
Biomedicine & Pharmacotherapy 163 (2023) 114832

Available online 5 May 2023
0753-3322/© 2023 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Review 

Evolving strategies and application of proteins and peptide therapeutics in 
cancer treatment 

Anirban Goutam Mukherjee a, Uddesh Ramesh Wanjari a, Abilash Valsala Gopalakrishnan a,*,1, 
Pragya Bradu a, Antara Biswas a, Raja Ganesan b, Kaviyarasi Renu c, Abhijit Dey d, 
Balachandar Vellingiri e, Achraf El Allali f,*,1, Alsamman M. Alsamman g, Hatem Zayed h, 
C. George Priya Doss i 

a Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India 
b Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, South Korea 
c Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and 
Technical Sciences, Saveetha University, Chennai 600077 Tamil Nadu, India 
d Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India 
e Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, 
Punjab, India 
f African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco 
g Department of Genome Mapping, Molecular Genetics, and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Giza, Egypt 
h Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar 
i Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India   

A R T I C L E  I N F O   

Keywords: 
Protein 
Anticancer 
Targets 
Therapeutics 
Immune checkpoint 

A B S T R A C T   

Several proteins and peptides have therapeutic potential and can be used for cancer therapy. By binding to cell 
surface receptors and other indicators uniquely linked with or overexpressed on tumors compared to healthy 
tissue, protein biologics enhance the active targeting of cancer cells, as opposed to the passive targeting of cells 
by conventional small-molecule chemotherapeutics. This study focuses on peptide medications that exist to slow 
or stop tumor growth and the spread of cancer, demonstrating the therapeutic potential of peptides in cancer 
treatment. As an alternative to standard chemotherapy, peptides that selectively kill cancer cells while sparing 
healthy tissue are developing. A mountain of clinical evidence supports the efficacy of peptide-based cancer 
vaccines. Since a single treatment technique may not be sufficient to produce favourable results in the fight 
against cancer, combination therapy is emerging as an effective option to generate synergistic benefits. One 
example of this new area is the use of anticancer peptides in combination with nonpeptidic cytotoxic drugs or the 
combination of immunotherapy with conventional therapies like radiation and chemotherapy. This review fo-
cuses on the different natural and synthetic peptides obtained and researched. Discoveries, manufacture, and 
modifications of peptide drugs, as well as their contemporary applications, are summarized in this review. We 
also discuss the benefits and difficulties of potential advances in therapeutic peptides.   

1. Introduction 

Cancer is the primary concern for public health authorities world-
wide due to its high mortality rates [1,2]. The cell surfaces receptors like 
metalloproteases (MMPs) and extracellular matrix (ECM) remodelling 
develop aggressive and metastatic cancers [3,4]. The main reason 
behind cancer progression is the blocking of chemotherapeutic drugs 

from reaching the target site [1]. Hence, several proteins and peptides 
involved in tumor progression and cancer metastasis can be identified 
and targeted for cancer therapy. Peptides are small-sized molecules, 
around 40 amino acids or less, which can be derived either naturally or 
developed synthetically [5-10]. Mainly, the naturally derived peptides 
must be modified using several chemical processes to use them in cancer 
therapeutics. These peptides can target the tumors at their specific site 
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or deliver a particular anticancer drug to the tumor site, becoming one of 
the most promising ways to treat cancer. Several types of peptides can be 
created, and the focus can be made towards targeting the homing ability 
of the mesenchymal stem cells (MSCs), targeting the function of the 
ligand/receptor, targeting a particular organelle like the mitochondria, 
or directly entering into the nucleus of the tumor cells to induce 
apoptosis and cell death [6]. Hence, these techniques can be utilized to 
develop peptide conjugates that can enhance the tumor cells’ apoptosis 
and help in cancer therapy. 

Proteins’ advantages over small-molecule medications have 
contributed to their meteoric rise in the pharmaceutical industry. 
Compared to small molecule medications, the binding surface area of 
protein therapies is much larger, making it possible to access a broader 
set of protein targets [11,12]. On the other hand, small molecule med-
icines are generally buried within a hydrophobic pocket of their protein 
binding partner to optimize hydrophobic interaction and generate a 
more stable complex [13]. It effectively eliminates pockets in inacces-
sible proteins from becoming a target. Second, enhancing their present 
capabilities or installing new activities is a standard method of protein 
therapeutic adaptation [14,15]. Protein treatments, not often taken 
orally like small molecule medications, can benefit from significantly 
less frequent dosages due to their longer blood circulation duration [16]. 

Historically, monoclonal antibodies (mAbs) have been demonstrated 
to have approximately double the overall approval rate and much faster 
USA FDA approval success times than small compounds [17-19]. Twenty 
percent of small molecule medications made it through Phase II trials in 
2015, compared to forty percent of large molecules. Phase III approval 
rates for small-molecule medications were also lower than those for 
large molecules (79% vs 65%). Although protein treatments have many 
advantages, small-molecule medications also have several advantages, 
including oral bioavailability, intracellular targeting, simplicity of pro-
duction, and relatively extended shelf life. Nonetheless, there is great 
interest in further developing this class of medications because of the 
enormous promise of protein therapies in cancer treatment [20,21]. 
Therefore, these therapies using proteins can be a promising, thera-
peutic, highly effective, efficient, and safe treatment method for cancer 
patients and enhance the therapeutic efficacy of the anticancer drugs 
utilized in cancer treatment. 

This review explains the significance of identifying the proteins 
involved in cancer progression and developing treatments that can help 
in accurately targeting the tumor site, proteins, miRNAs, and tran-
scription factors and increasing the efficiency of cancer therapy. Un-
derstanding the therapeutic peptides utilized for cancer treatment 
includes anticancer agents like pro-apoptotic and D-peptides. Tumour- 
targeting peptides can enhance cancer treatment via newer techniques 
– cell penetration peptides (CPP) at a nuclear and mitochondrial level, 
exosomal proteins, immune checkpoint proteins such as PD-1/PD-L1 
proteins, CTLA-4 proteins, VISTA proteins, and tumor microenviron-
ment targeting peptides for targeting the tumor vasculature, the extra-
cellular matrix, tumour-associated macrophages (TAMs) and the 
response of the tumor microenvironment by altering the pH and tem-
perature. The molecular-based targeted therapies where mAb, epige-
netic alterations, and RTKs can weaken cancer cells from within and 
prevent tumor metastasis [22-24]. These can act as drug-delivery sys-
tems for several types of anticancer drugs like paclitaxel and cisplatin 
and can help in the specific drug release to the target tumor site [22,25, 
26]. These receptor-mediated drug delivery technologies can help treat 
cancer cells in vitro and in vivo [27-29]. These drug-delivery systems 
can be incorporated to function as a ligand, a conjugated chemical with 
anticancer drugs, and a type of drug-delivery vehicle [28,30]. This work 
further sheds light on the targets for cancer therapy, including the Wnt, 
Hedgehog, and NOTCH signaling pathways, the cell cycle progression, 
the apoptotic pathway, and the role of MDM2, p53, and tumor sup-
pressor proteins, which have been altered due to cancer. 

2. The importance of peptide therapeutics and their potential 
mechanism of action 

The therapeutic peptides exhibit antitumor activity through various 
mechanisms such as membrane disruption, apoptosis, inhibition of 
tumor angiogenesis, immune regulation, or inhibition of specific inter-
nal targets [31,32]. Numerous peptides exert their mechanism of action 
by creating pores or channels within the cellular membrane. The pres-
ence of pores can lead to the internalization of the peptide. However, it 
can also serve as a mechanism for cell death due to membrane disrup-
tion. The determination of the impact of a specific peptide in this aspect 
necessitates experimental investigation due to the limited comprehen-
sion of the phenomenon. Various models have been put forth to eluci-
date the underlying mechanisms, such as the barrel-stave, carpet, and 
toroidal pore models, which have been extensively examined in 
numerous scholarly articles [33,34]. The aforementioned models 
explicate the peptide aggregation and organization process, which cul-
minates in the formation of channels within the cell membrane. This 
process is facilitated by the amphipathic properties of the peptide and 
the phospholipid bilayer. The peptide undergoes conformational 
changes that facilitate its penetration into the hydrophobic core of the 
membrane. This penetration can lead to membrane disruption, causing 
either internalization of the peptide or cell breakage and necrosis due to 
dysregulated osmotic pressure. The occurrence of cell death through 
membrane disruption is noteworthy due to its ability to bypass con-
ventional chemotherapy approaches, despite growth rate or multidrug 
resistance mechanisms. Additionally, cationic residues in the peptide 
facilitate selective targeting of cancer cells’ relatively anionic cell 
membrane. Peptides can cause disruption not only in the cell membrane 
but also in the mitochondrial membrane potential. It can lead to the 
release of cytochrome c, activation of caspases, and, ultimately, the in-
duction of apoptosis [33,35,36]. 

Specific peptides induce antitumor effects by disrupting the vascu-
larization of neoplastic cells, thereby impeding their proliferation rather 
than inducing direct apoptotic cell death. The peptides can impede the 
signaling of vascular endothelial growth factor (VEGF), a process that 
typically triggers the formation of new blood vessels in tumors. The 
peptides can impede tumor growth and metastasis by hindering VEGF 
signaling while exerting negligible impact on normal cells with low 
neovascularization demands. Peptides can serve as an anticancer ther-
apeutic by inducing a tumour-specific immune response. In a recent 
instance of this methodology, a peptide capable of penetrating cells, 
known as cytosol localizing internalization peptide 6 (CLIP6), was 
linked to a representative antigen, ovalbumin (OVA) [37]. The CPP 
known as CLIP6 exhibits a noteworthy feature of direct translocation 
through cell membranes, as opposed to endocytosis, frequently resulting 
in endosome entrapment. The researchers discovered that the 
CLIP6-OVA complex exhibited efficient cellular entry and led to 
increased uptake of antigens by antigen-presenting cells, specifically 
dendritic cells. The researchers observed that the CLIP6-OVA complex, 
administered in vivo along with CpG, an immune adjuvant, elicited a 
robust antigen-specific immune response in mice. The researchers uti-
lized the B16/OVA mouse model, a melanoma cancer model that ex-
presses OVA on its cell surface, to investigate the efficacy of 
CLIP6-OVA/CpG immunization. The results indicated that two out of 
six mice who received the aforementioned immunization became 
tumour-free. 

Conversely, mice receiving OVA or CLIP6-OVA immunization did not 
survive beyond 31–39 days post-inoculation with tumors. The findings 
of this research demonstrate the involvement of CPPs in the creation of 
prophylactic or remedial cancer immunizations. Therapeutic peptides 
have the potential to selectively target crucial internal cell systems and 
structural proteins that are integral to various cellular processes, such as 
signal transduction pathways, cell cycle regulation, DNA repair path-
ways, and cell death pathways [38]. 
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3. Protein and Peptides as direct anticancer agents and their 
importance in targeted therapy 

Targeted therapy utilizes peptides that can straightforwardly target 
disease cells without influencing normal cells and is advancing as a 
substitute system to standard chemotherapy. By explicitly focusing on 
malignant growth cells, the peptide can be used as a carrier of cytotoxic 
drugs or as a direct cytotoxic agent and radioisotopes. Peptide-based 
hormonal treatment or therapy has been widely read and used to treat 
prostate and breast cancer [39]. Overexpressed receptors are regulated 
in cancer treatment by targeting molecules, such as peptides, antibody 
fragments, or antibodies that directly bind to these receptors, preventing 
downstream mechanisms obstructing cancer progression. Different 
methodologies included using receptor overexpression to deliver bio-
logically active compounds or anticancer medications that could not tell 
the difference between healthy and cancer cells [40]. Some examples of 
tumour-targeting therapies are peptides, proteins, antibodies, glyco-
peptides, aptamers, peptidomimetics, and peptoids. Tumour vascular 
endothelial cell surface receptors, the tumor’s extracellular matrix, and 
cancer cell surface receptors are all common targets for 
tumour-targeting ligands [41]. 

Cancer cells consist of cell surface receptors, which can be well- 
targeted for cancer therapies [42,43]. One of the best methods is the 
surface receptor-dependent endocytosis of the cancer cells by binding 
macromolecular drug ligands that will release a peptide for the targeted 
killing of the cancer cells at a particular tumor site and prevent tumor 
metastasis [43]. The central concept behind this is to transport the active 
drugs to cancer cells, which can have a suitable ligand to link to the 
surface receptors of cancer cells [43]. Specific cell surface receptors of 
cancer cells include VEGFR, EGFR, chemokine receptor, folate, integ-
rins, mannose receptor, carbonic anhydrase IX receptor, biotin receptor, 
interleukin receptor, estrogen receptors, and intracellular adhesion 
molecules. The study by X. Deng et al. [22] shows how the peptide-drug 
conjugate called LTP-1 can bind with the anticancer drug paclitaxel, 
improve its functioning, and help direct the drug to the specific tumor 
site. Due to their high concentration, the cell surfaces receptors like 
LHRH-R and MMPs facilitated the conjugate to identify these receptors 
and used paclitaxel to block its function [44,22,45]. Hence, by using 
these modeling techniques, we can modify the drug delivery systems and 
optimize their functioning using simulation-related approaches, 
focusing on factors like ligand, density, and spacing orientation and 
develop an effective vehicle design having no side effects on the patients 
being treated for cancer [46,28,47]. 

3.1. Cell penetration peptides (CPPs) 

CPPs can be used for tumor-targeted delivery of several anticancer 
and natural drugs to treat cancer at the nuclear and mitochondrial 
levels. 

3.1.1. In nucleus 
The role of CPP in the nucleus is essential as it can help target several 

DNA and RNA molecules which can help in tumour-targeted cancer 
therapy. The experiment by Y. Cheng et al. [48] utilized an 
integrin-targeting peptide-conjugate called AIEgen, which can help 
deliver the antisense single-stranded DNA oligonucleotide (ASO) and 
help in gene-targeted sequential therapy at the nuclear level. It can help 
enhance the treatments of serious diseases using gene therapy [48-52]. 
CPP and their role as effective drug delivery systems, such as liposomes, 
oligonucleotides, etc., can play a significant role in solid tumor therapy 
[53-57]. Using advanced imaging technologies, like the phage display 
technique, will help the CPPs to show the peptide-conjugate and ligand 
interactions at the tumor site, which can help in tumour-targeted ther-
apies and help in the effective treatment of cancer patients [58,40,59]. 
One of the experiments developed a nucleus-targeting-TAT peptide 
which is conjugated with IR780. A near-infrared fluorescence dye was 

utilized to enhance photodynamic therapy for breast cancer treatment 
[60-65]. Later, this TAT-IR780 conjugate was combined with the anti-
cancer drug doxorubicin, where it further enhanced the photodynamic 
therapy of breast cancer in such a way that only the targeted breast 
cancer cells were induced with apoptosis and damaged other genetic 
alterations around the tumor site and killed the cancer cells [64,66]. A 
research study by Gronewold et al., [67] exhibited that the s18 CPP, 
when modified by linking nuclear localization sequence N50 and 
nucleoli targeting sequence NrTP, increased the transporting efficiency 
of the s18 CPP into the nuclei and helped in cancer therapy [68,67, 
69-71]. Lastly, when the doxorubicin drug was combined with the 
lysine-rich CPP called KRP, it could penetrate the nuclei of the tumor 
cells and cause internal death of the cancer cells. It exerted a 
tumour-killing and chemotherapeutic effect over solid tumors, increased 
the drug’s therapeutic index, and helped in cancer therapy [72-77]. 

3.1.2. In Mitochondria 
In general, the mitochondria and the cell membrane play a signifi-

cant role in maintaining the cell’s stability and all the functional and 
metabolic activities [78-82]. The same applies to cancer cells. There are 
specific differences in the functioning of healthy and cancerous mito-
chondria in energy production and gene mutations, and they can be used 
as a target for cancer treatments [83,84,81]. Nevertheless, the 
mitochondria-targeting peptides approach is a highly effective method 
for cancer treatments [85-87,35]. The peptide hexokinase-II was engi-
neered at the N-terminus by inserting a 15 amino acid sequence called 
pkv and a lipid Pal at the N-terminus end of the hexokinase-II scaffold. 
This peptide-conjugate interacted with the voltage-dependent anion 
channel-1 (VDAC-1) of the mitochondria and successfully induced 
apoptosis in lung cancer cells and hence is a promising therapy for 
cancer treatment [88,35,89,90]. A study by Jeena et al. explained that 
the amphiphilic peptides within the mitochondria are similar to 
hexokinase-II peptide conjugation [91]. They created a heterochiral 
peptide assembly that could quickly enter the mitochondria and disrupts 
its functioning. Mitochondria penetrating tri-peptide along with 
diphenyl alanine mito-FF and its mirror pair mito-ff, which, when 
co-assembled, could completely disrupt the mitochondrial function in 
the cell. Hence, it can be used for tumour-targeting in cancer therapy 
[92,91,93,82,94]. Lastly, an experiment by Rizvi, Mu, Wang, Li, and 
Zhang [95] used pro-apoptotic peptide conjugates combined with 
fluorescent-RGD tripeptide as a probe for targeting the mitochondria in 
tumor cells. Here, the RGD was also linked with the KLAK tetrapeptide, 
where the RGD was able to target the MSCs involved in the homing of 
the tumor cells, and the KLAK was able to enter the mitochondria and 
cause the apoptosis of the cancer cells [96-98,95]. The fluorescence tag 
was used to image the anticancer activities caused by the peptide con-
jugates in both in vitro and in vivo conditions. Hence, they were found to 
thrive in targeting the α,β integrins and prevent cancer progression, 
thereby being a promising technique for cancer therapy [99-101,95,102, 
103]. 

3.2. Pro-apoptotic peptides 

Apoptosis is the cell’s natural death mechanism and is a prospective 
anticancer therapeutic target. Caspases are used in both the extrinsic 
and intrinsic pathways to carry out apoptosis by cleavage of numerous 
proteins. Various mechanisms frequently suppress the apoptotic process 
in cancer, including proapoptotic protein under-expression and anti-
apoptotic protein overexpression [104]. 

According to A. Hazafa et al., Humanin have the same proapoptotic 
activity as TNF-α in cancer, making it a new and effective therapeutic 
agent for cancer treatment. It has also been suggested that in addition to 
Humanin, the innovation of some other mitochondrial-derived peptides 
could be a feasible therapeutic option for various diseases related to 
apoptosis and oxidative stress [105]. Humanin is a crucial cytopro-
tective polypeptide generated from small mitochondria and transcribed 
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by mtDNA. Humanin modulates cytoprotection by coupling soluble 
extracellular proteins like IGFBP3 ad VSTM2L [106]. Humanin protects 
different cell types, notably leukocytes, germ cells, neurons, and tissues, 
against apoptosis and cellular stress by modulating multiple signaling 
systems, like the interplay of the BCL-2 family of proteins and the 
JAK/STAT pathway [107]. Humanin interacts with G protein-coupled 
formyl peptide receptor-like 1 (FPRL1/2) to drive the c-Jun N-termi-
nal kinase (JNK) and apoptosis signal-regulating kinase (ASK) signaling 
pathways when released from cells as a secreted peptide. It also activates 
JAK2/STA3 signaling by interfacing with CNTFR-/gp130/WSX-1 
trimeric receptors [106]. 

Humanin inhibits apoptosis in various cell types, including pancre-
atic β cells, anterior pituitary gland secretory cells, germ cells, endo-
thelial cells, and neurons. Humanin has been shown to have 
cytoprotective properties in various species, including mice, humans, 
and rats [108]. Even though Humanin was postulated as a possible 
oncopeptide about two decades ago, its significance in cancer develop-
ment and treatment is still not adequately known. Humanin upregula-
tion has been linked to carcinogenesis after being found in bladder 
tumor cells, gastric cancer, and pituitary tumor cells [109]. Humanin 
peptide, according to studies, successfully inhibits 
glucocorticoid-induced bone development retardation. However, the 
mechanism by which Humanin prevents osteoporosis is unknown. 
Humanin does not interfere with the anti-inflammatory effects of 
glucocorticoid medication; instead, it suppresses apoptosis [105]. 

Apoptosis malfunction has been linked to many different diseases. 
Acquiring resistance to apoptosis is a crucial aspect of malignant 
transformation, especially for cancer, marked by aberrant and unlimited 
cell development. As a result, a promising approach to cancer therapy is 
the induction or restoration of the apoptotic machinery in cancer cells. 
Several of the essential apoptosis regulators have been found. Among 
these are death receptors, Bcl2 inhibitors (pro- and anti-apoptotic), IAPs, 
caspases, and p53. Their identification has encouraged drug candidates 

that could directly work with the critical apoptotic regulators. In 
particular, much focus has been on pro-apoptotic proteins and peptides 
(Fig. 1) [110]. 

The potential of peptides that resemble intrinsic death receptor li-
gands as anti-cancer medicines have been investigated. Peptides like 
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) de-
rivatives, TRAIL-R2 binding peptides [111,112], and the multimeric 
FasL mimetic peptide (FRAP- 4)8-MAP [113] are all examples. Both 
natural TRAIL and FasL are expressed as multimeric forms on the cell 
surface (TRAIL is trimeric; FasL is hexameric) and contain pro-apoptotic 
activity, but only when attached to the membrane [114]. Released into 
the cytosol, soluble TRAIL or FasL loses its ability to induce apoptosis 
and can even block the action of membrane-bound forms [114]. Curi-
ously, researchers discovered that cross-linking these proteins could 
revive their ability to induce cell death. Antibody cross-linking and 
nanoparticle hybrids are two methods that have been tried in this di-
rection [115]. 

Researchers have paid much attention to compounds that mimic the 
BH3 domains of the pro-apoptotic Bcl-2 family proteins because of their 
potential as anti-cancer therapeutic candidates [116-119]. Several at-
tempts have been made to develop peptides that mimic BH3, including 
TLS peptide [118], mitochondria Ca2+ overload-inducing peptide 
composed of NOXA and IDP [120,121], Bim, and derivatives such as 
TAT-Bim peptide [122,123], hydrocarbon-stapled peptides derived from 
BH3 domains of BCL-2 proteins and several other BAX derived peptides 
[116,124-126]. 

The preservation of p53 integrity plays a crucial role in preventing 
tumors. Therefore, it is prevalent in numerous human cancers that there 
is a genetic mutation of p53, accounting for over 50% of human cancers. 
Alternatively, the functionality of p53 may be impaired, as reported by 
Hollstein et al. [127], Haupt et al. [128], and Cho [129]. The over-
expression of the p53 protein mutation in human tumors results in the 
loss of its tumor suppressive function. Additionally, it exhibits dominant 

Fig. 1. Intrinsic and extrinsic pathways of pro-apoptotic agents of anticancer proteins and peptides. This diagram explains the caspase activation pathways. It in-
cludes the role of drugs in activating the pathways. 
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negative activity and gains oncogenic properties. Various therapeutic 
strategies have been developed to address this issue, including gene 
delivery of functional p53 protein or peptides, inhibition of MDM2-p53 
interaction, restoration or elimination of mutant p53, and p53-based 
vaccine therapy. The p53 synthetic long peptide vaccine is a type of 
peptide vaccine that comprises long synthetic peptides (SLPs) sourced 
from the central region of p53. The administration of the p53 SLPs 
vaccine can induce an immune response mediated by cytotoxic T cell 
lymphocytes (CTLs) against tumor cells that express the p53 protein 
[130-133]. 

Several therapeutic strategies involving caspase have been investi-
gated, such as administering active caspase executioners or activators 
through direct delivery. The RGD peptide is considered a noteworthy 
illustration of caspase activators. The RGD peptide has been primarily 
recognized as a ligand for targeting tumor cells due to its ability to bind 
with integrin receptors. However, a collection of research studies have 
demonstrated that the RGD peptide can also directly stimulate the 
activation of pro-caspase 3 and reduce the activation threshold of cas-
pases, as reported by Buckley et al. in 1999 [134]. 

3.3. Antimicrobial peptides as anticancer agents 

One of the issues with anticancer drugs is their resistance to cancer 
cells and the toxic side effects it brings to the patient. Hence, a new class 
of drugs has been produced with anticancer and antimicrobial activity. 
These are called antimicrobial Peptides (AMPs). They are a group of 
peptides with a strong electrostatic interaction with the negatively 
charged bacterial membrane containing glycoproteins and glycolipids 
[135]. Cancer cells possess these glycoproteins and glycolipids on the 
outer membrane, and these AMPs can prove highly therapeutic. The 
cationic antimicrobial peptides (ACPs) are potential AMPs for cancer 
treatment as they are selective, penetrate through the cell membrane, 
and lyse the cell [136,137,135]. 

3.4. D-peptides 

D- Peptides and other natural peptides from plants and marine en-
vironments can have excellent anticancer properties. First, D-melittin is 
a peptide compound of 26 amino acids of honeybee venom. It has been 
established with anti-tumor activity for breast, liver, and prostate can-
cers. Nevertheless, a proper delivery system is required here since 
mellitin has high intrinsic instability and non-hemolytic activity and 
needs to be safely delivered. This delivery is possible after several mo-
lecular formulations by converting the L-amino acids to D-amino acids 
and transporting them via conjugates. It can help increase the drug’s 
anticancer activity and efficacy [138-144]. A study was conducted by 
Russell et al. [145], where they determined the efficacy of immuno-
conjugates cross-linked with synthetic MEL against human prostate 
cancer. It inhibited tumor growth in mice and improved their survival 
ability [143,146,145]. The use of a naturally occurring compound, 
chitosan, as a drug-delivery carrier for therapeutic drugs required in 
breast cancer treatment [147-149]. Third, deriving the small peptides 
from marine organisms can produce highly effective cancer treatment 
drugs due to their excellent fast absorption properties and less complex 
bonds, making it easy to modify and synthesize them. Along with the 
treatment, they provide nutrients to the body, providing dual benefits. 
Some examples include the marine organism Sacrophytan glaucum, 
which has three new cytotoxic peptides from the papain hydrolysate 
AGAPGG, AERQ, and RDTQ. They show high cytotoxicity toward 
human cervical cancer cells [150,151]. Diplosoma virens release the 
peptides Verenamides A-C, which inhibit the topoisomerase II activity 
and present anticancer and apoptotic effects over human colon cancer 
cells and kidney cells [151,152]. Lastly, an actinomycete (fungal) or-
ganism, Nocardiopsis lucentens, releases the Lucentamides A – D peptides, 
which showed in vitro cytotoxicity toward human colon cancer cells 
[151,153]. 

3.5. Exosomal proteins 

Exosomes are extracellular molecules about 30–150 mm in size in 
the tumor microenvironment. They help cell-to-cell communication 
between cancer cells via signaling pathways [154-157]. [158-161]. 
These nano-sized molecules are derived from extracellular vesicles and 
released by several cell types [157,162]. They help in the chemo-
resistance of cancer cells, and therefore they can be utilized as bio-
markers and as excellent nano-delivery systems of other anticancer 
agents (Fig. 2) [163,164,158,165,166]. Exosomal proteins can be 
modified into essential delivery systems for molecules and anticancer 
agents for chemotherapies and exhibit low toxicity with no side effects. 
These naturally derived, nano-sized particles or membrane-bound ves-
icles can help in targeted photodynamic therapies [167-173]. The 
chimeric peptide-engineered exosomes (ChiP-Exo) were found to be 
successful delivery systems in both in vitro and in vivo techniques and 
inhibited tumor progression. These bio-derived systems can be excellent 
for precise individualized tumor therapy [174]. An experiment using 
arginylglycylasparatic acid (RGD) peptide in an exosome-mediated 
siRNA delivery system to inhibit the tumor immune checkpoints gov-
erning colorectal cancer, was very effective in inhibiting FGL1 and 
TNF-β1, which helped the tumor cells to evade the immune system. 
Under both in vitro and in vivo conditions, immunotherapy is highly 
effective in inhibiting tumor growth [175-177]. However, some studies 
have found the difficulty of using exosomes over other artificial nano-
particles due to the difficulty in isolating and extracting purified exo-
somes [154]. Scaling up the exosomes is challenging, and there is also a 
risk of contamination during manufacturing [178,179]. Therefore, more 
clinical and pre-clinical experiments will be required to understand their 
utility in cancer therapy and personalized cancer treatment for patients 
[180,154,181,182]. Recently, tumor-derived exosomes (TEX) have been 
under extensive study as they are crucial mediators for cancer initiation, 
followed by tumor progression and metastasis. This mediation is done 
via many ligands such as FAS, TNF-β, prostaglandin E2, and heat shock 
proteins such as HSP70 and 90, which help to enhance the tumor 
microenvironment and prevent the immune response against cancer. 
Therefore, these TEXs can be a potential biomarker in cancer diagnosis 
and can develop therapies using the TEXs and other ligands and proteins 
associated with them for cancer treatment [183-185,162,186-188]. 
Similar to this concept, another study used melanoma cell-derived 
exosomes (MTEX) on its influence over the tumor microenvironment 
by combining it with photodynamic therapy (PDT). This combined 
treatment can effectively inhibit the EMT transition and have a 
chemotherapeutic effect on cancer [189-192]. 

3.6. Tumor suppressor proteins and peptides 

The tumor suppressor genes losing function are part of a more 
extensive signaling system, and that pathway’s hyperactivation causes 
cancer. The inactivated tumor suppressor genes can be therapeutically 
addressed by blocking the relevant pathway further downstream. PTEN, 
one of the most typically changed tumor suppressor genes throughout 
human malignancies, is an example of this paradigm. PTEN is inacti-
vated by deletion or mutation in many cancers, including breast, 
endometrial, uterine, prostate, glioblastoma, and melanoma [193,194]. 

Tumor necrosis factor-induced protein 1 (TNFAIP1) causes cancer 
cell apoptosis and is commonly downregulated in cancer cell lines. 
TNFAIP1 is a single-copy gene identified in human umbilical vein 
endothelial cells that is very conservative. The protein expressed by this 
gene is comparable to the potassium channel tetramerization domain 
containing 13 (KCTD13) and potassium channel tetramerization domain 
containing 10 (KCTD10), both of which are constituents of the poly-
merase delta-interacting protein 1 (PDIP1) family [195]. Studies showed 
that by altering the NF- κB/CSNK2B/TNFAIP1pathway, TNFAIP1 can be 
a tumor suppressor in hepatocellular carcinoma, meaning TNFAIP1 
could be a therapeutic target and a promising marker for hepatocellular 
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carcinoma [196]. Even though ASPP2 acts as a tumor suppressor, the 
exact mechanism by which it does so and how it is regulated are still 
unknown. Alternative splicing truncates the C-terminal TP53 binding 
protein, resulting in the ASPP2 isoform. Furthermore, ASPP2 is 
commonly expressed in acute leukemia blasts but is also found in other 
solid and hematologic tumors, suggesting that it functions in human 
cancer [197]. 

In vitro, Dnmt3bCI/CI MEFs are more vulnerable to oncogenic trans-
formation and tumor development than in vivo. The authors then apply 
the MLL-AF9 model of AML and the Myc overexpression model of Myc- 
induced T-cell lymphomagenesis to the haematological setting. It was 
found that Dnmt3bCI/CI mice have shorter survival periods in both cir-
cumstances. These models support the catalytic-dependent tumor sup-
pressive effect of DNMT3B in oncogenesis [198]. 

3.6.1. p53and MDM2 
The tumor suppressor p53 controls various biological processes, 

including DNA repair, apoptosis, genomic stability, and cell cycle arrest. 
This gene is commonly changed in human tumors by deletions or point 
mutations. The MDM2 protein acts as a negative regulator of the p53 
inhibitor. It reduces p53’s transcriptional activity, promotes its break-
down, and enhances nuclear export after binding [199]. MDM2 inhibi-
tor compounds can block the connection between MDM2 and p53, 
allowing p53 to regulate tumor suppressor transcription and trigger 
apoptosis. In acute lymphoblastic leukemia, the P53 pathway is 
frequently changed, owing to the deletion of CDKN2A and over-
expression of MDM2, the two primary regulators of p53. As a result, 

targeting the MDM2-p53 axis as a cancer therapy strategy in acute 
lymphoblastic leukemia could be appealing [200]. MDMX is a promi-
nent cancer therapeutic target for its capacity to function in the 
MDM2/MDMX complex and suppress p53, particularly in malignancies 
where MDMX amplification is more common than MDM2 [201]. 

MDM2’s E3 ubiquitin ligase can bind to the p53 protein and ligate it, 
which can then be transported to the cytoplasm and digested by pro-
teasomes. As a result, MDM2 can keep the p53 signaling pathway stable 
[202]. In epidermoid carcinoma, the MDM2–p53 loop leads to cisplatin 
resistance. Cisplatin triggers p53 protein phosphorylation that can 
diminish cisplatin resistance, whereas cisplatin-resistant tumor cells had 
increased MDM2 expression and non-phosphorylated p53. This process 
could be linked to the p73 loop auxiliary factor’s regulation [203]. 
MDM2 overexpression leads to classical radiotherapy and chemotherapy 
resistance via the EMT and MDM2–p53 loop-dependent pathway, indi-
cating a possible tool for identifying therapeutic resistance in malig-
nancies and a potential new therapeutic intervention. Furthermore, 
combining MDM2 inhibitors with radiotherapy or chemotherapy may 
improve therapeutic efficacy and benefit the patients [204]. 

3.7. Peptide hormones in cancer treatment 

The use of LHRH (luteinizing hormone-releasing hormone) agonists 
introduced by Schally et al. as a therapy for prostate cancer is the most 
classic example of the application of peptides in cancer treatment 
[205-207]. Since then, depot formulations of LHRH agonists have been 
created, including buserelin, leuprolide, goserelin, and triptorelin, to 

Fig. 2. The potential uses of different therapeutic peptides for treating different cancers. It includes anticancer agents containing natural and lab-made sources, 
tumor-targeting peptides for targeting cell surface receptors and cell-penetrating peptides in the nucleus and mitochondria, tumor microenvironment (TME) targeting 
peptides targeting the ECM, vasculature, tumor-associated macrophages (TAMs) and response to pH and finally utilization of exosomal proteins and immune 
checkpoint proteins. 
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treat prostate cancer more effectively and conveniently [208-210]. 
When these peptides are administered, the pituitary’s LHRH receptors 
are downregulated, which inhibits the release of follicle-stimulating 
hormone (FSH), luteinizing hormone (LH), and testosterone at the 
same time. It provided patients with prostate cancer with a novel 
approach to androgen deprivation therapy. Due to their competitive 
blockage of the LHRH receptors, LHRH antagonists immediately and 
dose-dependently decrease LH and FSH production, providing thera-
peutic advantages over agonists. Many potent LHRH antagonists are 
currently available for clinical usage in patients. The first LHRH 
antagonist to receive marketing approval and become commercially 
available was Cetrorelix [211]. New-generation LHRH antagonists like 
abarelix and degarelix have since been approved for human usage [212, 
213,39]. 

3.8. The importance of peptides as cytotoxic drug carriers 

Several peptide receptors can potentially serve as drug targets in 
cancer treatment [214-219]. A peptide has the potential to be linked 
with a cytotoxic agent to transport it to a cancerous cell that exhibits the 
corresponding peptide receptor. Peptides with the ability to selectively 
target a cell expressing its receptor are called cell-targeting peptides. 
Compounds with cytotoxic properties associated with analogs of hor-
monal peptides such as LHRH, bombesin, and somatostatin can be 
directed towards specific tumors that possess receptors for said peptides, 
resulting in a higher degree of selectivity in the eradication of cancerous 
cells [220,221]. One drug candidate, AEZS-108, utilizes a peptide LHRH 
and doxorubicin, a chemotherapeutic agent, to selectively target cells 
expressing LH-RH receptors, such as prostate cancer cells [222,223]. 
Most of the research conducted thus far has focused on radionuclide 
therapy and imaging, with a limited number of studies exploring the 
transportation of cytotoxic drugs, such as AN-201 and doxorubicin 
[224]. However, these receptors offer a promising platform for the tar-
geted delivery of chemotherapeutic agents to specific cells. In addition 
to peptides that exhibit selective binding to peptide receptors, a multi-
tude of peptides with relevance to cancer therapy have been identified in 
recent times. The peptides acquired through in vivo phage display 
methodology are commonly referred to as homing peptides due to their 
precise targeting of normal organs or diseased tissues [225-227]. The 
utilization of homing peptides as delivery mechanisms has proven to be 
effective in directing imaging agents, drug molecules, oligonucleotides, 
liposomes, and inorganic nanoparticles toward tumors and other types 
of tissues, as evidenced by various studies [228,229,225]. The utiliza-
tion of RGD and NGR peptides has facilitated the administration of 
tumor necrosis factor-α (TNF-α), a highly effective antineoplastic agent, 
as a drug [230,231]. The utilization of TNF-α as an anticancer agent in 
clinical settings is restricted to localized treatments owing to its systemic 
toxicity that limits the dosage. Using RGD and NRG peptides as targeting 
agents for TNF-α treatment resulted in reduced tumor growth with lower 
dosages compared to the administration of unbound TNF-α [39]. 

4. Targeting tumor microenvironment, immune checkpoint 
proteins, and signal transduction pathways as anti-cancer 
therapeutic strategies 

4.1. Targeting the tumor microenvironment (TME) 

TME-targeting peptides can be an excellent tumor-targeting agent to 
help inhibit tumor progression and cancer metastasis. Here, the extra-
cellular matrix (ECM) surrounding the tumor site plays a significant role 
in maintaining the tumor stemness and allowing the cell-to-cell and cell- 
to-matrix interactions, thereby helping in cancer progression. Recently, 
there has been a shift in the study towards the role of tumor vasculature 
in causing cancer and how it can be targeted for cancer therapy using 
angiogenesis inhibitors and vascular disrupting agents. The targeting of 
tumor vasculature can help in better treatment of cancer due to two 

primary reasons – one is the direct contact of the chemotherapeutic drug 
with the vascular endothelial cells that will not require to penetrate 
towards the inner side of the tumor site, and second, lesser ability of the 
endothelial cells to cause drug resistance since these cells have high 
genetic stability [232-234]. An experiment was done by Yarong Liu et al. 
[235], where they proved that combination therapy transported via the 
multilamellar liposomal vesicles could quickly help target the tumor 
cells along with the tumor vasculature [236-240,235,241,242]. This 
transportation mechanism of the combination therapy by the vesicle 
could be a potential technique to improve cancer therapy results [240, 
235,243]. In another experiment by W. Zhang et al. [244], an orthotopic 
model from a mouse was used to understand the effect of targeting the 
BB2r receptor, which plays an essential role in the propagation of 
prostate cancer. Here, they observed that by targeting the BB2r receptor 
via the BB2r therapeutic agent, there was increased tumor vasculature 
perfusion, and the impact was observed by lowering the hypoxic con-
ditions and vascular density surrounding the tumor cells [245-249,244]. 
Neuropilin-1 and 2 (NRP1 and NRP2) are co-receptor parts of the 
tyrosine kinase and integrin receptors and regulate angiogenesis. In the 
case of tumor cells, the mutated NRP1 and NRP2 can also play a sig-
nificant role in the angiogenesis of the tumor cells and tumor vascula-
ture, which can help in cancer progression and metastasis [250-254]. 
Hence, NRP can potentially be a specific tumor target for cancer therapy, 
and cytostatic drugs can effectively target the NRP receptor and promote 
tumor therapy [253,255,256]. Lastly, an experiment conducted by He 
et al. [257] demonstrated that transforming the tumor vasculature using 
a combination of LIGHT (lymphotoxin β receptor mediated by herpes 
virus entry) and vascular-targeting peptide (LIGHT-VTP) can help to 
modulate the tumor vasculature in such a way that the metastasis is 
reversed and it exerts anti-tumor effect, thereby preventing cancer 
metastasis and enhancing immunotherapy treatment of lung cancer 
[257-260]. 

The macrophages are essential in increasing the tumor progression 
and creating a TME, eventually producing carcinogenesis. Based on the 
type of tumor, the macrophages and the monocytes are the first cells to 
be incorporated to create a strong TME for the tumor. There are two 
types of macrophages: the activated macrophages called M1 and the 
alternatively activated M2 [261-265]. The M2 macrophages are called 
tumor-associated macrophages (TAMs) and are responsible for tumor 
progression. Several anti-tumor drugs and therapeutic systems are 
available for targeting the TAMs for tumor therapy [265,266]. In one 
experiment, the calcium/calmodulin-dependent protein kinase II 
(CAMKII) inhibitor, KN93, helped reprogram the TAMs to inhibit the 
tumor cells and enhance cancer immunotherapy with an injectable 
hybrid peptide hydrogel. It increased immunogenic cell death signifi-
cantly in tumor cells and prevented cancer progression [267-271]. The 
epithelial-to-mesenchymal transition (EMT) caused due to the TME and 
TAMs developing more aggressive tumors and increasing chemo-
resistance exponentially [272-274]. Here, lipid metabolism plays a 
crucial role in enhancing cancer progression. Hence, a combination of 
drugs called simvastatin and paclitaxel was found effective in reversing 
the EMT transition, suppressing the integrin β3/FAK signaling pathway 
and helped in the conversion of the TAMs to the M1 phenotype, which 
brought the TME towards the normal form and prevented cancer pro-
gression [275,276,273]. 

The TME depends on the ECM because it regulates cell-to-cell and 
cell-to-matrix interactions and supports tumor growth and expansion. 
This communication or interaction of the TME is regulated by ECM 
macromolecules or angiogenic growth factors called matrikines and 
matricryptins. When the tumor progression becomes more robust, the 
ECM also undergoes alterations due to hypoxia and acidosis conditions 
and, in turn, secretes free radicals [277-280]. These free radicals result 
in cell inflammation and further enhance tumor metastasis. Therefore, 
ECM macromolecules can be used as a biomarker to diagnose cancer and 
understand its progression strategies [277,281]. In an experiment con-
ducted by Senthebane et al. [282], they used the esophageal cancer cell 
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lines and 3D cell-derived ECMs, to develop a model to understand how 
the ECM proteins influence the response of these esophageal cancer cells 
and increase the chemoresistance of cancer cells towards treatment. The 
results showed an increase in the ECM proteins like fibronectin, colla-
gens, and laminins and enhancement of the specific signaling pathways 
like the PI3K/Akt and MAPK/ERK, which prevented the interaction of 
the chemotherapeutic drugs with the cancer cells and hence increased 
cancer cell migration [283,284,282,285,286]. Therefore, the ECM pro-
teins can be targeted to prevent cancer progression. Another study was 
done where they directly targeted the ECM of the tumor cells via tar-
geted drug-delivery mechanisms. The ECM protein targets, such as 
tenascin-C, fibronectin-fibrin complex, collagen, galactan-1, aggrecan, 
heparin sulfate, etc., could be used to detect the site of the tumor cells. 
The chemotherapeutic drug delivery mechanisms combined with 
immunotherapy are promising techniques to prevent tumor progression 
and help in cancer therapy [287-294]. 

4.2. Targeting the immune checkpoint proteins and peptides 

The approval of cancer therapy drugs by the FDA for PD-1 and CTLA- 
4 immune checkpoint proteins has increased the significant role of 
antitumor immunotherapy in protein and peptide therapeutics for can-
cer treatment [295]. Immune checkpoint blockade drugs are clinically 
beneficial for patients who suffer from melanoma, renal carcinoma, and 
other types of tumors; hence, cancer immunotherapy has emerged as a 
potential therapeutic technique for cancer treatment [296]. 

4.2.1. PD-1 protein 
Programmed death – 1 (PD-1) / programmed death-ligand 1 (PD-L1) 

is an immune checkpoint that can be targeted via immunotherapy to 
prevent tumor progression [297-301]. PD-1/PD-L1 is one of the immune 
checkpoint pathways that allows the immune cells to evade the conse-
quences of immune surveillance and escape the immune response. 
Therefore, PD-1/PD-L1 immune checkpoints can reduce tumor pro-
gression and could be targeted for cancer therapy. It includes pem-
brolizumab and nivolumab mAbs that display the potential for 
tumour-targeted treatments/therapies [302-304,299,305]. Several 
studies are being done on other mAbs, molecular pathways, and pep-
tides, making use of different properties of these proteins like 
post-translational modification regulation, allosteric effects, and direct 
inhibition of the receptor or ligand, providing insights into the control of 
many factors and the tumor microenvironment while developing the 
tumour-targeted therapy. It is one of the ways to strategize and increase 
the rate of cytotoxic immunity toward cancer cells and develop safe 
therapeutic approaches [306-310]. The IgG4 mAbs such as pem-
brolizumab and nivolumab are FDA approved, have good binding effi-
cacy with PD-1, and are highly effective PD-1 inhibitors [311,312]. 
Pembrolizumab was the first clinically approved anticancer treatment 
for all types of carcinomas. It was the first immune checkpoint inhibitor 
that prevented immune suppression and immune cell deactivation for 
patients with either higher levels of PD-1 or PD-L1. Nivolumab suc-
cessfully disrupted the action of PD-1 and produced strong responses 
even in heavily mutated carcinomas like melanoma and hepatocellular 
carcinoma [312,313]. Atezolizumab, a human IgG1 mAb, was the first 
approved drug for PD-L1 inhibition and was found effective in treating 
TNBC, NSCLC, and small-cell lung cancer [312,314]. As per J. Yang and 
Hu [315], the mAbs showed limitations such as poor pharmacokinetics 
and were expensive to manufacture. Hence, they mainly focused on 
immunomodulators to inhibit the PD-1/PD-L1 immune checkpoints via 
protein-protein interaction. These peptides can help improve cancer 
immunotherapy treatments and prevent cancer progression [316–319, 
315]. A study by D’Alterio et al. [320] showed that targeting the CXCR4 
surface receptor on cancer cells could enhance the efficacy of the 
PD-1/PD-L1 inhibitors. The use of the CXCR4 antagonist called 
Peptide-R54, along with PD-1 inhibitors, as found in the results con-
ducted on murine models of colon cancer and B16 human-melanoma 

cells, demonstrated its effectiveness against melanoma [321,320, 
322-330]. Small inhibitory molecules targeting the transcription, 
translation, degradation, signaling pathways, and protein-protein 
interaction blockage of PD-1 can be highly effective for cancer treat-
ment [331-337]. Another experiment was conducted by Zhai et al. 
[338], where they developed a new cyclic peptide inhibitor called C8 to 
block the PD-1/PD-L1 interactions and improve cancer immunotherapy 
treatment. By blocking these interactions, tumor cells could directly 
interact with the immune cells and did not escape immune surveillance. 
The results showed effective activation of CD8+ T-cells and disrupted the 
PD-1 interactions in vitro and in vivo conditions. Therefore, the C8 
peptide also can be used in cancer immunotherapy and aid in cancer 
treatment [339-342,338]. 

4.2.2. CTLA-4 proteins 
Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) is one of the 

co-stimulatory molecules that help regulate the body’s immune response 
[295,299]. This receptor is mainly found in T cells and helps regulate the 
early activation of T cells. Hence, CTLA-4 is mainly utilized to inhibit 
any immunological response that activates the T helper cells and in-
teracts with the T regulatory cells to maintain the inhibition of T cells. 
However, within the tumor microenvironment, they increase the tumor 
resistance toward T cell and further metastasizes cancer [312]. An 
experiment conducted by Fang et al. [296] found that the expression 
levels of both CTLA-4 and TIGIT exhibited a better prognosis for breast 
cancer [296]. Hence, immune checkpoint blockades are essential to 
prevent cancer progression and can help treat cancer [312]. The action 
of CTLA-4 can be targeted for melanoma using the FDA-approved mAb 
drug, Ipilimumab [299,315]. However, as per Granier et al. [295], pa-
tients receiving such therapies are likely to suffer from adverse immune 
events, especially with the anti-CTLA-4 antibody, compared to other 
anti-PD-1 therapies [295,343]. Tremelimumab, a human Ig2 mAb, is 
another CTLA-4 inhibitor that effectively blocks the interaction between 
CD28 of T cells and CTLA-4, preventing the deactivation of the T cells. 
Tremelimumab, combined with other immunomodulatory agents, is 
currently being studied to test the clinical efficacies in many types of 
cancer [344,312,345]. 

4.2.3. Lymphocyte activation gene-3 (LAG-3) proteins 
LAG-3 is one of the potential targets for cancer immunotherapy 

[299]. It is one of the co-inhibitory molecules currently under study for 
developing cancer treatments in the form of individual antibodies or 
combination with PD-1 antibodies. Their primary function is hypothe-
sized to be a competitive inhibitor in the interaction between antigen 
and the T-cell receptor of CD4+-T cells. They can also act on CD8+-T 
cells and are mostly co-expressed with PD-1 proteins and on 
tumour-infiltrating lymphocytes (TILs), helping the cells to escape from 
the immune mechanism [346,295,301]. Nevertheless, they can also 
cause T cell dysfunctioning in the TME, which can increase inflamma-
tion and cause severe autoimmune reactions and tumor formation. 
These checkpoints are primarily expressed in human breast cancer cells 
and signify a good patient prognosis [347]. The LAG-3 blockage anti-
bodies can be combined with anti-PD-1 or PD-1 blockage antibodies as it 
provides lower toxicity compared to a combination with CTLA-4 and 
PD-1 blockage antibodies. The combination of LAG525 and PDR001 
(anti-PD-1 Ig4 antibody) effectively prevents advanced TNBC and is 
currently being recruited for ongoing trials to treat breast cancer. 
Another combination of IMP321, a LAG-3 Ig fusion protein with eftila-
gimod alpha and pembrolizumab (anti-PD-1), is currently recruited and 
can treat advanced non-small lung carcinoma and head and neck 
squamous cell carcinomas [348,347,349]. The mAb, Ieramilimab, is 
under study for monotherapy and as a combination with PDR001 in 
patients with small-cell lung cancer and neuroendocrine tumors [346]. 
Another combination of an anti-LAG-3 mAb called Relatlimab and 
nivolumab (anti-PD-1) has been recruited for clinical trials with the 
ability to treat microsatellite stable (MSS) colorectal carcinomas, other 
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advanced solid tumors and is also under study to be used as neoadjuvant 
therapy for early-stage NLCSC patients [346,347]. 

4.2.4. T-cell immunoglobulin and mucin domain 3 (TIM-3) proteins 
TIM-3 normally functions as an immune checkpoint molecule that 

regulates the functions of the immune system and prevents autoimmune 
reactions. However, when there is an irregularity in the form of cancer, 
these molecules are overexpressed; hence, it is crucial to inhibit their 
actions [335]. It is expressed mainly by the T cells, NK cells, and 
monocytes and has been found to play a crucial role in inflammation as 
it is influenced by interferon-β and IL-27. It is a key checkpoint molecule 
that helps in suppressing anti-tumor immunity [350]. It is another 
co-inhibitory molecule under study to be utilized as a potential thera-
peutic target using antibodies since TIM-3 regulatory cells are primarily 
identified in advanced cancer stages and are hence found in other cancer 
types like cervical, colon, ovarian carcinomas, etc. [295,350,351]. There 
have been eight anti-TIM-3 mAbs registered for clinical trials as of now. 
In 2016, the mAb Cobolimab (TSR-022), an IgG4 anti-TIM-3 mAb 

(NCT02817633) developed by Tesaro, was approved for the first phase-I 
clinical trial, both as a monotherapy and as a combination therapy with 
TSR-042, i.e., anti-PD-1 mAb for patients with advanced tumor [352, 
353]. Another anti-TIM3 antibody is called MBG453 (NCT02608268), 
developed by Novartis, that is currently under study for the treatment of 
advanced malignancies both as a monotherapy and as a combination 
therapy with PDR001 (anti-PD-1 mAb) [353,354]. 

4.2.5. V-domain Immunoglobulin suppressor of T-cell activation (VISTA) 
proteins 

VISTA and two other co-inhibitory molecules, LAG-3 and TIM-3, are 
currently being studied and investigated to become potential targets for 
cancer treatment, individually or in combination with anti-PD-1 anti-
bodies [295,299]. It is also known as PD-1 H and functions as a 
co-inhibitory ligand against APCs by suppressing the T-cell responses 
and, in turn, induces the Foxp3 expression in cells [295,355]. CA-170 is 
a small immune checkpoint oral inhibitor for PD-1, PD-L1, and VISTA 
proteins that can help in T cell proliferation and cytokine production 

Table 1 
Classification of the different anticancer peptide agents with their functions, the benefits and drawbacks of each type of drug, and the feasibility of its application.  

S. 
No. 

Peptide or 
Protein 

Function Benefits Drawbacks Feasibility References 

1. Cell surface 
receptors 

Present on the surface of the 
cell, involved in protein- 
ligand interactions. 

It can be targeted for cancer 
therapies. No side effects on 
patients. 

Not specified. Under study [22,43,28] 

2. Cell peptide 
penetration in 
the nucleus 

Help in the targeting of DNA 
and RNA molecules. 

Highly effective in tumor-targeted 
therapies. 

Require drug delivery 
systems for targeted 
therapy. 

Widely studied, have effective 
formulations for targeted 
therapy. 

[48,67,56,64, 
76] 

3. Cell peptide 
penetration in 
mitochondria 

Play a significant role in 
maintaining the stability of 
the cell and helps in the cell’s 
metabolic activities. 

It works well with combination 
therapy and helps effectively 
function with other types of cancer 
therapy, like immunotherapy. 

Requirement of drug 
delivery system for 
effective transport to 
the target site. 

Under study, it works well with 
other formulations. 

[48,91,81,35, 
95] 

4. Tumor 
vasculature 

Essential for maintaining the 
TME. 

The drug does not require 
nanoformulations since it can 
directly interact with endothelial 
cells and is effective for cancer 
therapy. 

Not specified. Under the study, however, smart 
nanotherapeutic technology can 
help bring it to the market. 

[257,233,235, 
253,244] 

5. Tumor- 
associated 
macrophages 

The most important part of 
the TME is that it helps in 
tumor cell proliferation and 
cancer progression. 

Easy to change the phenotypes of 
TAMs to M1, which helps to bring 
the pH to the neutral range. 

Not specified. Under study and has excellent 
potential for cancer treatment, 
works well with nanotherapeutic 
technology, and enhances 
immunotherapy. 

[267,273, 
265] 

6. Extracellular 
matrix 

TME is dependent on the ECM 
for cell-to-cell and cell-to- 
matrix communication. 

It can be well-targeted for cancer 
therapy. Excellent biomarker for 
diagnosis of cancer. 

Not specified. Under study [277,294, 
282] 

7. Exosomal 
Proteins 

Present in the TME and help in 
the cell-to-cell interactions 
and signal transduction 
pathways. 

Low toxicity with less to no side 
effects. It can be used as a 
biomarker to diagnose cancer. 

Scaling up and 
manufacturing 
exosomes is difficult. 

Not so feasible, but it can work 
out with drug delivery systems. 

[48,154,158, 
189,177,162] 

8. PD-1 or PD-L1 
proteins 

Immune checkpoints can help 
to reduce tumor progression. 

Reduce tumor progression, acts as 
an immunomodulator, enhances 
immunotherapy, and aids in 
cancer treatment. 

Not specified. Pembrolizumab, Nivolumab, and 
Atezolizumab are FDA-approved 
drugs and are effective for cancer 
treatment. 

[320,307,299, 
312,335,315, 
338] 

9. CTLA-4 proteins Regulates immune response. 
Blocks the interaction 
between CD28 of T cells and 
CTLA-4 proteins. 

The therapeutic target for 
melanoma treatment. Anti-CTLA-4 
inhibitor called Ipilimumab. 

Side effects are 
possible. Other mAbs 
and anti-CTLA-4 agents 
are under study. 

Ipilimumab is an FDA-approved 
drug available for the treatment 
of melanoma. Other drugs under 
clinical studies. 

[296,295,299, 
312,345,315] 

10. TIM-3 proteins Immune checkpoint protein 
prevents autoimmune 
reactions. 

The potential therapeutic target 
for cancer treatment. 

Currently under 
clinical studies 

Not feasible. No available 
treatments. 

[295,350,354, 
353,335] 

11. 
1 

VISTA proteins Also known as PD-1 H, it is a 
co-inhibitor ligand against 
APCs and regulates the T cell 
immune responses. 

Potential therapeutic target for 
cancer treatment. 

The mAbs are under 
clinical trial. 

Currently, no available 
treatments. 

[295,350,354, 
353] 

12. TIGIT proteins It acts as an inhibitory 
immune checkpoint molecule 
and has binding capacity with 
3 ligands – CD155, CD112 and 
CD113. 

A therapeutic target for cancer 
treatment. 

Under study and 
clinical trials 

The tiragolumab and 
atezolizumab approved for BTD 
by the FDA. 

[346,347] 

13. LAG-3 proteins Inhibits the interaction 
between antigens and T cell 
receptors. They are also 
expressed on TILs. 

A potential target for cancer 
immunotherapy. 

No treatment is 
available yet under 
clinical trials. 

Currently recruited for clinical 
trial studies. 

[346,295,299, 
347]  
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and is under the clinical recruiting stage (NCT02812875). This oral in-
hibitor exhibited anti-tumor properties in the phase-I clinical trials and 
was bearable for patients suffering from advanced solid tumors and 
lymphomas [350,354]. Another drug under study is the JNJ-61610588, 
a fully human anti-VISTA mAb made by Johnson and Johnson, which is 
under phase-I clinical trials and is currently in recruiting stage 
(NCT02812875) [353,354]. 

4.2.6. T cell immunoreceptor with Immunoglobulin and ITIM domains 
(TIGIT) proteins 

TIGIT is another inhibitory immune checkpoint molecule currently 
under study to be utilized as a potential target of immune checkpoint 
blockade drugs [347]. This receptor type is expressed in T cells, T reg-
ulatory cells, and activated natural killer (NK) cells. It has a binding 
capacity with three ligands, CD155, CD113, and CD112. In the tumor 
cells, the CD155 ligand is overexpressed and upregulates the TIGIT 
expression in TILs, primarily identified in NSCLC [346,356]. Many mAbs 
are being studied to target the TIGIT in cancer cells and help in treat-
ment. The mAb, Etigilimab, was tested individually and in combination 
with nivolumab and was found effective in evading advanced solid 
malignancies. Even though the phase I clinical trials were positive, it 
was discontinued. Other mAbs under study include tiragolumab and 
atezolizumab, evaluated in 2018 in a phase II clinical trial to test the 
safety and efficacy of the combined therapy toward NSCLC. It was found 
that both the mAbs improved the objective response rate and had a safe 
and favorable profile. In 2021, it was granted a breakthrough therapy 
designation (BTD) by the FDA and was to be utilized for first-line 
treatment for patients with metastatic NSCLC [346,357] (Table 1). 

4.3. Targeting epigenetic regulators via PROTACS and CRISPR/Cas9 

Wang et al. [358] validated that CRISPR/Cas9-mediated site-specific 
target methylation facilitated the monitoring of gene silencing in vivo 
and in vitro. They have also demonstrated that combining CRISPR/Cas9 
components, the long methylated homology-directed repair template, 
and SCR7 treatment can improve CRISPR/Cas9-directed epigenomic 
editing effectiveness while inducing consistent impacts on transcrip-
tional suppression and methylation modifications [358]. Fusion en-
zymes like DNA methylases, deacetylases, and histone 
acetyltransferases, can be targeted to change the epigenetic state at 
specific sites in the genome by using inactive dCas9 as a DNA-binding 
domain platform [359]. EpiCas9s, Cas9 epigenetic effectors, can be 
employed for genome-wide screening to identify new connections be-
tween chromatin states, epigenetic modifications, and phenotypes like 
disease progression or cellular differentiation. It would provide a more 
adaptable platform to investigate the causal roles of epigenetic modifi-
cations in forming the regulatory networks of the genome because it is 
possible to artificially add or remove specific epigenetic marks at spe-
cific loci [360]. 

Proteolysis targeting chimeras (PROTACs) are heterobifunctional 
molecules that target the natural ubiquitin proteasome mechanism to 
enable selective protein degradation [361] in order to inhibit tumor 
growth [362]. By modifying gene expression and protein functions, the 
various types of epigenetic enzymes, such as "readers," "writers," and 
"erasers," contribute to various cellular processes and pathogenesis. All 
three categories of epigenetic proteins have been addressed by PROTACs 
[361]. Numerous PROTAC degraders have been extensively developed 
in epigenetic cancer therapy, and recent rapid advancements in PRO-
TACs have made it easier to investigate targeting epigenetic proteins. 
Additionally, PROTACs that target epigenetic proteins can effectively 
exploit target druggability and advance the understanding of the 
epigenetic regulation of cancer [363]. Studies by ARV-471 have un-
equivocally demonstrated that PROTAC, combined with kinase in-
hibitors, including CDK4/6 inhibitors, could synergistically affect tumor 
inhibition. It implies that using PROTAC combined with targeted in-
hibitors, chemotherapeutics, and antibody drugs may be an excellent 

alternative to treating cancer [362]. 

4.4. Targeting the signal transduction pathways 

Several studies have targeted several signal transduction pathways to 
treat cancer. GSK-3β is a regulator of the signaling pathway which can 
be targeted for cancer therapy. As per an experiment conducted by 
Abrams, Akula, Meher, et al. [364], a link has been found between K-Ras 
and GSK-3β and is responsible for causing pancreatic cancer [365,366]. 
GSK-3β inhibitors can be utilized to degrade the GSK-3β in order to 
prevent this severe form of cancer [367-369]. More studies are needed to 
assess the role of GSK-3β in other types of cancers, so that it can be 
utilized as an effective chemotherapeutic drug [364]. Also, the muta-
tions caused in the tumor suppressor TP53 gene are responsible for 
causing cancer and activating the K-Ras signaling pathway resulting in 
tumorigenesis [370,371]. Using miRNAs that can help reverse the mu-
tation in TP53 and bring back its cell growth regulatory function can 
help prevent the progression of pancreatic ductal adenocarcinoma 
(PDAC) and increase the survival rate of the patients. However, further 
studies will be required to identify those miRNAs [370,372]. Another 
experiment was done on the colon cancer cells to understand the role of 
the neurokinin-1 receptor, which enhanced tumor metastasis, angio-
genesis, and cancer progression [373]. The ligand involved in the tumor 
progression was substance P which was part of the tachykinins family 
[373-376]. 

Oncogenic mutations can develop mutant proteins whose action is 
dysregulated, for example, fusions, truncations, and point mutations, 
and generate overexpression of the afflicted genes, such as gene 
amplification. Models incorporate proteins engaged with signaling 
pathways that are typically enacted in numerous physiological re-
actions, such as threonine/serine kinases, for example, Akt and Raf; 
growth factor receptor tyrosine kinases (RTKs), for example, EGFR 
(epidermal growth factor receptor); small GTPases such as Ras; cyto-
plasmic tyrosine kinases, for example, Abl and Src; nuclear receptors 
which include the ER (estrogen receptor); as well as lipid kinases such as 
PI3Ks (phosphoinositide 3-kinases). Parts of formative signaling path-
ways, such as Notch, Hedgehog, Wnt, and Hippo, can likewise be 
impacted, as can downstream nuclear targets of signaling pathways—for 
instance, chromatin remodelers like EZH2, transcription factors, for 
example, NF-κB and Myc and cell cycle effectors such as cyclins [377]. 

4.4.1. Wnt/ β-catenin signaling pathway 
Integrin-linked kinase (ILK) is a serine/threonine kinase that in-

terfaces with the cytoplasmic domains of b3 and b1 integrins. It contains 
ankyrin repeats. ILK is also thought to function in the growth factor and 
Wnt signaling pathways, as well as the signaling pathways that control 
the activity of NFKB [378]. Cancer, human birth abnormalities, and 
other disorders are frequently associated with mutations in the Wnt 
pathway. Canonical Wnt signaling controls the release of the tran-
scriptional co-activator β-catenin, which affects essential developmental 
gene expression processes, and is one of the most researched Wnt 
pathways [379]. 

In most inherited and sporadic Colorectal Cancers, the initial event is 
assumed to be the mutational inactivation of the APC (Adenomatous 
Polyposis Coli) tumor suppressor. When APC is perturbed, the Wnt 
Signaling pathway is activated, and wnt hyperactivation is the primary 
oncogenic driver in most malignancies, mainly in colorectal cancers 
[380]. Metastasis is a defining feature of delayed-stage cancer and a 
significant therapeutic obstacle. Inhibition of PI3K-Akt signaling phar-
macologically causes a nucleus buildup of FOXO3a and β-catenin in 
colon cancer cells with hyperactivated canonical Wnt signaling, result-
ing in enhanced metastasis and cell scattering. A particular antibody 
targeting Fzd2 lowers colon cancer metastasis and tumor growth [381] 
(Fig. 3). 
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4.4.2. Hedgehog Signaling Pathway 
If there is abnormal activation of the Hedgehog pathway, it may lead 

to tumorigenesis and cancer maintenance in various malignancies. 
Therefore, tackling it could lead to new treatment prospects. In contrast 
to the high positive outcomes in Basal Cell Carcinoma, Hedgehog inhi-
bition fails to show promising effects in various cancer types, such as 
pancreatic cancer, lung cancer, and leukemia, underscoring the need for 
a deeper study of Hedgehog signaling in cancer [382]. 

The biological effects of the hedgehog signaling pathway are medi-
ated by a signaling cascade that shifts the balance of activator and 
repressor forms of glioma-associated oncogene (Gli) transcription fac-
tors. Smoothened (SMO)-Gi-RhoA, SMO-SUFU-GLI, and signaling cas-
cades receive hedgehog signals via Patched receptors [383]. The Hh 
signaling pathway’s essential target genes are GLI1, PTCH1, and PTCH2. 
The end effectors of the Hedgehog pathway, the GLI1 zinc-finger tran-
scription factors, are liberated from SUFU (suppressor of fused) medi-
ated cytoplasmic sequestration, allowing target gene activation and 
nuclear translocation [384]. Downregulation of the Hh signaling 
pathway has been linked to spontaneous malignancies, notably medul-
loblastoma, small cell lung carcinomas, basal cell carcinoma, ovarian, 
pancreatic, colon, and breast cancers, and developmental defects and 
cancers like Gorlin syndrome. Excessive production of Hedgehog 
signaling molecules (ligand-dependent signaling – paracrine or auto-
crine) or mutations in related genes (ligand-independent signaling) or 
induce abnormal activation of the Hedgehog signaling pathway [385]. 
Some proteins like F-box and leucine-rich repeat protein 17 (Fbxl17), 
RARα2, IL-27, IL-6, PPKCI, HDAC6, SCUBE2, CK2α, RUXN3, USP48, 
GALNT1, WIP1, Vasohibin 2 (VASH2), p65, forkhead box C1 (FOXC1) 
and BCL6; lncRNA HDAC2 and microRNAs (miR-326, miR-122, and 
miR-324–5p) are associated in the Hedgehog pathway during its 

activation to affect the growth of cancer stem cells [386]. 

4.4.3. NOTCH signaling pathway 
Notch signaling is a fundamental, evolutionarily conserved cell fate- 

determination system, similar to the Wnt and Hedgehog pathways. The 
connection between adjacent cells is predominantly mediated by Notch 
signaling via receptors and transmembrane ligands [387]. Crosstalk 
with the Wnt and Hedgehog pathways could also influence Notch sig-
naling’s long-term effect, adding another degree of intricacy [388]. The 
expression of multiple genes, including Shh, c-Myc, NF-κB, and β-cat-
enin, is upregulated when the Notch signaling pathway is activated. Oral 
squamous cell carcinoma tumor aggressiveness has been demonstrated 
to be enhanced by associations between the Notch signaling system and 
other pathways. Crosstalk, among such pathways, promotes the survival 
of cancer stem cells and governs the motility of oral squamous cell 
carcinoma cells [389]. 

A fully functional Notch receptor attaches to a ligand Jag1–2 or 
Dll1–4 provided by a neighboring cell, causing the receptor’s confor-
mation to shift, exposing the recognition site for cleavage by γ-secretase 
and ADAM, culminating in the release of the functional Notch intra-
cellular domain. The Notch intracellular domain is then translocated to 
the nucleus, forming a complex with the DNA-binding protein CSL, 
which activates target gene transcription [390]. Since the E-cadher-
in/catenin complex has been linked to the progression of HCC, it was 
hypothesized that inhibiting Wnt/-catenin signaling might be employed 
as a target complex for developing anti-HCC therapeutics. The 
notch-1/NF-kB signaling pathway has also been considered a target for 
EMT-related targeted therapy [391]. In the Notch signaling cascade, 
there are both canonical and non-canonical mechanisms. The five classic 
Notch ligands identified are the Delta-like ligands DLL1, DLL2, DLL3, 

Fig. 3. Hyperactivation of Wnt Signalling leading to colorectal cancer and reduced metastasis by targeting Fzd2 with specific antibodies.  
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and DLL4, as well as Jagged1 and Jagged2. Notch1, Notch2, Notch3, and 
Notch4 are the four Notch receptor paralogues identified thus far. 
Distinct cells can express different Notch ligands and receptors, indi-
cating that the Notch pathway is diverse and versatile. Non-canonical 
Notch pathways may be relevant to cancer onset and maintenance 
[392]. 

4.4.4. Cell cycle 
Profound cell cycle egress with combinations of CDK4/6 inhibitors, 

preferentially targeting malignancies that have depleted RB1, and 
widening the therapeutic index by reducing side effects associated with 
such therapies are all possible therapeutic methods. RB1 also affects the 
tumor microenvironment and immunology, which can improve immu-
notherapy sensitivity [393]. Without RB1, multiple interferon-response 
genes cannot be adequately activated. This trait of "non-inducibility" is 
thought to be one of the most critical consequences of RB1 disruption by 
viral oncoproteins such as HPV-E7, which enables immune surveillance 
to be bypassed. RB1 is involved in the activity of NF-kB and CIITA, 
which are essential indicators of such responses [394,395]. Many dis-
orders, particularly cancer, deregulate the TGF-β signaling pathway. 
This pathway possesses tumor-suppressor activities in early-stage cancer 
cells and healthy cells, involving apoptosis and cell-cycle arrest [396]. 

The cell cycle is regulated by several mechanisms that ensure proper 
cell division. Mechanisms include CDK (cyclin-dependent kinases) in-
hibitors, cyclins’ regulation of CDK, and phosphorylation processes. 
CDK dysregulation is a feature of cancer, and suppression of particular 
members is a promising target for cancer therapy [397]. Fundamental 
changes in the genetic regulation of cell division occur in cancer, leading 
to unregulated cell proliferation. Tumor suppressor genes and proto-
oncogenes are the two types of genes where mutations are most com-
mon. The products of protooncogenes activate at various stages along 
the pathways that trigger cell proliferation in normal cells. Proto-
oncogenes or oncogenes that have been mutated can increase tumor 
growth. When tumor suppressor genes like p53 and pRb are inactivated, 
proteins that usually control cell cycle progression become dysfunc-
tional. Mutations cause cancer-related cell cycle dysregulation in pro-
teins crucial at different stages. Cyclins, CDK, CKI, CDK activating 
enzymes, CDK substrates, and checkpoint proteins have all been found 
to have mutations in cancer [398]. Rather than irreversible allosteric 
inhibition, reversible, irreversible ATP-competitive (covalent) inhibi-
tion, reversible and antibody–drug conjugation, CDK inhibitor medi-
cines have been tested in several clinical trials in breast cancers. These 
inhibitors target malignant cells’ cell-cycle regulators, offering a thera-
peutic window in which cancer cells’ defects can be targeted with 
bearable side effects from general tissue damage [397]. 

5. Approaches to improve the pharmacological properties of 
proteins and peptides 

Determining the pharmacokinetic profile of a protein molecule 
within the body is influenced by various factors, including but not 
limited to its size, shape, hydrodynamic radius, and charge. Proteins and 
peptides smaller than the glomerular filtration size cutoff are more 
prone to elimination via kidney filtration than larger proteins [399]. 
Additionally, negatively charged proteins may be removed slower due to 
the repulsion caused by the charged basement membrane of the kidney 
[400]. These findings have been reported in previous studies. The 
increasing quantity of protein therapeutics under investigation, along 
with the emergence of antibody fragments and alternative scaffolds that 
extend beyond native IgG molecules, has prompted the need for in-
ventive approaches to adjust protein residence time in the bloodstream. 
A good pharmacokinetic profile can enhance the effectiveness of a 
compound by prolonging the duration of exposure to the intended target 
and, in numerous instances, reducing the quantity or frequency of ad-
ministrations, thereby providing both economic and therapeutic ad-
vantages [20]. 

The feature of stability holds significant importance for any protein 
therapeutic. It is because the utilization of sophisticated protein engi-
neering techniques to enhance targeting, efficacy, and pharmacokinetic 
parameters would be rendered futile if the molecule undergoes physical 
or chemical degradation before executing the intended function. In 
addition, maintaining stability is of utmost importance in achieving cost 
efficiency in large-scale goods production. To maintain its potency and 
prevent degradation or aggregation, a therapeutic agent must maintain 
its physical and chemical integrity throughout the production and 
storage processes. In addition, the current scenario of protein therapies 
being highly competitive necessitates the development of more potent 
molecules that can be expedited to the market and exhibit extended shelf 
lives upon arrival. Several engineering techniques have been utilized to 
enhance the stability of protein therapies. A method that has been 
demonstrated to correlate with increased thermal stability and recom-
binant expression yield involves the identification of protein variants 
that exhibit elevated cell surface expression levels in response to varying 
temperature stresses [401]. One possible approach entails utilizing 
spatial aggregation propensity (SAP) technology to identify antibody 
regions susceptible to aggregation, followed by introducing specific 
mutations to enhance antibody stability [402]. A contemporary tech-
nological advancement pertains to utilizing affinity-capture self--
interaction nanoparticle spectroscopy (ACSINS) to scrutinize extensive 
arrays of antibodies concerning their inclination to self-aggregate [403]. 
Additional techniques for enhancing protein stability have been exam-
ined in recent literature. These methods encompass physical cross-
linking, isotype switching, and identification of off-target binding, 
which may result in prompt protein elimination [404-407]. 

The potential to elicit an undesired immune response is an inherent 
risk associated with administering non-native proteins as therapeutic 
agents in the human body. The effective management of the immuno-
genicity profile of a therapeutic candidate is a crucial aspect of achieving 
success in drug development. The immunogenicity of a protein thera-
peutic is influenced by various factors, including those related to the 
patient and the product. The latter has been the subject of extensive 
review in recent literature, as evidenced by sources [408,409]. The 
current pragmatic strategies for reducing immunogenicity in the 
development of protein drugs consist of humanization and alteration of 
the primary sequence to eliminate or conceal potential T and B cell 
epitopes, as well as thorough immunogenicity assessment. A set of tools 
has been devised to forecast CD4 + T-cell reactions, encompassing both 
in silico and in vitro techniques. Furthermore, various in vivo tools have 
been utilized, including traditional mouse models, immune-tolerant 
transgenic mice, HLA-immune-tolerant transgenic mice, and 
non-human primate models [20,410]. 

6. Challenges to the usage of proteins and peptides therapeutics 
in cancer treatment 

Proteins have been successfully applied in a wide variety of medic-
inal contexts recently. However, there have been far more failed at-
tempts at using proteins as medicines than triumphs. It is due in part to 
the numerous obstacles that must be overcome. Protein therapies have 
not been widely used because of issues with solubility, delivery, distri-
bution, and stability [411,412]. Proteins are large molecules with hy-
drophilic and hydrophobic qualities that can make entry into cells and 
other body compartments problematic, and proteases, 
protein-modifying compounds, or other clearance processes can sub-
stantially reduce the half-life of a therapeutic protein. The development 
of PEGylated therapeutic proteins is one approach to overcoming these 
obstacles. Polyethylene glycol (PEG) is added to modified forms of 
interferon to extend their half-lives, diminish their immunogenicity, 
delay their breakdown by enzymes, and delay their absorption and renal 
clearance [413]. 

Notably, the body may develop an immunological response to the 
therapeutic protein, which presents a further obstacle [414]. This 
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immune response can inhibit the protein’s therapeutic effects or trigger 
an adverse reaction in the patient. Antifactor VIII antibodies (inhibitors) 
developed in patients with severe hemophilia-A who were treated with 
recombinant human factor VIII are an example of an immune response 
established against a Group Ia therapeutic protein used to replace a 
factor that has been absent from birth [415,416]. Nevertheless, immu-
nological responses are typically triggered by foreign proteins. Prior to 
recently, immune responses induced quickly against this type of thera-
peutic proteins, limiting the widespread clinical application of mAbs. 
Many other antibody products have been developed using recombinant 
technology and other innovations that make them less likely to cause an 
immune response. Entirely human antibodies can be created utilizing 
transgenic animals or phage display technologies. In contrast, human-
ized antibodies replace non-essential regions of the antibody with 
human Ig sequences, which confer stability and biological activity on the 
protein without provoking an anti-antibody response [417,418]. 

7. Conclusion 

This review summarizes the benefits of protein and peptide thera-
peutics in treating various types of cancer. Targeting signaling pathways 
and genetic alterations and using peptide-based anticancer drugs loaded 
by drug nanocarriers is a highly potential set of techniques that can be 
used in treating patients individually and promoting personalized can-
cer treatment for patients. These techniques can help to identify proteins 
as biomarkers for early diagnosis so that treatment is immediately 
provided and the patients return healthy. Here, we discussed the various 
therapeutic peptides and molecular-targeted therapies that can be 
practiced to target the tumor site and kill the specific cells without 
affecting the other healthy cells. mAbs, exosomal proteins, immune 
checkpoint proteins, drug nanocarriers, and drug delivery systems are 
potential cancer treatments that have proven highly effective under in 
vitro and in vivo techniques. Hence, ongoing studies and experiments of 
these proteins and peptide therapy will later help treat cancer more 
effectively, efficiently, safely, and feasibly. 
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[137] H. Läubli, A. Varki, Sialic acid–binding immunoglobulin-like lectins (Siglecs) 
detect self-associated molecular patterns to regulate immune responses, Cell. Mol. 
Life Sci. 77 (4) (2020) 593–605, https://doi.org/10.15212/bioi-2020-0013. 

[138] J. Cao, Y. Zhang, Y. Shan, J. Wang, F. Liu, H. Liu, J. Zhou, A pH-dependent 
antibacterial peptide release nano-system blocks tumor growth in vivo without 
toxicity, Sci. Rep. 7 (1) (2017) 1–13. 

[139] B. Cheng, P. Xu, Redox-sensitive nanocomplex for targeted delivery of melittin, 
Toxins 12 (9) (2020) 582, https://doi.org/10.3390/toxins12090582. 

[140] C. Duffy, A. Sorolla, E. Wang, E. Golden, E. Woodward, K. Davern, A. Redfern, 
Honeybee venom and melittin suppress growth factor receptor activation in 
HER2-enriched and triple-negative breast cancer, NPJ Precis. Oncol. 4 (1) (2020) 
1–16, https://doi.org/10.1038/s41698-020-00129-0. 

[141] C.-c Liu, D.-j Hao, Q. Zhang, J. An, J.-j Zhao, B. Chen, H. Yang, Application of bee 
venom and its main constituent melittin for cancer treatment, Cancer Chemother. 
Pharmacol. 78 (6) (2016) 1113–1130, https://doi.org/10.1007/s00280-016- 
3160-1. 

[142] H. Liu, Y. Hu, Y. Sun, C. Wan, Z. Zhang, X. Dai, P. Huang, Co-delivery of bee 
venom melittin and a photosensitizer with an organic–inorganic hybrid 
nanocarrier for photodynamic therapy and immunotherapy, ACS Nano 13 (11) 
(2019) 12638–12652, https://doi.org/10.1021/acsnano.9b04181. 

[143] S. Lv, M. Sylvestre, K. Song, S.H. Pun, Development of D-melittin polymeric 
nanoparticles for anti-cancer treatment, Biomaterials 277 (2021), 121076, 
https://doi.org/10.1016/j.biomaterials.2021.121076. 

[144] X. Yu, Y. Dai, Y. Zhao, S. Qi, L. Liu, L. Lu, Z. Zhang, Melittin-lipid nanoparticles 
target to lymph nodes and elicit a systemic anti-tumor immune response, Nat. 
Commun. 11 (1) (2020) 1–14, https://doi.org/10.1038/s41467-020-14906-9. 

[145] P.J. Russell, D. Hewish, T. Carter, K. Sterling-Levis, K. Ow, M. Hattarki, P. 
L. Molloy, Cytotoxic properties of immunoconjugates containing melittin-like 
peptide 101 against prostate cancer: in vitro and in vivo studies, Cancer 
Immunol., Immunother. 53 (2004) 411–421, https://doi.org/10.1007/s00262- 
003-0457-9. 

[146] I. Rady, I.A. Siddiqui, M. Rady, H. Mukhtar, Melittin, a major peptide component 
of bee venom, and its conjugates in cancer therapy, Cancer Lett. 402 (2017) 
16–31, https://doi.org/10.1016/j.canlet.2017.05.010. 

[147] R. Jayakumar, M. Prabaharan, R.A. Muzzarelli, Chitosan for Biomaterials I, Vol. 
243, Springer,, 2011. 

[148] H. Rajaei, M.A. Mofazzal Jahromi, N. Khoramabadi, Z. Mohammad Hassan, 
Immunoregulatory properties of arteether in folic acid-chitosan-Fe3O4 composite 
nanoparticle in 4T1 cell line and mice bearing breast cancer, Immunoregulation 2 
(2) (2020) 89–102, https://doi.org/10.32598/Immunoregulation.1.4.207. 

[149] G. Wang, R. Li, B. Parseh, G. Du, Prospects and challenges of anticancer agents’ 
delivery via chitosan-based drug carriers to combat breast cancer: A review, 
Carbohydr. Polym. 268 (2021), 118192, https://doi.org/10.1016/j. 
carbpol.2021.118192. 

[150] Y. Quah, N.I. Mohd Ismail, J.L.S. Ooi, Y.A. Affendi, F. Abd Manan, L.-K. Teh, T.- 
T. Chai, Purification and identification of novel cytotoxic oligopeptides from soft 
coral Sarcophyton glaucum, J. Zhejiang Univ. -Sci. B 20 (1) (2019) 59–70, 
https://doi.org/10.1631/jzus.B1700586. 

[151] Q.-T. Zhang, Z.-D. Liu, Z. Wang, T. Wang, N. Wang, N. Wang, Y.-F. Zhao, Recent 
advances in small peptides of marine origin in cancer therapy, Mar. Drugs 19 (2) 
(2021) 115, https://doi.org/10.3390/md19020115. 

[152] H. Gan, Z. Chen, Z. Fang, K. Guo, Concise and efficient total syntheses of 
virenamides A and D, J.: J. Adv. Chem. 4 (3) (2008). 

[153] J.Y. Cho, P.G. Williams, H.C. Kwon, P.R. Jensen, W. Fenical, Lucentamycins A−
D, cytotoxic peptides from the marine-derived actinomycete Nocardiopsis 
lucentensis, J. Nat. Prod. 70 (8) (2007) 1321–1328, https://doi.org/10.1021/ 
np070101b. 

[154] K.K. Jella, T.H. Nasti, Z. Li, S.R. Malla, Z.S. Buchwald, M.K. Khan, Exosomes, their 
biogenesis and role in inter-cellular communication, tumor microenvironment 
and cancer immunotherapy, Vaccines 6 (4) (2018) 69, doi:https:///doi.org/ 
10.3390/vaccines6040069. 

[155] C. Kahlert, S.A. Melo, A. Protopopov, J. Tang, S. Seth, M. Koch, A. Futreal, 
Identification of double-stranded genomic DNA spanning all chromosomes with 
mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic 
cancer, J. Biol. Chem. 289 (7) (2014) 3869–3875, https://doi.org/10.1074/jbc. 
C113.532267. 

[156] R. Kalluri, The biology and function of exosomes in cancer, J. Clin. Investig. 126 
(4) (2016) 1208–1215, https://doi.org/10.1172/JCI81135. 
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[348] P. Prigent, S. El mir, M. Dréano, F. Triebel, Lymphocyte activation gene-3 induces 
tumor regression and antitumor immune responses, Eur. J. Immunol. 29 (12) 
(1999) 3867–3876, https://doi.org/10.1002/(SICI)1521-4141(199912)29:12% 
3C3867::AID-IMMU3867%3E3.0.CO;2-E. 

[349] A. Wang-Gillam, S. Plambeck-Suess, P. Goedegebuure, P.O. Simon, J.B. Mitchem, 
J.R. Hornick, A.C. Lockhart, A phase I study of IMP321 and gemcitabine as the 
front-line therapy in patients with advanced pancreatic adenocarcinoma, Investig. 
N. Drugs 31 (2013) 707–713, https://doi.org/10.1007/s10637-012-9866-y. 

[350] Guo, Q. (2018). Advances of immune checkpoint inhibitors in tumor 
immunotherapy. Paper presented at the IOP Conference Series: Materials Science 
and Engineering. 

[351] J. Li, L. Ni, C. Dong, Immune checkpoint receptors in cancer: redundant by 
design, Curr. Opin. Immunol. 45 (2017) 37–42, https://doi.org/10.1016/j. 
coi.2017.01.001. 

[352] X. Chen, X. Song, K. Li, T. Zhang, FcγR-binding is an important functional 
attribute for immune checkpoint antibodies in cancer immunotherapy, Front. 
Immunol. 10 (2019) 292, https://doi.org/10.3389/fimmu.2019.00292. 

[353] S. Qin, L. Xu, M. Yi, S. Yu, K. Wu, S. Luo, Novel immune checkpoint targets: 
moving beyond PD-1 and CTLA-4, Mol. Cancer 18 (2019) 1–14, https://doi.org/ 
10.1186/s12943-019-1091-2. 

[354] J.A. Marin-Acevedo, B. Dholaria, A.E. Soyano, K.L. Knutson, S. Chumsri, Y. Lou, 
Next generation of immune checkpoint therapy in cancer: new developments and 
challenges, J. Hematol. Oncol. 11 (2018) 1–20, https://doi.org/10.1186/s13045- 
018-0582-8. 

[355] J.L. Lines, L.F. Sempere, T. Broughton, L. Wang, R. Noelle, VISTA is a novel 
broad-spectrum negative checkpoint regulator for cancer immunotherapy, Cancer 
Immunol. Res. 2 (6) (2014) 510–517, https://doi.org/10.1158/2326-6066.CIR- 
14-0072. 
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