functions was also
investigated. This work employed the MinMax function as shown
in Eq. (19). The standardization function and RobustScaler function
were used for comparison. These two functions are given by Eqs. (21)
and (22), respectively.

𝑿𝑛𝑜𝑟𝑚 =
𝑿 − 𝑚𝑒𝑎𝑛(𝑿)

𝑠𝑡𝑑(𝑿)
. (21)

𝑿𝑛𝑜𝑟𝑚 =
𝑿 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑿)

. (22)

𝐼𝑄𝑅(𝑿)
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Fig. 6. Analysis of the proposed enhancements in the FGloWD-edRVFL network.
Table 8
Comparison results (%) of using different normalization functions.

MinMax Standardization RoubustScaler

SAD 79.32 79.12 78.60
SEED-VIG 91.79 91.43 91.87

The terms 𝑚𝑒𝑎𝑛(⋅) and 𝑠𝑡𝑑(⋅) represent the functions of calculating the
mean and the standard deviation. The terms 𝑚𝑒𝑑𝑖𝑎𝑛(⋅) and 𝐼𝑄𝑅(⋅)
represent the functions of calculating the median and the interquartile
range. The average accuracy of using the MinMax, standardization and
RobustScaler functions is shown in Table 8. As observed, there was no
significant difference in the performance among these three normaliza-
tion functions. The MinMax function presented the best performance
for the SAD dataset, while the RobustScaler function was superior to
the other two functions for the SEED-VIG dataset.

3.6. Further investigation on the FGloWD-edRVFL network

One may argue that the superiority of the proposed FGloWD-
edRVFL network may be solely attributed to the capability of the ICNN
features as the input. Therefore, to further investigate the capability of
the proposed FGloWD-edRVFL network on the EEG-based driver fatigue
recognition, its performance was compared with two other classical
classifiers (SVM and LR) and other categories of RNNs. The input of
the compared models was the same ICNN features. SVM was selected
as it also has the global optimum solution and LR was selected as it is a
linear model. For the RNNs, the three popular networks: ELM (Huang
et al., 2006), SCN (Wang and Li, 2017) and BLS (Chen and Liu, 2018)
were included for comparison in this work. For ELM, the number of
hidden weights and the search space of the regularization parameter
were the same as that of the RVFL-based networks as shown in Table 1.
For SCN, we followed the default setting used by Hu and Suganthan
(2022). For BLS, the search space of the regularization parameter of
RVFL-based networks was used. The rest of the settings followed the
open-source code of the original BLS work.

The performance obtained on both datasets is shown in Tables 9
and 10. Overall, with the same inputs, the FGloWD-edRVFL network
showed better performance than the classical machine learning meth-
ods. Furthermore, compared with the other three popular RNNs, the
outstanding performance of the proposed model could be observed.
Therefore, the strong classification capability of the proposed FGloWD-

edRVFL was further demonstrated.
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4. Discussion

Compared with the SOTA CNN models for cross-subject driver fa-
tigue recognition, using edRVFL-based networks to replace the classifier
can compensate for the limitation of the classification capability of the
CNN models. In edRVFL-based networks which are a type of RNNs,
instead of updating the hidden layers during training, the weights of
RNNs are randomly initialized and kept fixed throughout the train-
ing (Zhang and Suganthan, 2016b), which means that the hidden
weights of the edRVFL networks are data independent. Furthermore,
the global optimum solutions could guarantee better generalization
capability of the model. Previous studies showed that using SVM (Niu
and Suen, 2012) in hybrid CNN-X models could be beneficial to boost
the performance of the CNN models. Therefore, based on the merits of
the edRVFL networks, the hybrid CNN feature-based edRVFL model can
perform better than the SOTA CNN models.

Compared with the SOTA RNN, the edRVFL network, the results
presented in the previous section showed that the four proposed en-
hancements to the edRVFL network were beneficial to further boost
the classification performance. The possible reasons can be elaborated
from two aspects. The first is the higher efficiency of exploiting the
randomly generated hidden features. Due to the nature of edRVFL,
redundant and invalid information could be contained in the hidden
features. Hence, the neuron selection techniques based on the feature
importance could improve the classification performance. Moreover,
the global output layer designed was based on the idea of dRVFL (Shi
et al., 2021) and deep reservoir computing (Gallicchio et al., 2017)
which fully utilized the features from all levels. Accordingly, adding a
global state could increase the feature efficiency and the input diversity
of ensemble learning.

The second reason for performance improvement is the benefits of
the ensemble learning techniques used. Weighting has been shown as a
promising method to improve the generalization capability of ensemble
learning, e.g., AdaBoost (Freund and Schapire, 1997). In this work,
weighting used at different levels could implicitly assign the focus of
the training phase and help the model better exploit the hard samples
during training. Recently, some similar attempts have also been made.
Weighting based on an intuitionistic fuzzy membership scheme (Malik
et al., 2022b) and sample attention (Hu et al., 2022) brought superior
classification ability for RVFL-based networks. Furthermore, entropy
has been used to find the low-uncertainty samples to update the models
in transfer learning (Zou et al., 2018). For a sample in the edRVFL
network, a lower entropy value generated by the classifier means a
higher confidence level that the sample can be correctly classified.
Thus, this classifier could be recognized to have a higher competence
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Table 9
Comparison results (%) of using different classifiers input with ICNN features on the SAD dataset.

Avg. Std. Precision Sensitivity Specificity F1-Score

ICNN (Cui et al., 2022) 76.05 13.44 77.62 80.61 76.76 79.09
ICNN+SVM 76.16 12.79 78.62 78.93 78.54 78.78
ICNN+LR 76.77 9.15 75.71 84.47 72.90 79.85
ICNN+RF 76.60 12.32 78.88 78.34 79.03 78.61

ICNN+ELM (Huang et al., 2006) 77.22 11.17 76.70 84.67 74.28 80.49
ICNN+SCN (Wang and Li, 2017) 76.17 12.16 74.91 84.77 71.61 79.54
ICNN+BLS (Chen and Liu, 2018) 78.00 11.78 78.18 83.98 76.56 80.97

ICNN+FGloWD-edRVFL 79.37 9.46 79.89 83.68 78.93 81.74
Table 10
Comparison results (%) of using different classifiers input with ICNN features on the SEED-VIG dataset.

Avg. Acc. Std. Precision Sensitivity Specificity F1-Score

ICNN (Cui et al., 2022) 89.86 3.82 89.05 91.52 88.74 90.26
ICNN+SVM 90.59 4.16 87.69 93.33 87.50 90.68
ICNN+LR 90.43 5.02 88.19 93.89 86.82 90.69
ICNN+RF 90.56 3.08 88.16 93.10 87.50 90.56

ICNN+ELM (Huang et al., 2006) 90.11 3.80 85.78 95.19 84.22 90.24
ICNN+SCN (Wang and Li, 2017) 88.51 3.94 84.59 93.16 83.03 88.67
ICNN+BLS (Chen and Liu, 2018) 90.18 4.00 85.89 95.36 84.33 90.38

ICNN+FGloWD-edRVFL 91.79 4.03 90.76 92.25 90.61 91.50
level. By dynamically selecting high-competence classifiers and weight-
ing their outputs, the impact of the less beneficial classifiers could be
reduced while the reliable classifiers could generate better performance
in ensemble learning. Overall, the collaboration effect of the proposed
enhancements was beneficial in boosting the classification capability of
the edRVFL network. While the enhancements to the edRVFL network
may compromise the training efficiency to some extent, it has to be
emphasized that the model’s superior performance was the primary
goal of this work.

5. Conclusion

In this work, we investigated the use of the edRVFL-based net-
works for EEG decoding in the tasks of challenging cross-subject driver
fatigue recognition. The ICNN features were used as the input of
the edRVFL variants. Four enhancements were proposed to further
improve the performance of the original edRVFL network, including
(1) RF-based feature selection which was to reduce the impact of the
inferior and redundant features generated from the random weights of
the edRVFL network, (2) weighting of samples in the hidden layers
which was to force the model to better learn from the hard sam-
ples and diversify the trained classifiers in ensemble learning, (3)
global output layer with the input of global state which was to further
increase the diversity of ensemble learning, and (4) entropy-based
dynamic ensemble which was proposed to reduce the impact of the
low-competence classifiers for each testing sample. The comprehensive
empirical study showed that the collaboration of the proposed enhance-
ments was beneficial to improve the classification performance of the
edRVFL network. Furthermore, the proposed FGloWD-edRVFL network
significantly outperformed the strong baselines, achieving the new
SOTA performance on the public SAD dataset and SEED-VIG dataset.
In conclusion, the proposed FGloWD-edRVFL network can substantially
improve the EEG-based cross-subject driver fatigue recognition perfor-
mance, indicating that using the edRVFL-based model can be a new
direction for EEG-based driver fatigue recognition.

Despite the excellent performance of the proposed model, the com-
binative use of CNN and RNN may prolong the training time. Also, the
grid-search optimization used cannot guarantee that the most suitable
parameters were included in the preset values of the model during
training. Hence, the following directions can be considered in future

works:
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Table A.1
Variables and the corresponding description.

Variable Description

𝒓𝒍 Randomly initialized bias in the 𝑙th hidden layer
𝐹𝑆 𝑙 RF-based feature selection in the 𝑙th hidden layer
𝒐𝒍 Output probabilities of the 𝑙th output layer
𝑿 Extracted EEG features
𝒀 Categories of EEG signals
𝐾 Number of samples
𝑑 Number of feature dimensions
𝐶 Number of categories
𝐿 Number of hidden layers
𝑁 𝑙 Number of hidden nodes in the 𝑙th layer
𝐻 𝑙 Hidden features of the 𝑙th layer
𝑫𝒍 Enhancement features of the 𝑙th layer
𝛽𝑙 Weights of the 𝑙th output layer
𝜆𝑙 Regularization parameter in the 𝑙th output layer
𝛼𝑡
𝑖,𝑛 Impurity decrease of the 𝑖th enhancement feature

at the node 𝑛 of the 𝑡th tree of the RF
𝐺𝑛 Gini index calculated at the node 𝑛
𝐺𝑟 Gini index for the resulting right children nodes
𝐺𝑒 Gini index for the resulting left children nodes
𝛼𝑖 Normalized impurity decrease of the 𝑖th enhancement feature
𝑚𝑙 The number of selected features
𝑫𝒍

𝒇𝒔 Enhancement features obtained after feature selection
𝐶𝑟 Number of samples that are classified correctly
𝐶𝑤 Number of samples that are classified and wrongly
𝜃𝑟 Weight for the correctly classified samples
𝜃𝑤 Weight for the wrongly classified samples
𝑨𝒍 Diagonal (𝐾 ×𝐾) weight matrix in the 𝑙th output layer
𝜆𝑔 Regularization parameter in the global output layer
𝑫𝒈 Global state
𝑏 The classifier in an output layer
𝑷 𝒃
𝒋 Output probabilities of the classifier 𝑏 for the 𝑗th testing

sample
𝑝𝑏𝑗,𝑐 Output probability of the 𝑐th category
1 − 𝑆𝑏

𝑗 Competence level of the classifier 𝑏 for the 𝑗th testing sample
𝑩 A set of classifiers with higher competence levels
𝑞 Number of classifiers selected
𝑧𝑏𝑗 Weight for a classifier 𝑏 input with the 𝑗th sample
𝑿𝑛𝑜𝑟𝑚 Normalized CNN features

• Using RNNs to learn directly from raw EEG data with high di-
mensions could be a research goal. Down-sampling techniques in
RNNs or RNN architectures that are more suitable for processing
high-dimensional data can be used.
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Table A.2
Abbreviations and the corresponding description.

Abbreviation Description

BiPa Binary pattern
BP Back-propagation
BLS Broad learning system
CD Critical distance
CNN Convolutional neural network
CV Cross-validation
DCBiPa Dynamic center based binary pattern
DE Power spectral density
DNN Deep neural network
edRVFL ensemble deep random vector functional link
EEG Electroencephalogram
ELM Extreme learning machine
F-edRVFL edRVFL with feature selection
FGloW-edRVFL edRVFL network with feature selection,

weighting and global output layer
FGloWD-edRVFL edRVFL with Feature selection, Global output layer,

Weighting and Dynamic ensemble
FW-edRVFL edRVFL network with feature selection and weighting
LOSO leave-one-subject-out
LR Logistic regression
MI Motor imagery
ICNN InterpretableCNN
PERCLOS Percentage of eye closure
RF Random forest
RNN Randomized neural network
RT Reaction time
RVFL Random vector functional link
SAD Sustained-attention driving
SOTA State-of-the-art
SCN Stochastic configuration network
SM Subject matching
SVM Support vector machine

• Better optimization algorithms such as bayesian optimization (Pe-
likan et al., 1999) can be used to help further improve the
performance.
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