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ABSTRACT Conventional energy sources are a major source of pollution. Major efforts are being made by
global organizations to reduce CO2 emissions. Research shows that by 2030, EVs can reduce CO2 emissions
by 28%. However, two major obstacles affect the widespread adoption of electric vehicles: the high cost
of EVs and the lack of charging stations. This paper presents a comprehensive data-driven approach based
demand-sidemanagement for a solar-powered electric vehicle charging station connected to amicrogrid. The
proposed approach utilizes a solar-powered electric vehicle charging station to compensate for the energy
required during peak demand, which reduces the utilization of conventional energy sources and shortens
the problem of fewer EVCS in the current scenario. PV power stations, commercial loads, residential loads,
and electric vehicle charging stations were simulated using the collected real-time data. Furthermore, a deep
learning approach was developed to control the energy supply to the microgrid and to charge the electric
vehicle from the grid during off-peak hours. Furthermore, two different machine learning approaches were
compared to estimate the state of charge estimation of an energy storage system. Finally, the proposed
framework of the demand management system was executed for a case study of 24 hours. The results reflect
that peak demand has been compensated with the help of an electric vehicle charging station during peak
hours.

INDEX TERMS CO2 emission, data-driven approach, deep learning, demand-side management, electric
vehicle charging station, peak clipping.

I. INTRODUCTION
As environmental problems continue to worsen to the point
where they threaten the entire globe, it is imperative that
humans take immediate action to cut emissions of green-
house gases (GHG). Many environmental organizations have
developed plans and policies to reduce CO2 emissions [1].
The use of renewable energy sources and the electrification
of transportation systems are two of the most promising
approaches, being considered as a means to address rising
environmental concerns and energy supply [2]. Therefore,
power generation and transportation networks are shifting
towards the utilization of renewable energy and electri-
cal vehicles (EV). Currently, a major part of the electrical
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generation is conventional. However, to satisfy the rapidly
increasing demand for power, renewable energy systems have
been integrated into traditional power grids. Consequently,
the previously centralized power system is evolving toward
more decentralized structures, with an increasing number of
small units connected to distribution grids. Distributed energy
resources (DER) can supplement central power generation,
by adding capacity to the utility grid or directly to end-
users. However, these renewable power generation systems
are climate-dependent and highly stochastic [3]. Therefore,
during peak hours, the load demand may exceed maximum
capacity, which could cause instability or even a blackout
if the balance in the grid is not effectively maintained [4].
The peak demand lasts for a short time, and most of the
time, the generation capacity is not fully utilized. Typically,
pump storage or diesel engine plants are utilized to manage
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short-term peak loads. Advancements in battery technologies
and EV have made it possible to use them as temporary
energy storage devices for peak load management. This is
because idle time of an EV is significantly longer than its
charging time [5]. Therefore, EVs with other energy storage
systems (ESS) play an important role in maintaining the
power balance of the power system. The use of a clean energy
storage system for peak demand management (PDM) leads
to a low consumption of fossil fuels and less environmental
pollution.

Grid ancillary services are implemented on a hundred kW
basis for peak load management of the grid, whereas single
EVs can only provide a limited amount of power (10-20 kW).
The concept of an aggregator was implemented to achieve
large-scale power rating. A third party between EVs and
power grids, such as EV charging station (EVCS), can be used
as an EV aggregator. When aggregated in suitable numbers,
EVs become a reliable integral part of the DER as a large-
scale energy source with the help of a base ESS [6].

The use of electric vehicles significantly contributes to a
healthier environment, with the lowest CO2 emissions and
much less noise. Research shows that by 2030, EVs could
reduce CO2 emissions by 28% [7]. However, two major
obstacles affect the widespread adoption of electric vehicles:
the high cost of EVs and the lack of charging stations [8].
The current problem is that EV owners are awaiting proper
charging infrastructure; however, EVCS investors are waiting
for sufficient EV adoption for a profitable business. This
situation is like the ‘‘chicken or egg’’ theory [9]. There is a
need to increase the profit of the EVCS infrastructure. This
motivates investors to establish EVCSs. A renewable-energy-
integrated EVCS already has an ESS for energy storage. From
an economic perspective, EVSC can be utilized for grid peak-
load management. Moreover, with the help of an EVSC, the
EV system can also be used for peak loadmanagement, which
is a mutual profit for both systems [10]. This approach will
shorten the problem of a lower number of EVCS in the current
scenario because EVCS will have a source of earnings other
than the charging of EV. An EV charging station aggregated
with EVs and an ESS behaves like a dynamic battery that
is utilized in demand-side management (DSM) during peak
hours [11]. EV aggregators act as energy sources and have
the advantages of no start-up and shut-down costs and fast
response speed in solving the intermittency issue of renew-
able energy sources. Fig. 1 shows a potential framework for
the integration of EVCS into DSM operations.

There has been an uptick in the number of utility operator-
implemented programs that use DSM strategies for cost
and energy management. Participating in DSM programs
can help electric power markets to run more efficiently and
profitably [12]. DSM schemes that incorporate EVs, aim to
maximize customer and utility profitability while minimizing
overall system losses. Existing research incorporates a variety
of financial models, with a focus on financial objectives. Gen-
erally, they employ energy efficiency, energy management,

and cost reduction strategies. Raghavan et al. demonstrate
the day-ahead participation of EVs employing large-scale
integration in demand response, to optimize the net profit and
excess power output of independent operators. When making
the model, power generation capacity, the grid, and the power
balance are taken into account. Preventing the avalanche
effect, real-time regulated charging and the leverage acquired
by such charging methodologies are major benefits to inde-
pendent operators [13]. The resulting grouping of EVs leads
to a financially beneficial DSM adoption [14]. Rezaee et al.
discussed the application of plug-in electric vehicles (PEVs)
in DSM, utilizing parking lots as aggregators. Amethodology
is presented to estimate the impact of EV aggregated in the
parking lot on the grid. In terms of bus voltage and grid
power loss, the results indicated acceptable levels of pene-
tration. However, constraints on the availability of vehicles,
load, and renewable energy sources were not included in this
research [15]. Tong et al. present a single-family home DSM
setup combining PV and ESS as an energy buffer to relay
surplus photovoltaic output during off-peak hours. In this
study, day-ahead market pricing signals were obtained to
launch bids, expanding the viability of retired vehicle trac-
tion batteries in their second life form [16]. Arellano et al.
used a simulation tool to investigate the impact of changing
EV penetration levels into the distribution grid at the DSM
with different load patterns. To improve performance and
efficiency, an automatic demand response (ADR) approach
was introduced in a test case scenario in the control aspect
of the smart grid infrastructure. ADR employs a demand
response (DR) approach to relay control signals from the
end user to the utility’s main control unit without the need
for human interaction [17]. The ADR technique was also
implemented by Xiang et al. with the integration of EVs
and ESSs via blockchain profiling [18]. To achieve optimal
management operation of grid-connected buildings, Christos
et al. suggested a distributed feedback-based optimization
method based on the principles of approximate dynamic
programming. In this study, a multi-criteria approach was
used to minimize energy expenditures without compromising
end-users values. Thermostatically controllable loads, such
as water heaters and clothes dryers, were featured with EVs
and ESS [19]. An optimization technique for DSMwas devel-
oped by Zihao Dong et al., which implemented Time-of-Use
(ToU) based load shifting at the residential level. Multiple
adaptable home appliances, EVCS, and rooftop PV systems
are taken into account. In this case, optimization led to a
19% reduction in daily electricity costs. In addition to low-
ering the carbon intensity of the grid and providing energy,
rooftop PV reduces domestic carbon emissions by 12%.With
the growing use of electric vehicles and renewable energy,
the smart scheduling of household loads has a substantial
impact on grid resilience and energy efficiency [20]. Ran
et al. came up with a two-stage planning optimization model
for shared EVs to investigate the efficient coordination of
shared EV operations under a demand response. The location
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FIGURE 1. A potential framework for the integration of EVCS into DSM operation.

of the charging facility was the first step, followed by the
relocation of vehicles in the second step. In addition, both
supply-side and demand-side uncertainties were taken into
account and approximated into a form that was manageable
by using a sample average approximation. This policy made
easier to make decisions under, an uncertain charging ability.
However, more DR elements, like power generation (solar
and wind energy), are not considered [21]. Shariff et al.
presented the design aspects and practical implementation
of a modern solar-powered EVCS, controlled by a Type-1
vehicle connector. The designed model was built in MAT-
LAB/Simulink. Its circuit functioning and methodical model
were analyzed to establish the parametric design character-
istics. A complete hardware configuration was created to
demonstrate the power factor adjustment with varying steady-
state loads. However, research has mainly focused on the
design aspect of solar-connected EVCS. The effect of EVCS
on DSM was not analyzed in this study [22]. To improve
the quality of service at public stations and increase their
utilization, [23] presented a data-driven performance analysis
method for the charging behavior of EV at charging stations.
The purpose of the data-driven model was to be adaptive to
any type of issue that the EVCS can face to find a better
solution. However, the study did not consider the constraints
of other systems connected to charging stations. The author
of [24] proposed an EV charging network as a cyber-physical
system (CPS). The EVCS is regarded as a component of the
micro grid (MG), whereas EVs are part of the transportation
network. The findings showed that the suggested algorithms
optimized the charging costs and balanced the regional load
profiles and EV charging behaviors successfully. However,
the limitations of batteries, renewable energy resources, and

household and commercial loads are not considered in this
study. Modeling the charging load of an EV is challenging
owing to its complexity. However, it provides a framework
for future research on the impact of EVCS on demand-side
management. Yang et al. proposed a set of equations to build
a probabilistic load model. The method of parameter identi-
fication was based on ant colony algorithms. A real battery-
swapping charging station was used to identify and simulate
the suggested concept. The findings demonstrated that the
model’s applicability and accuracy were satisfactory in the
case of a battery-swapping EVCS [25].

Moghaddam et al. presented a dynamic pricing model for
peak load adjustment. To minimize the overlap between the
PEV and residential peak load periods, a constraint opti-
mization problem was formulated and optimized using a
heuristic solution [26]. Numerous factors must be considered
for the proper implementation of DSM programs, including
load and power forecasts, State of Charge (SoC) estimation,
identification of appropriate consumers to engage in schemes,
and developing automated systems that manage demand-side
resources [27]. Nowadays, model predictive control (MPC)
and data-driven methods are used for dynamic nonlinear
system design of power systems. In the literature, data-driven
approaches are used in power systems for different practices,
such as optimal charging [28], economic dispatch [29], uncer-
tainties of renewable energy resources [30], and EV and SoC
prediction of ESS [31]. For the proper operation of a grid-
connected, PV-integrated EVCS, the aggregator needs knowl-
edge of the SoC level of the ESS and EVs participating in the
plan. In addition, the reserved energy level of each system
participates in load management. Commonly used methods
of SoC estimation are mathematical modeling-based [32].
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These models have less accuracy due to the nonlinear
complex nature of the battery. The majority of these mod-
els can only function under certain conditions, such as a
specific battery type and a fixed temperature. When other
factors are considered, new models should be developed.
Machine-learning (ML)-based methods have been used to
overcome these limitations. ML-based methods can model
the nonlinearity of a system using collected data [32]. Com-
mon machine learning techniques include, fuzzy logic [33],
support vector machine [34], and artificial neural networks
(ANNs) [35], [36].

Machine learning techniques have been utilized for high-
complexity global optimization issues [36] and have shown
positive results in peak demand reduction [37]. A genetic
algorithm (GA) based power mitigation method was investi-
gated in paper [38]. GA is used to automate the optimization
of demand-side management. As a case study for minimizing
harmonic distortion for all 24-hour time steps, a basic indus-
trial grid with five machines was utilized. The drawback of
this study is that only the total harmonic distortion (THD)
of the voltage and total demand distortion (TDD) of the
load current are utilized to optimize operational schedules to
reduce harmonic distortion in the industrial grid.

The Neural network-based deep-learning (DL) methods
have received considerable attention from the research com-
munity in recent years. Deep learning is the process of learn-
ing several levels of representation and abstraction and is
capable of analyzing data in its raw format as well as dis-
covering the representations that are required for detection or
classification [39]. Deep neural networks can be built in many
different ways. Most often, feed-forward NNs [40], convolu-
tional NNs [41], and recurrent neural networks (RNN) [42]
are used for supervised learning, whereas autoencoders [43]
and Restricted Boltzmann Machines [44] are used in unsu-
pervised learning. Deep learning has the potential to learn
highly nonlinear, complicated relationships, and correlations
between input and output data in comparison with traditional
techniques. Because of this, the DSM literature shows that
deep learning methods are usually better at making predic-
tions than traditional methods, such as SVR [45], [46], [47],
shallow ANNs [45], and Random Forest [45]. Furthermore,
it is unclear why they do so well in particular sorts of
problems [48], and it should be emphasized that arbitrarily
increasing the depth of an ANN may not necessarily pro-
duce the best results [49]. Long short-term memory (LSTM)
networks, which are a form of RNN, are able to manage
better long-term dependencies at the expense of higher com-
putational costs. By contrast, convolutional neural network
(CNN) networks are ideally suited for processing data with a
grid-like architecture.

Demand response in smart grids is moving toward a future
in which end-user loads can be controlled in a detailed
manner. This means that load and price forecasts must be
more accurate. Time-series models such as autoregressive
(AR), auto-regressive integrated moving average (ARIMA),

and exponential smoothing [50] have been used for a long
time to predict load and price in DR. This kind of model
is usually linear, and has been found to be less accurate at
forecasting load [51]. The lower prediction accuracy of clas-
sical approaches can be related to their linearity assumptions.
Therefore, ANNs, which can approximate highly nonlinear
relationships, have been used for load and price forecasting in
DSM. In addition, as demand becomes increasingly nonlinear
and variable, DL methods will likely produce even more
accurate load and price forecasts [27].

The existing research survey indicates that numerous tech-
niques and optimization algorithms have been developed and
implemented in EV DSM programmers to address optimiza-
tion in the SG environment. These strategies and algorithms
may have single or multiple objectives, as well as a sin-
gle or hybrid strategy. Linear programming (LP), dynamic
programming (DP), fuzzy computation, particle swarm opti-
mization (PSO), genetic algorithm (GA), differential evolu-
tion (DE), ant colony optimization (ACO), stochastic opti-
mization artificial, game theory algorithm and neural network
(ANN) are the most widely used optimization algorithms
current employed in the domain of EV DSM optimization
problems. As for the current research directions, the algo-
rithms used to schedule and control devices must be more
flexible and able to work in a more diverse environment.
In this research, renewable energy and EV transportation
systems integrated power systems require a DSM framework
that is automated, can adapt to a changing environment and
can learn what users need. For the large-scale uncertain-
ties present in this type of integrated model, a data-driven
approach integrating machine learning with optimization
needs to be adapted [21]. Although DL approaches are used
in public charging station occupancy prediction to reduce
electric vehicle operator and user inconvenience [52], load
forecasting [53], [54], [55], [56], their direct implementation
for peak load management in an MG integrated with RE and
EV transportation system cannot be found.

The research contributions of this paper mainly include
deep learning for optimal scheduling of loads and electrical
transportation networks for peak load management in renew-
able energy-oriented power systems. It focused on creating
a DL-based peak load management system for an MG that
is integrated with renewable resources and an EVCS in the
second stage of control. However, the first stage of con-
trolling EVs and PV systems integrated into the electrical
transportation system was performed. Moreover, the research
considered a data-driven approach for modeling the differ-
ent components of the proposed transportation network to
overcome the nonlinearities of the components. However,
in the case of mathematical modeling of components, some
variables are very difficult to implement in real-time.

In the comparison of the discussed literature the key con-
tribution of this manuscript are as follows:

• In this work, a comprehensive data-driven approach-
based DSM for an EVCS-connected MG is proposed.
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FIGURE 2. Techniques of demand side managements in power system.

• A data-driven approach is used to incorporate the PV out
in the proposed EVCS-connected MG.

• Based on the real-time commercial and residential col-
lected load data, the load connected to the EVCS-based
MG is forecasted.

• The SoC estimation of the ESS system present in EVCS
is performed by the LSTM method. Comparative result
of LSTM with Vector Autoregressive moving average
(VARIMA) shows its suitability.

• To execute the proposed DSM, a deep learning-based
efficient controller is designed and validated through a
case study of 24-hour power consumption.

The rest of the paper is organized as follows: Section II
describes the framework of the proposed demand-side
management strategy, modeling, and their constraints
are explained in the related subsections. In Section III,
a case study of demand-side management using data-driven
approaches is presented. In addition, the results and analysis
of deep-learning approaches for SoC estimation are pre-
sented. Finally, the conclusions of the results and analysis
are presented in Section IV, followed by references.

II. METHODOLOGY
Demand side management is an area of energy management
that focuses on the monitoring and management of peak
demands, as well as the smoothing of the load profile through-
out the day [57]. DSM is required to reduce power plant
capital expenditure and enhance the financial performance of
electrical utilities [58]. As shown in Fig. 2, DSM methods
can be categorized into six major categories: peak clipping,
valley filling, load shifting, strategic conservation, strategic
load growth, and flexible load shape [59].Utilizing an energy
storage system for demand-side management is one of the
most effective and promising strategies for peak clipping.
The ESS stores energy during off-peak load conditions and
supplies it to the grid during peak hours to compensate for

additional energy demand [53]. The proposed methodology
utilizes an electrical transportation system for peak-demand
management. In the subsequent section, the modelling and
control of the constituents of the proposed methodology are
discussed

A. PROPOSED SYSTEM MODELLING
This work considers a PV-connected EVCS for grid peak
demand management as well as EV charging station profit
improvement. The proposed system contains a conventional
power generator, residential loads, critical commercial loads,
renewable energy sources, and an EVCS. The EVCS unit
contains the ESS and EVs, which are utilized as charg-
ing/discharging loads. A two-stage framework is presented
for power coordination between the EVCS and grid, as shown
in Fig. 3. The first stage represents a dynamic energy source
model of the ESS and EVs integration in the direct mode.
In the second stage, the power allocations for each unit are
presented, including the ESS and PV systems. PV and load
are significant sources of uncertainty in the MG. In the pro-
cess of power distribution among the units, accuratemodeling
of these unknown factors plays a critical role. To overcome
the effect of these uncertainties, a deep neural networks
(DNN) based controller is used, for the required energy flow
between the two stages, for the optimal cost of energy con-
sumed by the ESS.

1) MICRO GRID MODELING
The modelling objective is to maximize the total profit of the
EVCS during the dispatch time to minimize the overall cost,
which can be expressed as in Eq. (1).

min Cp =

kn∑
K=k0

(CGRIDs (k) + CGRIDc (k) + CEVcc (k)

+CEVdg (k) + CESSdg (k)) (1)
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FIGURE 3. Energy communication diagram between first stage and second stage.

CGRIDs (k) is the grid tariff during off-peak load, which is
defined in Eq. (2).

CGRIDs (k) = βgs (k)
∣∣Pgs (k)

∣∣ 1k (2)

CGRIDc (k) is energy cost supply by EVCS during the off-
peak load, which is defined in Eq. (3).

CGRIDc (k) = βCSs (k) |PCS (k)| 1k (3)

where Pgs(k) and PCS (k) are the power consumed and sup-
plied by the EVCS from the main grid respectively. βgs (k)
and βCSs (k) are the energy sale and purchase prices from the
grid respectively and 1k represents the time period.
CEVcc (k) is the energy cost during EV charging, and isnde-

fined in Eq. (4).

CEVcc (k) = βEVcc (k) |PEVC (k)| 1k (4)

where PEVC is the power consumed by the EV during charg-
ing. βEVcc (k) is the energy sale price of the grid during EV
charging.

CESSdg (k) andCEVdg (k) are ESS and EV battery degrada-
tion cost, which are defined in Eq. (5) and Eq. (6).

CESSdg (k) = βESdg (k) |PES (k)| 1k (5)

CEVdg (k) = βEVdg (k) |PEVd (k)| 1 k (6)

where PES(k) and PEVd(k) are overall power consumed by the
ESS and EV. βESdg and βEVdg are the average charging cost
for ESS and EV respectively.

2) ENERGY STATE OF THE STORAGE ELEMENT (SOC)
The state of charge is a representation of energy available in
an energy storage system. The model of an ESS in terms of
SoC can be represented as in Eq. (7).

SoCEVCS (k + 1)

=



SoCEVCS (k) +

(
PEVCS (k) 1kηCSCH

EEVCS

)
if PEVCS (k) ≥ 0

SoCEVCS (k) +

(
PEVCS (k) 1k

EEVCSηCSDC

)
otherwise

(7)

where SoCEVCS (k) is the SoC of EVCS at time k, PEVCS (k)
represents the dispatched power from EVCS while ηCSCH
and ηCSDC are charging and discharging efficiencies. EEVCS
represents the EVCS energy demand.

The model represented in Eq. (7) has constrains that are
represented in Eq. (8), Eq. (9), and Eq. (10).

SoCmin
EVCS ≤ SoCEVCS (k) ≤SoCmax

EVCS (8)

Pmin
EVCS ≤ PEVCS (k) ≤Pmax

EVCS (9)

PmaxCS
GRID ≤ PGRID (k) ≤Pmaxgd

GRID (10)

where; SoCmin
EVCS and SoCmax

EVCS are denoting the minimum
andmaximum SoC of EVCS. Pmin

EVCS and P
max
EVCS are minimum

and maximum charging power required, respectively. PGRID
repersents the grid capacity limit. Further, the maximum
possible power flow between the grid and EVCS in terms of
the EVCS to the grid and grid to the EVCS are PmaxCS

GRID and
Pmaxgd
GRID .
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3) EVCS MODELING
The size of the power coordination problem will be reduced
by treating EVCS as a single unit rather than the combination
of PV unit, ESS and multiples EVs. An EVCS demand model
is constructed to take all EV’s charging demand and tech-
nological limitations into account. In this section, an EVCS
demand model is developed, considering all energy charging
and discharging systems and their technological constraints.
It was assumed that EV owners will share the required infor-
mation such as SoC, departure, and arrival time. At each
time slot, the EVCS also gathers the most recent SoC data of
energy sources. Eq. (11) and Eq. (12) represent the constraints
for EVCS operation with a time slot.

Pmax
EVCS (k) =

∑
nϵNk

Pmax
EV,n + Pmax

ESS,n (11)

Pmin
EVCS (k) =

∑
nϵNk

Pmin
EV,n + Pmin

ESS,n (12)

where Pmax
EV,n and Pmax

ESS,n are the maximum power supply
limits of nth EV and ESS, respectively, and Pmin

EV,n and P
min
ESS,n

represents minimum limit of power that can be supplied by
nth EV and ESS, respectively.

The total energy that can be supplied by the ESSs, con-
nected to the EVCS can be presented in Eq. (13) and the
energy supply by the EVs for the entire time slot can be
defined in Eq. (14).

EESS (k) =

N=n∑
N=1

EESS,n(k) (13)

EEV(k) =

N=n∑
N=1

(SoCEV,n(k + 1) − SoCEV,n (k))EEV,n(k)

(14)

where; EESS,n(k) and EEV,n(k) are total energy supply nth
ESS and EV respectively at time k. SoCEV,n(k) is the SoC
level of the nth EV at time k.

B. DEEP-LEARNING BASED SoC ESTIMATION
1) DATA-DRIVEN APPROACHES FOR VARIABLE ESTIMATION
Smart grids use many smart meters that send information
about user behavior to a central server. Using data-driven
techniques, these data can be processed to obtain insights
useful for MG analysis and control. Forecasting the future
load (electricity consumption) and SoCs of energy-storing
elements are crucial tasks for achieving grid intelligence.
If these forecasts are accurate, a utility provider will be able
to plan resources and take measures to balance the supply
and demand of electricity. These forecasts can be made using
data-driven predictive models. Fig. 4 shows the various types
of data-driven approaches. A popular statistical technique for
investigating the relationship between input variables and a
response variable is linear regression. Eq. (15) depicts its
general form:

ŷ = w0 + wxm (15)

where; ŷ is the forecasted output, w0 is the bias term, and the
weight matrix for x is w and power m is any real number.
Commonly used regression techniques for nonlinear sys-

tems are ARMA) and ARIMA [19]. Amoving average model
(MA) with order q and an autoregressive model (AR) with
order p constitute the two basic components of ARMA,which
are represented in Eq. (16),

ŷt = c + εt +

p∑
i=1

ϕiyt−i +

q∑
i=1

θiεt−i (16)

where ϕ1, . . . . . . , ϕp represents the weights for the autore-
gressive model, θ1, . . . . . . , θq denotes the weights for the
moving average model, ε is white noise and c denotes a
constant. ARMAmodels were used for stationary time-series
data prediction.Whereas, the performance of the arimamodel
is better for nonstationary time series data in comparison to
the arma model. Currently, advanced arima is used for the
prediction of more complex systems that can extract features
from many variables [61]. Although, models based on statis-
tical methods perform well; however, in the event of a sudden
change in the model’s attributes or the presence of a statistical
error in the data, deficiencies emerge and prediction accuracy
decreases. This has a significant impact on the load patterns
and profiles [60]. Using ann-based techniques, this type of
problem can be handled and accurate predictions can bemade
without any loss of precision.

2) DEEP LEARNING METHODS
A mathematical representation of a biological neuron is
known as an artificial neuron. It depicts nonlinear responses
to input signals, similar to those of biological neurons [56].
The artificial neural network structure is based on a net-
work of artificial neurons, known as a multilayer perceptron
(MLP). The multilayer perceptron is a three-layered structure
that includes input, hidden, and output layers. Each layer
arranges neurons such that there are no intra layer connec-
tions between neurons. However, neurons have full-weighted
connections between layers. A typical ANN structure depicts
the artificial neuron’s structure and describes the mechan-
ics of the neuron’s nonlinear reactions in response to input
signals.

An ANN structure is trained with the help of a dataset to
learn the weights and bias with the appropriate number of
neurons, hidden layers, and activation functions as shown in
Eq. (17). ANN with two hidden layers is capable of training
with arbitrary accuracy. If the number of hidden layers is
increased it is called deep learning.

ŷ = ∅ (wouth + bout) = ∅ [woutσ (wx + b) + bout] (17)

where; ∅ is the activation function of the output layer; repre-
sents the output of the hidden layer, h =(wx+b); σ is the acti-
vation function for the hidden layer; wout andw are the weight
matrix; bout and b are the bias terms. Deep neural networks,
convolutional neural networks, and recurrent neural networks
are three categories of ANN-based deep learning methods.
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FIGURE 4. Types of data driven approaches, machine learning and statistical models.

The DNN is a fully connected feedforward network with-
out lopping back as shown in Fig. 5(a). DNN models have
two common issues: overfitting and computational complex-
ity. Convolutional Neural Networks, or CNNs, are a special
class of DNNs that use the convolutional layer architecture
(depicted in Fig. 5(b)). CNN reduces the likelihood of over-
fitting by simplifying the network structure and decreasing its
connectedness scale. RNNs differ from other deep learning
algorithms in that their structure includes loops (illustrated
as the cycle in Fig. 5(c)), which allows information to flow in
both directions. An RNN can remember information from the
previous state, making it themost effective technique for fore-
casting tasks. On the other hand, traditional RNN gradients
tend to explode or vanish when the loop is run many times
because the weight of the loop is constant across all time
steps. This is called ’’long dependency’’. One widely used
RNNmodel, LSTM, can be applied to remember information
for a long period of time.

3) SoC ESTIMATION
The Proper operation of theMG requires energy-storing com-
ponents for an automatic DSM scheme. As the EV charging
behavior is typically complex and the battery degrades with
repeated charge and discharge cycles, a battery management
system (BMS) is required to monitor the battery health sta-
tus and protect it from overcharging and over discharging.
One of the key states in the BMS is the state-of-charge,
which reflects the remaining battery charge after one charge-
discharge cycle. The SoC can only be accurately estimated
using current, voltage, temperature, and additional measur-
able variables. A new updated version of the ARIMAnetwork
is chosen to model the highly nonlinear dynamics of batteries
and estimate the battery SoC from measurable voltage, cur-
rent, and temperature variables. VARIMA is a multivariable

time-series model that uses multiple features to estimate the
output variable. The purpose of this model is to filter out
meaningful patterns in the series to predict the next value.
LSTM stores information about previous inputs in hidden-
cell memories, making it more suitable for handling time-
series data. Data were obtained from a public database for
modeling a battery and preprocessed for unfitting andmissing
information. The final preprocessing step divided the given
dataset into training and test data. After data preparation,
appropriate data-driven algorithms were chosen and trained.
Mean square error (MSE) is used to evaluate the overall loss
function at the end of each forward pass during the training
process. MSE can be represented in mathematical form as in
Eq.(18).

MSE =
1
K

K∑
k=1

(
yk − ŷk

)2 (18)

where; yk is the true SoC value while ŷk is the output of
the proposed network at time k. To minimize the total loss,
the Adam optimizer is used, which changes the biases and
network weights on the loss function’s gradient. In the LSTM
layer, a dropout rate is employed to account for possible
overtraining during the training phase. The root mean square
error (RMSE) is used in the testing phase to evaluate the
performance which can be represented as in Eq.(19).

RMSE =

√√√√ 1
K

K∑
k=1

(
yk − ŷk

)2 (19)

4) DATA-DRIVEN LOAD FORMULATION
Load is a crucial aspect of dsm. for utilities, it is typically
the most practical to view dsm in terms of general load-
shaping goals. The load shape represents the time of day,
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FIGURE 5. The basic structure of (a) DNN, (b) CNN, and (c) RNN.

weekday, and seasonal distribution of electricity consump-
tion. Consequently, the dsm on the grid requires accurate
load modeling and forecasting. Mathematical modeling of
residential and commercial demands has become a challeng-
ing task. Load profiles exhibit variability and uncertainty
in behavior [61]. A data-driven approach has better accu-
racy than mathematical modeling. Multiple linear regres-
sion, stochastic time series, general exponential smoothing,
state space method, and ann-based approach are frequently
employed load forecasting techniques. First, in a data-driven
process, raw information is gathered from some source, like
a computer simulation, a survey, or a publicly available
database. Following data preparation, appropriate data-driven
algorithms are chosen and trained. The accuracy of forecasted
load will depend upon the quality of collected data and the
validation efficiency selected methods.

C. DL-BASED CONTROLLER
An Intelligent controller is needed for controlling vari-
able loads and charging/discharging of the different energy
sources participating in demand-side management. A deep
learning based controller is chosen for the energy flow
between the MG and EVCS system. The flowchart of control
logic for peak load management is shown in Fig. 6. The logic
checks if the overall Preload on the grid (Pload) is greater
than or equal to specify peak load limit (Pmin) and if the
time is within the specified limit by the grid (Tpmin ≤ T ≤

Tpmax). Moreover, if the energy level of the EVCS system is
above the threshold level then only it participates in the peak
load management. Once, T ≥ Tpmax then check, SoCEV ≥

SoCEVmin or SoCESS ≥ SoCEVmin and charge the energy
storage system only if, Pload is less than the Pmin.

III. CASE STUDY RESULTS AND DISCUSSION
To formulate the micro grid, industrial and commercial load
data were collected from a local real power substation. Data
for energy source modeling has been collected from an
open online data source https://data.nasa.gov/dataset. The
proposed method was simulated using MATLAB 2020a.
Load models for residential and commercial loads were sim-
ulated by using collected data and forecasted for a time
duration with the help of the deep learning time series
method.

FIGURE 6. Flowchart of control logic for grid peak load management.

A. SoC ESTIMATION USING DL METHODS
The data of an energy storage system are analyzed in Fig. 7,
which demonstrates how the various parameters of the system
are correlated with one another. A scatter plot illustrates the
relationship between the state of charge of a battery and
the input state variables such as the current, voltage, and
temperature.

We found that the SoC was strongly dependent on the
parameters utilized during the training of the DL model.
A deep learning model was trained using these parameters,
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FIGURE 7. Correlation between the different variables of the energy source.

FIGURE 8. Change in parameter of the ESS with respect to time.

and the desired energy source model parameters with respect
to time are shown in Fig. 8. The voltage and temperature of

the modeled ESS were almost constant with time, and the
SoC level of the ESS changed without changes in the supply
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FIGURE 9. Performance accuracy of the ML algorithms.

FIGURE 10. Forecasted load profile of commercial load1 for 24 hours.

FIGURE 11. Forecasted load profile of commercial load 2 for 24 hours.

voltage and current. The results presented in Fig. 8 were
obtained from a deep learning model using the LSTM algo-
rithms. Initially, two different machine-learning approaches,
VARIMA and LSTM, were used to model the EVCS, and
their performances were compared, as shown in Fig. 9. The
LSTMnetwork provided a better estimationwith an RMSE of
0.49 % compared to the VARIMA network with 0.87 %. The
LSTM validation accuracy was better than that of VARIMA
Therefore, LSTM was chosen for the SoC estimation of the
energy source. After that, the estimated SoC of ESS is given
to the controller for peak load management of the MG

B. LOAD PROFILE ANALYSIS
Commercial and residential loads connected to the MG were
simulated using the collected load data. Three commercial
loads were simulated, and their behaviors were similar to
those of the real loads connected to a grid. Power consump-
tion patterns of commercial loads are shown in Fig.10 to
Fig. 12.

The overall load connected to the grid is shown in Fig.15.
Moreover, EVCS power consumption is shown in Fig 16.
It shows that EVCS consumes power during off-peak-load
and delivers power during the peak load.

C. GRID PROFILE
An MG was simulated using a 120 kW generator, 10 kW
solar power source, three commercial loads, two residential
loads, and an EVCS. The profiles of commercial loads are

FIGURE 12. Forecasted load profile of commercial load 3 for 24 hours.

FIGURE 13. Forecasted load profile of residential load1 for 24 hours.

FIGURE 14. Forecasted load profile of residential load 2 for 24 hours.

FIGURE 15. Forecasted load profile of total load connected to microgrid.
for 24 hours.

FIGURE 16. Power profile of EV charging station for 24 hours.

FIGURE 17. Profile of solar power station for 24 hours.

shown in Fig. 10–12. The residential loads are shown in
Fig. 13 and 14. The charging and discharging behaviors of
the EVCS are displayed in Fig. 16, which shows that the
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FIGURE 18. Profile of conventional generator without peak load
compensation for 24 hours.

FIGURE 19. Profile of conventional generator with peak load
compensation using EVCS for 24 hours.

EVCS consumes power during off-peak hours and supplies
power to the grid during peak hours. Fig. 17 characterizes the
power profile of the solar system. Fig. 18 characterizes the
power supply by the conventional power generator without
peak load. To reduce the power supply from the conventional
source, the EVCS supplies power to the grid, and the result
is shown in Fig. 19. It was found that the power shared
by the conventional source was high, reaching 182 kW in
the case of peak demand. The profile of the conventional
power source was modified by the proposed demand-side
management framework and the power supply by the con-
ventional generator is confined below 100 kW. It successfully
compensated the peak load demand between 10 to 17 hours.
The central DSM controller receives load forecast data, SoC
information, PV generation, and day-ahead demand, and then
performs the required actions for the energy flow between
the MG and EVCS. The EVCS participates in the DSM
program and receives signals via two-way communication
during hourly dispatch. Consequently, a peak-shaping DSM
strategy is implemented to reduce system peak and total
operating costs.

IV. CONCLUSION
Considering the alarming situation due to on-road IC engine-
based vehicles and other GHG emissions. In this manuscript,
a comprehensive framework of a data-driven-based demand-
side management scheme for electric vehicle-connected
micro gird is proposed. Loads connected to the MG were
forecasted using the deep learning time-series method. Data
required to train the DL method were collected from a power
substation. Moreover, modeling of PV connected to the MG
was performed using a data-driven approach. The EVCS
modelingwas done by considering it as a single energy source
and the SoC of the associated EV battery was estimated using
the deep learning method. The LSTM model was used for
SoC estimation because its validation efficiency was found
to be 99.51 %, which is better than VARIMA model with
99.13%. Finally, DSM was achieved using the proposed

efficient deep learning controller. Initially, the power sup-
ply by the conventional source was above 100 kW between
10 am to 5 pm. Moreover, supply at peak load was up to
182 kW. Analysis of results shows that power supply by the
conventional power source is confined below 100 kW after
the DSM using a designed controller. Also, it was analyzed
that the proposed approach is less complex, more efficient
and modeling of the system is more realistic as compared to
conventional mathematical modeling methods. The proposed
method reduces theGHGemission, increases the reliability of
the DER microgrid, and increases the profit of EVCS which
will motivate the investor to establish the new EV charging
station.

Future research could combine this more realistic model
with other intelligent operational models to increase EVCS
utilization by bringing it closer to real-world scenarios.More-
over, this model can be used in conjunction with algorithms
to assist operators with the placement and sizing of EVCS in
order to improve operations.
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