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a b s t r a c t

The transportation sector is one of the most prevalent fossil fuel users worldwide. Therefore, to
mitigate the impacts of carbon-dioxide emissions and reduce the use of non-environmentally friendly
traditional energy resources, the electrification of the transportation system, such as the development
of electric vehicles (EV), has become crucial. For impeccable EVs deployment, a well-developed
charging infrastructure is required. However, the optimal placement of fast charging stations (FCSs)
is a critical concern. Therefore, this article provides a functional approach for identifying the optimal
location of FCSs using the east delta network (EDN). In addition, the electrical distribution network’s
infrastructure is susceptible to changes in electrifying the transportation sector. Therefore, actual
power loss, reactive power loss, and investment cost are three areas of consideration in deploying
FCSs. Furthermore, including FCSs in the electricity distribution network increases the energy demand
from the electrical grid. Therefore, this research paper recommends integrating solar-based distributed
generations (SDGs) at selected locations in the distribution network, to mitigate the burden of FCSs
on the system. Hence, making the system self-sustaining and reliable. In addition, the reliability of the
distribution system is also analyzed after deploying the FCSs and SDGs. Furthermore, six case studies
(CS) have been proposed to deploy FCSs with or without DG integration. Consequently, the active
power loss went from 1014.48 kW to 829.68 kW for the CS-6.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Incorporating distributed generations (DGs) and electric ve-
icle charging stations (EVCSs) into existing power networks
as necessitated rapid changes within the system. This growing
emand for solar based distributed generations (SDGs) due to its
nvironmental benefits, the declining costs compared to tradi-
ional energy generation, technical advancement, and ease of use
re major factors driving the SDGs market size (Reports, 2020).
he increasing use of SDGs, wind power generation, and other
Gs technologies have paved the way for small and medium
cale involvements, thus, resulting in the coining of the word
rosumers, which refers to people who deliver and consume
nergy at the same time (Lotfi et al., 2019). SDG has not only been
hown to be environmentally friendly, but it has also been proven
o decentralize the electrical power network, lowering power
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352-4847/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
losses and enhancing bus voltages (Sambaiah and Jayabarathi,
2021).

These distributed renewable energy technologies could help
minimize reliance on fossil fuels as they aid the rapid growth of
EVs and reduce greenhouse gas (GHG) emissions in the
transportation system (Luo et al., 2020; Bilal and Rizwan, 2021).
Moreover, with the emergence of EVs, there is a growing global
concern about the continual use of petroleum-based products
in the transportation sector due to their environmental impacts
and depletion (Gandoman et al., 2019). Furthermore, EVs have
advantages such reduced noise pollution, lower operational costs,
and emission-free (Michaelides, 2021; Ahmad et al., 2022a).

The rapid adoption of EVs is strongly reliant on the quick
growth of charging infrastructure. The EV chargers have three
charging levels based on charging time and power level; Level
1 (slow), Level 2 (medium), and Level 3 (fast), and they can be
onboard or offboard. Level 1 and level 2 chargers are onboard
charging, whereas level 3 charger is offboard. However, level 1
and level 2 chargers are limited by power density and charging
time, while level 3 chargers are the fastest (Luo et al., 2017). In
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ddition, EVs are predicted to minimize CO2 emissions by 50 to
00 g per kilometre (Nanaki and Koroneos, 2016; Ahmad et al.,
022c). In recent years, the EV industry in the United States has
xperienced significant growth, with EV sales rising from 16,000
ehicles in 2011 to over 2 million vehicles in 2021 (Electrek,
021). As EVs become more popular in the United States, the need
or EV charging stations is rapidly increasing.

This widespread of EVs in the transport industry will not only
nhance the environment but will also optimize network stability
y enabling frequency and voltage control while serving as the
ehicle to grid (V2G) to mitigate for abrupt load rise or loss in the
rid (Faddel et al., 2018). In contrast, the incorporation of EVCSs
nto the distribution network must be accomplished strategically
ecause it may result in excessive loading, leading to higher
ower loss, power quality deterioration (Ahmed et al., 2021) and
oltage deviations exceeding permitted thresholds (Deb et al.,
018). The problem worsens when more EVCSs is integrated
nto the distribution network, with widespread penetration of
andomly distributed SDG. As a result, the appropriate placement
f EVCSs in the distribution network is required to reduce their
etrimental effects on the distribution network.

.1. Related works

The cost of active and reactive power losses and the de-
elopment of CS are set as objectives for finding the optimal
ocation of CS, and the proposed problem have addressed using
alanced mayfly techniques (Chen et al., 2021). In Mainul Islam
t al. (2018), the authors devised a multi-objective optimization
roblem for the placement of FCSs using conveyance energy loss,
nstallation cost and sub-station energy loss cost as objectives
hich have been addressed using the binary lighting search al-
orithm. In addition, Pal et al. (2021) presented an optimization
roblem incorporating energy loss, voltage variation, EV fleet
nd land cost as objective functions. However, the uncertainty
elated to the EVs has efficiently been controlled by the 2 m
oint estimation method (2 m PEM) and the optimal result was
cquired by the Harris hawks optimization technique.
Furthermore, the station investment cost, specific energy con-

umption cost of the EVs, network power loss and voltage de-
iation are suggested for the optimization problem. Therefore,
novel hybrid shuffled frog leap-teaching learning-based opti-
ization (SFL-TLBO) technique was utilized to address the prob-

em (Battapothula et al., 2019). The literature provides power loss,
oltage shape and EV charging costs as objective functions for
he problem formulation of finding the optimal placement of the
Ss and RESs (Moradi et al., 2015). Furthermore, in Bitencourt
t al. (2021), the bat algorithm is employed to solve the objective
unction for the placement of CS, which is the minimization
f electrical power loss and charging zone center. Moreover,
n Cheng et al. (2022) the authors optimized the location and size
f the EV charging station considering traffic information and area
ivision and proposed problem obtained by the improved whale
ptimization algorithm. In Li et al. (2022), used charging costs,
otal investment costs, and operating costs of the charging sta-
ions are formulated as the objective functions for the proposed
roblem to deploy the charging station integration of renewable
nergy and energy storage.
In Reddy and Selvajyothi (2020), a power loss of an imbal-

nced radial distribution network was offered as an objective
or EVCS deployment, and the described optimization problem
as handled using the particle search optimization algorithm.
urthermore, Mohsenzadeh et al. (2018) explored the optimal
lacement of parking lots by increasing parking lot earnings
nd used the cost of power loss, reliability, voltage deviation,
nd parking lot as the objectives with the genetic algorithm
11647
(GA) delivering the optimal findings. A similar topic is addressed
in Ahmad et al. (2022b), which takes into account installation
costs and active power loss costs for placement, as well as an
optimization problem responded by the gray wolf optimization
algorithm. For (Luo and Qiu, 2020), the concentration was on
the optimal deployment of the CS for sustainable cities, and they
suggested a multi-objective problem. Also, the annualized time
opportunity cost, travel cost, construction cost and operation
cost are supposed objective functions and GA addressed the of-
fered problem. Furthermore, in Rajesh and Shajin (2021) found
the optimal location of CSs and capacitors while accounting for
power loss costs and the defined issue is addressed using the
Quantum-Behaved and Gaussian Mutational Dragonfly Algorithm.

The reliability of the distribution system has been analyzed
after the placement of the charging station and DGs in Bilal
et al. (2021). In contrast, the power loss and voltage devia-
tion cost are used as objective functions and proposed problem
solved by hybrid gray wolf optimization particle swarm opti-
mization algorithm. In addition, the reliability indices, power loss,
voltage deviation are used for the placement of the charging sta-
tion in which a meta-heuristic algorithm addresses the proposed
problem in Matlab/Simulink (Archana and Rajeev, 2021).

1.2. Findings and contributions

A significant number of researchers have explored the instal-
lation of charging stations without considering the integration
of renewable distributed generation, which is not so viable in
the large-scale deployment of EVs. The integration of charging
station to the grid is not beneficial for the environment because
the grid power generation mostly from the conventional sources.
Furthermore, all the article which place the charging stations at
optimal locations, is not analyzed the reliability of the system.
Therefore, the objective of this research to place the charging
station at optimal location with renewable energy generation
and also have analyzed the reliability indices of the distribution
system for different case studies.

To investigate the impact on system reliability, fundamental
system reliability indicators such as the system average interrup-
tion frequency index (SAIFI), system average interruption dura-
tion index (SAIDI), Customer Average Interruption Duration Index
(CAIDI), and expected energy not supplied (EENS) and average
energy not supplied (AENS), among others, are used. This research
introduces a novel improved bald eagle search algorithm for plac-
ing FCSs in a distribution network with SDG. The SDG generation
are placed and distributed randomly on the load nodes of the EDN
distribution network, which serves as the case study network. The
neoteric contributions of this paper are:

1. An improved BES for optimizing the placement of FCSs in
the distribution network. To the authors’ knowledge, an
IBES has never been employed for charging station location.

2. Considering a distribution network with SDG that are ran-
domly sized and located to represent real-life consumer-
based decentralized penetration. Most studies include
dispersed generations to adjust for the effects of the FCSs
on the distribution network. On the other hand, this study
includes the FCSs and distributed SDG across the distribu-
tion network.

3. The optimal location of the fast-charging station is modeled
using three objectives. The operational parameters of the
distribution network are taken into account by imposing a
penalty for exceeding the safe limit. Hence, the complex
optimal location problem is modeled as a optimization
problem while taking into account the operating param-
eters of the system, which may adversely undermine the
safety of the system.

4. The customer oriented and energy oriented reliability in-
dices of the distribution system is also explored before and
after the deployment of FCSs for different case studies.
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Fig. 1. Single line diagram of the charging station.
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. Problem formulation

One of the main focus of this research is identifying the op-
imal location for the FCSs. This is a multi-objectives problem
ith various economic factors such as operation and maintenance
osts, station equipment costs, and land costs. Therefore, specific
ost function indices are introduced to handle the deteriorating
erformance of the distribution system for the placement of FCSs.
urthermore, the research identifies the number of FCS in the
uggested region before evaluating their optimal location. The
ingle line block diagram are presented in Fig. 1.

.1. Placement and size of renewable energy sources

The integration of EV load into the grid is not beneficial, as
iscussed above, for reducing carbon emission if the power is
enerated from fossil fuels. Therefore, the addition of SDG into
he grid is highly recommended. In addition, distributed location
f the SDG is more reasonable for the system to reduce losses,
eliability of system and voltage stability. Moreover, in this work,
ome locations are identified for the placement of SDGs, which
ave enough space and good atmospheric conditions for SDGs.
olar and wind energy technologies are two of the fastest growing
enewable energy sources for distributed generation (Gielen et al.,
019). However, the integration of FCSs into the grid could mis-
atch power demand and electricity generation. This mismatch is

esolved by including SDGs into the distribution network, which
educes the grid stress caused by EV load (Tavakoli et al., 2020). In
ddition, the power generated from the SDGs is assumed at 10%
f the total load of the east delta network (EDN) (El-Ela et al.,
016), with a power factor of 0.95. Therefore, the total active and
eactive power generated by the SDGs are estimated at 2520 kW
nd 828 kVAR respectively.

.2. Number of fast charging station

The required number of FCSs in the selected case study region
as calculated using the overall EV population in the area, the
attery capacity, load factor and charging time. The derived equa-
ion is expressed in Eq. (1) (Phonrattanasak and Leeprechanon,
012). Equally, the number of FCS (NFCS) is shown.

FCS =
pEV × NEV

× Chtime

St × Ef × CP × lf × NC × pf
(1)

where, pEV is the mean power of EVs, NEV is the number of EVs to
e charged per day, Chtime is the charging time, St is the charger
ervice time, Cp is the capacity of connector, NC is the number of
onnectors in FCS, Ef is charging efficiency, lf is the load factor
f the charger, and pf is the power factor of charging load.
 N
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2.3. Investment cost reduction indicator

The variation in land cost is dependent on the location exam-
ined. In addition, the development cost contributes significantly
to the project’s total cost. However, this cost will decline as
technology improves in the future. Therefore, FCS investors need
to investigate the land cost of each chosen location of the FCS.
Then, the investment cost (IC) is calculated using the fixed cost,
land cost and development cost of the connector, as indicated in
Eq. (2). The planned FCS requires a minimum space of 100 m2.
hus, the land cost is calculated as the land rental cost over five
ears. Furthermore, the normalized value of investment cost is
xpressed by the investment cost reduction indicator (ICRI) at ith
us, which is given in Eq. (3).

Ci = C fix
+ 100 × ND × C lan

i + (Nc − 1) × Cp × Cdev (2)

CRIi =
ICi

max(ICi)
(3)

where, C fix is the fixed cost for establishing the charger, C lan
i is

the land rental cost per m2 per day for five years at ith bus,
hich is developed erratically, Cp and Nc are the rated power of
he connector and number of connector respectively, Cdev is the
evelopment cost of each connector, ND is the number of days for
uggested planning.

.4. Active power loss reduction indicator

Two power loss reduction indicators were used to the exam-
ned EDN bus distribution system in determining the appropriate
osition of FCSs. The first power loss reduction indicator is the
ctive power loss reduction indicator (PLRI). The PLRI evaluates
ossible increase in the grid power losses when the FCSs are
onnected. This is expressed in Eq. (4).

LRI = 1 −
PLBase

PLFCS
(4)

where, PLBase and PLFCS are the total active power loss of the dis-
tribution system without FCS placement and with FCS placement
respectively. Furthermore, the active power loss of the system is
determined by using Eq. (5).

PL =

Nb∑
b=1

(
P2
b + Q 2

b

V 2
b

)
Rb (5)

where, Pb, Qb are the active and reactive power flow in bth branch
f the network, respectively, Rb is the resistance of the bth branch
hereas, Vb is the sending node voltage of the given branch and
b is the total number of branches in given network.
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.5. Reactive power loss reduction indicator

The second power loss reduction indicator considered the
eactive power loss reduction indicator (QLRI), which provides
specified threshold for maintaining the grid voltage stability
hen reactive power losses are less than it. This indicator is
xpressed in Eq. (6).

LRI = 1 −
QLBase

QLFCS
(6)

where, QLBase and QLFCS are the total reactive power loss of the dis-
tribution system without FCS placement and with FCS placement
respectively. Furthermore, the reactive power loss of the system
is calculated by using Eq. (7).

QL =

Nb∑
b=1

(
P2
b + Q 2

b

V 2
b

)
Xb (7)

where, Pb, Qb are the active and reactive power flow in bth branch
of the network, respectively, Xb is the reactance of the bth branch
whereas, Vb is the sending node voltage of the given branch and
Nb is the total number of branches in given network.

2.6. Reliability

The significant surge in load demand caused by EV fast-
charging causes interruptions in the distribution network. The
rise in load demand caused by unplanned charging affects relia-
bility indices, especially the system reliability index (SRI), result-
ing in consumer discontent. SRIs are classified into two types:
customer-oriented reliability indexes and energy-oriented relia-
bility indexes. SAIFI, SAIDI and CAIDI are included in customer-
oriented reliability indexes whereas EENS and AENS are consid-
ered in energy-oriented reliability indexes (Bilal et al., 2021).
All the data which is required for the reliability analysis are
borrowed (Archana and Rajeev, 2021; Bilal et al., 2021) for the
proposed distribution network.

The reliability indices are laboriously influenced by statistical
parameters such as failure rate and outage duration. Therefore,
these parameters can be changed after integrating EV load and
SDG generations. Furthermore, the rate for failure and duration
of interruption for the given bus can be stated in Eqs. (8), (9)

δEV = (Pbase + ∆PEV )
δbase

Pbase
(8)

TEV = (Pbase + ∆PEV )
Tbase
Pbase

(9)

where, Pbase, δbase and Tbase are the base value of active power
demand, failure rate and duration of outage for the distribution
network. ∆PEV is the active power load which is integrated due
to EV for the distribution system.

Customer-oriented reliability indices include SAIFI, SAIDI, and
CAIDI, whereas energy-oriented reliability indexes include EENS
and AENS. SAIFI is calculated based on the number of disruptions
experienced by the consumer during a given period. SAIFI de-
grades as the number of disruptions and customers in the system
expansions, which is expressed as in Eq. (10).

SAIFI =

∑
(δEV × Ci)∑

(Ci)
(10)

where, Ci is the number of customers connected to ith bus after
integration of FCSs and SDGs. SAIDI is determined by each client’s
total time of interruption for a particular instant with EV charging
loads. It reflects the network’s condition in terms of the extent of
the interruption, as in Eq. (11)

SAIDI =

∑
(TEV × Ci)∑ (11)
(Ci) P
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CAIDI is calculated using the average failure rate, the time it
takes for the failure rate to increase due to higher EV load, and
the customer count. It denotes the average time it takes that a
particular client must meet, as shown in (12)

CAIDI =

∑
(TEV × Ci)∑
δEV × (Ci)

(12)

As demonstrated in Eq. (13), the network’s Expected Energy Not
Supplied (EENS) is the product of load and interruption time. The
EENS is a sign of insufficient energy.

EENS =

∑
(PEV × Ti) (13)

where, PEV is the load of the distribution network after integration
f EV. AENS is the measure that reveals the load demanded at
he bus and provides knowledge on the cut of energy that is not
vailable within a given time stand with the growth of additional
harging loads. AENS is expressed in Eq. (14).

ENS =

∑
(PEV × Ti)∑

(Ci)
(14)

. Cost function

The distribution system indicators discussed above and the
CS’s acquisition cost are considered for analyzing the location of
he CSs. The illustrated optimization problem is a mixed-integer
onlinear problem in which Xi is a binary variable. Hence, the cost
unction must be decreased to minimize the active and reactive
ower loss, and investment cost for the optimal placement of the
CS. The suggested objectives are formulated as a single objective
ptimization problem, which is expressed in Eq. (15).

= w1 × PLRI + w2 × QLRI + w3 ×

N∑
i=1

(ICRIi × Xi)/NFCS (15)

here, N is the buses in the distribution network, which are the
ossible location of FCS, Xi is the binary variable (0 or 1). If Xi =

, it indicates that no FCS is placed at the given bus, and if Xi = 0,
t indicates that FCS must be placed at that bus. where, w1, w2 and
3 must follow the equality and inequality condition, which are
xpressed in Eqs. (16) and (17), respectively.

1 + w2 + w3 = 1 (16)

⩽ w1, w2, w3 ⩽ 1 (17)

1, w2 and w3 are the coefficients used to change the priorities
n decision making between power loss of the distribution system
nd the investment cost of the FCS.

.1. Constraints

For the optimal site of the charging stations, the expressed cost
unction must adhere to some inequality and equality restrictions.

oltage limit constraint: The voltage at respective buses must
ollow a minimum and maximum boundary, which is defined in
q. (18).
min ⩽ Vi ⩽ Vmax (18)

here i = 1, 2. . .N, Vmin and Vmax are the minimum and maximum
oltage limits of respective buses, Vi is the voltage of ith bus, 0.90
nd 1.10 are the defined minimum and maximum bus voltage
alue in per unit.

ctive power limit constraints: In Eq. (19), an active power
imitation is generated by maintaining the active power of each
ine under set constraints.
min max
⩽ Pj ⩽ P (19)



F. Ahmad, I. Ashraf, A. Iqbal et al. Energy Reports 8 (2022) 11646–11660

l
P

R
e
i

Q

w

w

t

N
i
f

N

w
s
a

4

l
a
c
t
a
p

4

e
t
t
s

S
s

p

x

δ

w

5

m
w
p
(
p
E
l
c
r
g
f
h
p

5

m
s
w
(
t
a
b
(
i
t
f

Table 1
Placements and size of SDGs for the EDN.
Distributed SDGs Real power (kW) Reactive power (kVAR) Bus

SDG-1 840 276 5
SDG-2 1120 368 16
SDG-3 560 184 22

where j = 1, 2 . . . L, Pmin is the minimum active power limit of the
ines, Pmax is the maximum active power limits of the lines, and
j is the active power at jth line.

eactive power limit constraints: To keep the reactive power of
ach line within set limits, a reactive power constraint is formed
n Eq. (20).
min ⩽ Qj ⩽ Qmax (20)

here j = 1, 2 . . . L, Qmin is the minimum reactive power, Qmax is
the maximum reactive power of the lines, and Qj is the reactive
power at jth line.

Power balanced constraints: the power demand and generation
should be equal, which is formulated in (21).

PEV + Psys = PPV + Pgrid (21)

here, Psys is the power demand of IEEE-34 bus system without
EV integration, Pgrid is the power consumption from the grid, PEV
is the EV power demand whereas PPV is the power generated from
he renewable energy sources.

umber of fast charging station: The number of fast charging
s calculated using (22), therefore minimum restriction is applied
or the number of FCS to minimized the cost function.
min
FCS ⩽ NFCS (22)

here Nmin
FCS is the minimum number of fast-charging stations that

hould be placed in the proposed area; each charging station has
fixed number of connectors with 100 kVA as proposed.

. Solution technique

Classical optimization techniques could find the optimal so-
ution for the unconstrained maxima and minima continuous
nd differential functions. However, classical approaches have
onfined practical use, as they need objectives that are not con-
inuous or differential. Hence, advanced optimization techniques
re employed to accomplish the best solution for the specified
roblem.

.1. An improved bald eagle search algorithm

The improved bald eagle search (IBES) algorithm (Ramadan
t al., 2021) established on the bald eagle search algorithm (Alsat-
ar et al., 2020), and it is motivated by bald eagle behavior during
he hunting process. The hunting strategy involves selecting the
pace, searching the space, and swooping in on the prey.

electing the space: Using Eq. (23), the bald randomly selects the
pace by applying the previously searched information.

new,i = pbest + α × r(pmean − pi) (23)

Instead of using a fixed value as required in the original BES
method, a new parameter, alpha is used to manage the changes
in position and can be derived using Eq. (24).

α =
(1.5 × (MaxIter − t + 1))

(24)

(MaxIter )
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This new parameter affects the bald position of eagles and im-
proves the exploration and exploitation of the IBES approach. r
is a number between 0 and 1. The new and best search spaces
are denoted by pnew and pbest respectively. pmean shows the eagles
have ingested all the details from the prior search.

Search stage: The eagles move in a spiral form to speed up prey
search in the selected space. At this point, the eagle’s location is
updated using Eqs. (25), (26)–(29).

pi,new = pi + y(i) × (pi − pi+1)pbest + x(i) × r(pi − pmean) (25)

x(i) =
xr(i)

max|xr|
, y(i) =

yr(i)
max|yr|

(26)

xr(i) = r(i) × sin(δ(i)), yr(i) = r(i) × cos(δ(i)) (27)

δ(i) = α × π × rand (28)

r(i) = δ(i) × R × rand (29)

where, α is a parameter with a range of 5 to 10, and R is a
parameter with a range of 0.5 to 2.

Swooping stage: At this stage, the eagles begin to swing from
an optimal search position towards their prey, as expressed in
Eqs. (30)–(33).

pi,new = rand×pbest+x1(i)(pi−c1×pmean)+y1(i)(pi−c2×pbest ) (30)

x1(i) =
xr(i)

max|xr|
, y1(i) =

yr(i)
max|yr|

(31)

r(i) = r(i) × sinh(δ(i)), yr(i) = r(i) × cosh(δ(i)) (32)

(i) = α × π × rand, r(i) = δ(i) (33)

here, c1 and c2 have value from 1 to 2.

. Results and discussions

This work was implemented using, MATLAB 2018a program-
ing language, which was installed in a windows 8.1 computer
ith Intel i7 processor, 2.4 GHz clock speed and 4 GB RAM. The
roposed multi-stage method was applied on East Delta Network
EDN) distribution systems to solve the optimal FCS placement
roblem. The EDN distribution system is a part of the Unified
gyptian Network (UEN) (El-Ela et al., 2016). Hence, the single
ine diagram of EDN is shown in Fig. 2. The line voltage, rated
apacity and power factor are 11 kV, 27.221 MVA and 0.854
espectively. The location and sizing of the renewable distributed
eneration are presented in Table 1. Furthermore, the number of
ast charging stations is derived using Eq. (1). The proposed FCS
as 10 connectors, each connector is rated 100 kVA with 0.95
ower factor.

.1. Validation of improved bald eagle search algorithm

The IBES was tested and assessed against a variety of bench-
ark functions. The proposed IBES algorithm flowchart is pre-
ented in Fig. 3. In addition, the results from the IBES algorithm
ere compared with some other modern optimization techniques
AEO, GBO, BES) in Ramadan et al. (2021). Also, the results of
he IGOA and GOA were compared with the proposed algorithm,
nd the parameters of related algorithm are provided in Ta-
le 2. Similarly, the results of the unimodal benchmark functions
F1–F7) and the multimodal benchmark functions (F8–F13) are
llustrated in Table 3. Therefore, The IBES algorithm was proven
o outperform other meta heuristic algorithms for the benchmark
unctions.
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Table 2
Used parameters.
Parameters Value Unit

Population size (nPop.) 100 –
Max. Iterations (Maxiter ) 100 –
Number of runs (N runs) 30 –
Parameter of GBO Pr = 0.5 –
Parameters of BES c1, c2 , α = 2, a = 10, R = 1.5 –
Parameters of IBES c1, c2 = 2, a = 10, R = 1.5 –

Number of EVs (NEV ) 2000 –
Charging time (Chtime) 0.33 h
Number of connector in FCS (NC ) 10 –
Service time of FCS (st) 18 h
Fixed cost of FCS (Cfix) 21 900 $
Development cost of connector (Cdev) 109.5 $
Charger efficiency (Ef ) 0.9 –
Power factor of FCS (pf ) 0.95 –
Load factor of FCS (lf ) 0.9 –
Average power for each EV (pEV ) 96 kW
Connector capacity (Cp) 100 kVA
Electricity price (CE ) 0.11 $/kWh
Number of days (ND) 1825 –
Table 3
Results of benchmark functions (Ramadan et al., 2021).
Functions IGOA GOA AEO GBO BES IBES

F1
Best 8.36E−16 0.0683 7.97E−42 1.00E−23 0 0
Worst 9.59E−15 4.4591 2.26E−33 9.21E−21 0 0
Mean 3.34E−15 0.8386 2.50E−34 1.92E−21 0 0

F2
Best 9.06E−09 0.029 1.36E−22 4.32E−13 0 0
Worst 6.59E−08 79.104 6.59E−17 1.03E−10 1.37E−270 4.47E−303
Mean 2.44E−08 10.244 9.84E−18 1.96E−11 6.85E−272 2.73E−304

F3
Best 8.44E−12 450.45 3.44E−38 5.08E−50 0 0
Worst 0.0983 4603.90 2.20E−30 7.79E−45 0 0
Mean 0.0121 1789.34 2.84E−31 4.20E−46 0 0

F4
Best 9.7112E−08 3.0335 2.55E−21 3.69E−11 0 0
Worst 0.0694 19.5647 8.30E−17 5.29E−10 1.51E−260 1.60E−294
Mean 0.0257 9.7756 1.38E−17 2.49E−10 7.56E−262 8.32E−296

F5
Best 25.850 25.698 26.413 26.2035 23.423 23.491
Worst 27.036 7522.99 27.87792 28.7239 25.7669 25.3265
Mean 26.448 965.65 27.1144 27.289 24.2684 24.6636

F6
Best 5.2803E−07 0.0203 0.090625 0.03963 6.70E−7 1.43E−5
Worst 2.52103−06 11.0963 0.66915 0.228144 7.96E−5 0.249381
Mean 1.4451E−06 0.8997 0.333799 0.102408 1.79E−5 0.03938

F7
Best 1.0746E−05 0.0090 9.34E−5 0.000839 1.58E−5 2.25E−6
Worst 0.0072 0.0602 0.009584 0.009435 0.000348 3.10E−4
Mean 0.0010 0.0234 0.001969 0.002914 0.000142 8.49E−5

F8
Best −9009.31 −8903.05 −1759.19 −1830.71 −1777.18 −1731.16
Worst −5993.93 −6468.56 −1400.39 −1642.02 −1043.35 −1354.55
Mean −7594.16 −7728.43 −1608.48 −1720.61 −1503.62 −1543.11

F9
Best 0 1.9899 0 0 0 0
Worst 0 27.8586 0 0 0 0
Mean 0 9.4853 0 0 0 0

F10
Best 8.58E−09 1.5021 8.88E−16 8.88E−16 8.88E−16 8.88E−16
Worst 1.97E−08 4.5855 4.44E−15 3.70E−08 20 20
Mean 1.30E−08 3.0892 1.24E−15 4.09E−09 18 11

F11
Best 6.66E−16 0.3226 0 0 0 0
Worst 6 2.52E−14 1.0411 0 2.04E−09 0 0
Mean 5.50E−15 0.6966 0 1.02E−10 0 0

F12
Best 4.62E−08 1.8994 0.001042 0.000366 2.91E−09 6.53E−06
Worst 1.85E−07 9.7664 0.004707 0.002090 3.41E−07 9.95E−05
Mean 8.93E−08 5.6658 0.002850 0.001236 1.04E−07 4.13E−05

F13
Best 4.85E−07 0.3005 0.530081 0.104263 2.247450 1.959950
Worst 0.0989 35.2838 2.970408 0.475712 2.966102 2.968414
Mean 0.0138 8.7624 1.665532 0.218800 2.904654 2.916155
5.2. Results of optimal location of FCS with SDG

In this study, the EDN 30 bus distribution system was used to
llustrate the efficacy of the suggested improved BES algorithm.
n addition, the neoteric IBES algorithm was used to assess the
11651
fitness value given in the objective function Eq. (15) against the
varying w1, w2, and w3 for the FCSs placement in the network.
Therefore, this method provides optimal locations for FCSs with
randomly positioned SDGs and minimizes the investment cost,
real power loss and reactive power loss. The optimal number of
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Fig. 2. Single line diagram of the EDN (Ahmad et al., 2022a).
p
l
a
n
F
r
i
a
f
f
l
l
i
H
p
o
o
p
r
i
r
n
f
v
T
c
i

5

c
E
w
m
p
F
i
a
F
F
t
a

CSs required was five. However, 6 cases were offered for the
lacement of FCSs by modifying the values of w1, w2, and w3.
oreover, to addressed the sensitivity analysis for optimization

esults of charging station location by varying the weight coef-
icient, six case studies were proposed to place the FCSs with
enewable based distributed generations.

.2.1. Results of optimal location of FCSs
For first case study (CS1), the active and reactive power losses

re not considered for the optimization problem while the only
nvestment cost is incorporated. However, in case study 2 (CS2),
he optimal locations are obtained by incorporating 10% of active,
0% of reactive power loss while 80% of investment cost for
ptimization problem. The optimal location of FCSs obtained, in
his case, is the same as the previous case due to the low value
f power losses considered. Furthermore, in case study 3 (CS3),
0%, 20% and 60% of real power loss, reactive power loss and
nvestment cost were considered. In case study 4 (CS4), active
nd reactive power losses are increased from 20% to 30% while
he investment cost is reduced from 60% to 40%, hence, power
osses are the dominating factors in the optimal location of the
CS. Similarly, in case study 5 (CS5), power loss inclusion is
aised further and the investment cost is reduced in deciding the
ptimal location of the FCS. Finally, in the case study 6 (CS6), only
ower losses are considered for the placement of FCS, therefore,
he optimal location of FCSs obtained in this case has less power
osses compared with others proposed cases. The power losses
btained from CS1 to CS6 are continuously decreasing due to
he increasing power losses in the objective function. The results
btained for the FCSs locations with real power losses, reactive
ower losses and cost function values for respective cases are
iven in Table 4. In addition, the real and reactive power flow
or the lines in the EDN are obtained for all proposed cases. The
erived real power flow decreases from for CS1 to CS6 as shown
n Fig. 4. Similarly, the reactive power flow decreases from CS1
o CS6 in Fig. 5.

.2.2. Results of optimal location of FCSs with SDGs
For CS1, the active and reactive power losses are not incor-

orating for the deciding factors of FCS deployment. Therefore,
he higher power losses are obtained while comparing with other

ases as shown in Table 4. Furthermore, in CS2, the optimal F

11652
osition of FCSs is determined by considering 10% of real power
oss. In this case, the decision function accounts for 10% of re-
ctive power loss and 80% of the investment cost, and due to
egligible power losses, the optimal position of FCSs is the same.
urthermore, in CS3, 20%, 20%, and 60% of the true power loss,
eactive power loss, and investment cost were taken into account
n deciding the placement of the FCS. In CS4, power loss concerns
re raised from 20% to 30%, while investment cost is lowered
rom 60% to 40%, resulting in power losses being the prevailing
actor in the optimal location of FCS. Similarly, in CS5, the power
oss inclusion is raised while the investment cost component is
owered in determining the optimal location of the FCS. However,
n CS6, only power losses are considered in the FCS placement.
ence, the optimal position of FCSs in this case has the least
ower losses when compared with others. The power losses
btained from CS1 to CS6 are continually increasing as a result
f the increasing power losses in the objective function. Table 4
resents the results obtained for the locations of the FCSs having
eal power losses, reactive power losses and cost function values
n all examined cases. Furthermore, in all proposed cases, the
eal and reactive power flow in the lines of the EDN distribution
etwork are obtained. Also, real and reactive power flow decline
rom CS1 to CS6 as shown in Fig. 4. However, the normalized
alue of investment cost increases from CS1 to CS6 as shown in
able 4 for the placement of FCSs. Conversely, the investment
ost decreases in the placement of FCSs with SDGs as depicted
n Table 5.

.2.3. Results of voltage profile
The voltage at respective buses is shown in Figs. 6 to 11 for all

ases suggested in this research. Fig. 6 depicts the voltage of the
DN network’s buses for the FCS placements and FCS placement
ith SDG in CS1. The result shows that in CS1, the FCS’s deploy-
ent decreases, while it increase in the FCSs placement with SDG
ositions. Similarly, the voltages in CS2 during FCS placement and
CS placement with SDG are shown in Fig. 7. Furthermore, in the
nstallation of FCSs with SDGs, the voltages in CS3 are improved,
s seen in Fig. 8. It is observed that voltages in the deployment of
CS with SDG is equivalent to the base case illustrated in Fig. 9.
inally, the voltages of the FCS placement with RES are stronger
han the base case in CS5 and CS6, as shown in Figs. 10, and 11
nd also performance of all suggested algorithm are illustrated in

ig. 12.
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Fig. 3. Flowchart of the Improved bald eagle search algorithm (Ramadan et al., 2021).

Fig. 4. Active power flow with FCS placement.
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Fig. 5. Reactive power flow with FCS placement.
Fig. 6. Voltage of the buses for CS1.
Fig. 7. Voltage of the buses for CS2.
Table 4
Results with FCSs placement.
Cases w1 w2 w3 Ploss (kW) Qloss (kVAR) Norm. IC Cost Fun. Optimal locations

Base – – – 807.63 362.13 – – –
CS1 0 0 1 1277.73 562.46 0.4735 0.4735 11,14,18,25,28
CS2 0.1 0.1 0.8 1277.73 562.46 0.4735 0.4512 11,14,18,25,28
CS3 0.2 0.2 0.6 1193.69 531.43 0.4887 0.4216 7,11,14,18,28
CS4 0.3 0.3 0.4 1054.71 480.11 0.5586 0.3754 2,4,11,14,15
CS5 0.4 0.4 0.2 1047.95 477.61 0.5761 0.3036 2,4,7,11,14
CS6 0.5 0.5 0.0 1014.48 465.25 0.7200 0.2127 2,3,4,5,14
11654
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Fig. 8. Voltage of the buses for CS3.
Fig. 9. Voltage of the buses for CS4.
Fig. 10. Voltage of the buses for CS5.
Table 5
Results with FCSs and SDGs placement.
Cases w1 w2 w3 Ploss (kW) Qloss (kVAR) Norm. IC Cost Fun. Optimal locations

Base – – – 550.46 247.90 – – –
CS1 0 0 1 1067.23 469.83 0.4735 0.4735 11,14,18,25,28
CS2 0.1 0.1 0.8 1067.23 469.83 0.4735 0.4745 11,14,18,25,28
CS3 0.2 0.2 0.6 991.13 441.77 0.4887 0.4699 7,11,14,18,28
CS4 0.3 0.3 0.4 881.09 401.20 0.5337 0.4487 2,7,11,14,15
CS5 0.4 0.4 0.2 861.59 394.01 0.5761 0.4079 2,4,7,11,14
CS6 0.5 0.5 0 829.68 382.24 0.7200 0.3440 2,3,4,5,14
11655
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Fig. 11. Voltage of the buses for CS6.
Fig. 12. Performance analysis of suggested algorithm.
Fig. 13. Total active power and reactive power losses.
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.2.4. Results of power losses
For the placement of FCSs in the proposed EDN network,

he real power loss is declined by 20.6% in CS6 over CS1, the
eactive power loss reduced by 17.28% in CS6 against CS1, and
he investment cost dropped by 34.23% in CS1 against CS6. Fig. 13
epicts the real and reactive power loss in deploying FCSs without
DGs integration and the FCSs with SDGs integration. Further-
ore, in the placement of FCSs with SDGs in the proposed EDN
etwork, the power loss dropped by 22.23% for CS6 over CS1, the
 h

11656
eactive power loss reduced by 18.64% for CS6 over CS1, and the
nvestment costs declined by 34.23% for CS1 over CS6. Figs. 14 and
5 illustrate the active and reactive power flow with the adoption
f FCS with the installation of SDGs, respectively.

.3. Reliability analysis for the east delta network

The main objective and purpose are to address a compre-
ensive evaluation of the impact of FCS and PVDG placement
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Fig. 14. Active power flow with FCS and RES placement.
Fig. 15. Reactive power flow with FCS and SDGs placement.
Table 6
Reliability indices for the placement of FCSs.
Case SAIFI SAIDI CAIDI EENS AENS

Base 0.1008 0.4785 4.7474 4719.65 5.69319
CS1 0.1768 0.9189 5.1981 13228.92 15.9576
CS2 0.1768 0.9189 5.1981 13228.92 15.9576
CS3 0.1162 0.5753 4.9505 10220.32 12.3285
CS4 0.1062 0.4946 4.6593 8569.31 10.3369
CS5 0.1139 0.5459 4.7949 8160.87 9.84423
CS6 0.1054 0.487 4.6189 5730.17 6.91215

on the reliability of the EDN bus system. After deploying FCS
and SDGs, reliability indices are computed for all of the case
studies mentioned above. The base value of SAIFI is 0.10081
failure/customers and after the placement of FCSs, SAIFI value
increased for different configurations as expressed in Table 6.
Similarly, the other reliability indices are also increased after the
integration of EV load at the distribution system.

All the reliability indices as mentioned above for all the case
tudies are depicted in Fig. 16 integration of EV load, the distri-
ution system’s reliability has been analyzed with the placement
f FCS and SDGs. The value of SAIFI, SAIDI, CAIDI, EENS and AENS
ave been compared for the proposed six case studies. The value
f reliability indices is improved compared with the first case in
hich only FCS has been considered. Therefore, the reliability of
11657
Table 7
Reliability indices for the placement of FCSs with SDGs.
Case SAIFI SAIDI CAIDI EENS AENS

Base 0.10081 0.4785 4.7474 4719.65 5.69319
CS1 0.17494 0.9113 5.2093 12799.4 15.4395
CS2 0.17494 0.9113 5.2093 12799.4 15.4395
CS3 0.11437 0.5677 4.9637 9790.80 11.8103
CS4 0.10431 0.4869 4.6686 8139.79 9.81880
CS5 0.11200 0.5382 4.8058 7731.35 9.32610
CS6 0.10358 0.4793 4.6275 5265.14 6.35110

the distribution system is improved when the placement of FCS
and SDGs are considered as given in Table 7. from the analysis of
the reliability of the distribution system for different case studies
as mentioned above, and the reliability has better when EV load
placed near to the grid, the value of reliability indices for different
case studies are shown in Fig. 17.

6. Conclusion and recommendations

The article presents an optimal deployment model of the fast
EV charging station and the integration of renewable energy
sources. It suggests a novel approach for deploying the fast-
charging station with minimum investment and power loss in
the distribution system while maintaining voltage stability and
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ower quality. An improved version of the bald eagle search
lgorithm is presented for placing FCSs with randomly placed
olar-based distribution generation in the EDN system. The de-
ived benchmark functions demonstrate the superiority of the
uggested algorithm. Moreover, six case studies are presented
or installing the FCSs based on active and reactive power loss
ith investment costs for installing the charging station. Fur-
hermore, the distribution system’s reliability has been analyzed
or the placement of FCSs and FCSs with SDG integration in the
istribution network.
The authors expect this work to support the grid integration

f EVs, reduce carbon emissions, and inspire investors to install
he FCSs. Furthermore, additional studies and innovations are
eeded to place charging stations. Hence, future work may in-
lude various power management strategies incorporating EVs
nto the grid and vehicle-to-home features of the CS to improve
he distribution network’s performance.
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