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ABSTRACT
Wireless enabling technologies in critical infrastructures are in-
creasing the efficiency of communications. In the era of 5G and
beyond, more technologies will be allowed to connect to mobile
networks, enabling the Internet of Things (IoT) on a massive scale.
Most of these technologies are vulnerable to physical-layer security
attacks, namely jamming. Jamming attacks are among the most
effective techniques to attack and compromise the availability of
these wireless technologies. Jamming is an interfering signal that
limits the intended receiver from correctly receiving the messages.
Once the adversary deploys a jammer in a wireless network, jammer
detection becomes difficult, if not impossible, due to the inaccessi-
bility of the affected devices in the network. This paper extends the
state-of-the-art jamming detection and classification methods by
proposing an effective IoT Tiny Machine Learning (TinyML)-based
approach, where a trained deep learning model is deployed on an
IoT edge device, namely a Raspberry Pi. The model is built using
TensorFlow and deployed on the IoT device using TensorFlow lite.
The trained model encompasses two commonly known jamming
types: constant and periodic, in addition to the normal channel state.
The Raspberry Pi is connected to a Software Defined Radio (SDR)
that continuously senses the WiFi channel and acquires Received
Signal Strength (RSS) readings which the TinyML model evaluates
to detect the presence of jamming and its type. We release both
the procedure and collected dataset for the different types of jam-
ming as open source. Finally, we conducted an extensive testing
campaign to test, evaluate, and illustrate the effectiveness of the
proposed TinyML-based detection on the edge scheme.
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1 INTRODUCTION
The development of fifth-generation (5G) and beyond wireless net-
works is proliferating, intending to connect practically all parts of
life via a network with substantially faster speed, very low latency,
and pervasive connection. Because of the extraordinary expansion
in the provided services and the number of devices, the considera-
tions for the security of 5G and beyond have increased considerably.
It is estimated that the number of IoT devices by the end of 2022
to be more than 29 billion devices [6]. Jamming attacks can be per-
formed on the intelligent sensing layer, and they are considered a
significant threat that disrupts and can jeopardize fully connected
networks. In addition, jamming could stall the operations where
wireless nodes are performing data collection.

Jamming attacks are denial of service attacks that disrupt wire-
less radio communications by overlapping legitimate signals with
a noise signal with significantly higher power to reduce the Signal-
to-Noise Ratio (SNR) via a jamming device. These attacks prevent
the transmitter from transmitting messages to a receiver by oc-
cupying the channel and making it appear busy, thus preventing
any legitimate messages from being exchanged by the transmitter
and receiver in a specific area. Examples of critical targets include
locations such as airports and sensitive infrastructures [13]. Nowa-
days, jamming attacks can be implemented with low complexity
and low-cost signal generator devices due to the evolution of SDRs
technology. With the use of a single SDRs device, the implementa-
tion of several types of jamming attacks is possible with minimal
implementation and modifications to software using tools such
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as GNU Radio. The availability of such devices in a cheap off-the-
shelf manner has resulted in jamming attacks being easily executed.
There is massive potential in the anti-jamming market, as mar-
ket research shows that the market size was valued at USD 4.00
Billion in 2020, and is forecasted to grow in the period from 2021
to 2028 at a Compound Annual Growth Rate (CAGR) of 8.29%,
reaching a value of USD 7.50 Billion [18]. At the time of writing,
many solutions have been proposed in the last decade for jamming
detection. However, none of the currently-available contributions
entirely took and experimented with an actual implementation
that involves jamming detection using a combination of Artificial
Intelligence (AI) and IoT-edge devices. Operating under normal con-
ditions in a wireless network makes it difficult to detect jamming
attacks since the connection between the base station or the other
devices could be affected by the environment or the jamming. A
jamming detection procedure involves at least the deployment of
one node that incorporates several strategies [14] which samples
the jammer transmission to detect and classify the type of jammer.

Our work takes inspiration from the upcoming trend of TinyML,
which promotes the incorporation of intelligence on low-power
resource-constrained devices by enabling on-device machine learn-
ing and deep learning. TinyML is an emerging field in artificial
intelligence that offers machine learning solutions closer to the
source, on low-powered, reducing the power consumption and
network traffic and providing high availability and low latency to
the end-users [17]. Deep learning methods can be utilized on the
deployed nodes to determine jamming attacks. The inference is
performed on edge rather than sending it to the cloud, reducing
the latency and saving bandwidth.

Thus, the existing literature currently lacks an actual implemen-
tation of a practical and portable IoT AI-based jammer detection
that operates on the edge ensuring reliability and efficiency even in
hostile scenarios. To the best of our knowledge, we are the first to in-
troduce such a system that utilizes TinyML to predict the jamming
type in a portable format.

Contribution. In this paper, we provide the following contribu-
tions:

(1) We extend the current state-of-the-art by proposing a portable,
IoT TinyML-based edge system implementation that enables
classifying the type of jamming attack based on the signal
received by low cost and off-the-shelf hardware.

(2) We perform an RSS data collection campaign that encom-
passes two different types of jamming attacks with roughly
1,230 signals1 and this dataset is publicly released [2].

(3) We utilize Deep Learning (DL) methods to train and build a
model that classifies two different types of jamming signals
by taking into account only the RSS characteristics of each
type.

(4) We perform the detection based on a deployed IoT device,
namely, Raspberry Pi 3. In particular, samples of the RSS
received by the Pi are collected and evaluated against the
trained model to determine the type of jamming.

1The total number of RSS samples for the 1230 signals is 1,230,000 samples, where
each signal is 1000 samples each. (Each type is 410 signal, and each signal consist of
1000 sample)

(5) Finally, we evaluate the proposed implementation by deploy-
ing the lightweight model on the Raspberry Pi and perform-
ing different jamming attacks in the wild.

Paper Organization. The remainder of this paper is organized
as follows: Section 2 addresses the background and related work
relevant to the presented topic. Section 3 discusses the scenario
and the threat model. Section 4 illustrates the system architecture
proposed in this paper from the hardware and software perspective.
Section 5 discusses the implementation architecture of the deep
learning model and its deployment using the TinyML framework. In
Section 6, we explain and evaluate the performance of the proposed
methodology. Finally, Section 7 wraps up the findings and results
discussed in the paper.

2 BACKGROUND AND RELATEDWORK
This section addresses the contributions found in the literature con-
cerning the detection of jamming attacks and other topics related to
the implementation. We divide the discussion based on the subject
topic, i.e., Jamming Attacks in IoT networks, Machine Learning
(ML)-based detection methods, TinyML, and conventional neural
networks.

2.1 Jamming Attacks in IoT Networks
Jamming has been and is still a significant concern in research
due to the availability of cheap and easy-to-use jamming methods.
To this end, research has been conducted on anti-jamming tech-
niques on many different networks, such as Wireless Networks,
Wireless Sensor Network (WSN) [20], and Vehicular Ad Hoc Net-
works (VANET) [3]. There exist several types of jamming attacks.
We focus on two types in this work, namely, constant and periodic
jammers. Constant jamming is the act of continuously injecting
Additive White Gaussian Noise (AWGN) into the wireless channel,
and this affects the communication for an indefinite amount of time.
On the other hand, periodic jamming injects the AWGN periodi-
cally into the channel, i.e., jamming for 3 seconds and sleeping for 3
seconds. Jamming detection is a challenging task as the majority of
the devices on edge are only deployed to perform measurements or
data collection. That makes it overhead to detect and countermea-
sure these types of attacks. Furthermore, the hardware capabilities
of these edge devices are very limited to perform the detection in
protocols operating in the 5/6G networks, e.g., LoRa, LoRaWAN,
ZigBee, and several others [12].

2.2 ML-based Jamming Detection Methods
Anti-jamming techniques include jamming localization, jamming
detection, and others [8]. Jamming attacks can be detected with dif-
ferent methods, including machine learning-based methods. Much
research has focused on identifying different types of jamming
attacks in wireless networks using machine and deep learning
techniques. Some of the current work utilizes detection methods
that include machine learning methods such as tree-based classi-
fiers [5, 7], support vector machine (SVM) [1], K-Nearest Neigh-
bour (KNN), and gradient boosting [10]. Additionally, a limited
number of contributions addressed the use of deep learning meth-
ods [9, 15]. The metrics typically used are RSS [19], Packet Delivery

58



Jamming Detection in IoT Wireless Networks: An Edge-AI Based Approach IoT ’22, November 7–10, 2022, Delft, Netherlands

Ratio (PDR) [15], or combination of both [9]. None of the current
research has attempted to perform a hardware implementation to
detect attacks in real time. The aforementioned techniques have
been applied in simulated environments or using existing datasets.
We propose a system implementation that enables the detection
of jamming attacks in a WSN using deep learning. This system is
deployed on an edge device to observe the performance against
two different types of jamming attacks.

2.3 TinyML
TinyML is an emerging field at the intersection of machine learn-
ing and embedded systems. It facilitates deploying and running
models on small, low-cost, and low-powered devices such as micro-
controllers [21]. This gives the advantage of less data transmission,
as the results of predictions will be sent instead of transmitting the
raw data to the server for processing, which is considered costly in
terms of bandwidth and energy. This way allows data analytics to
be performed on the IoT device directly with low power require-
ments and low latency. Developing a TinyML application can be
divided into generating a trained model, developing, and deploying
a firmware that executes on an embedded system. To summarize,
TinyML is used as it enables the deployment of the model on devices
that reside on edge to perform classification on edge without the
need to send the data to the cloud for processing. Thus, reducing
latency and bandwidth.

2.4 Convolutional Neural Network
A Convolutional Neural Network (CNN) is a type of deep neural
network that has one or more convolutional layers (i.e., layers that
perform convolution operations) [11]. Convolution is a linear proce-
dure that involves sliding a parametric-sized filter across the input
representation (usually a visual image). A feature map is gener-
ated by applying the same filter to different overlapping filter-sized
parts of the input. Filters, also known as operators, come in various
shapes and sizes. Each filter attempts to recognize a particular char-
acteristic inside the input representation, such as corners or edges.
One of the most significant characteristics of CNNs, and the reason
for their widespread acceptance, is their capacity to derive specific
characteristics in every feature of the input by applying a large
number of filters in parallel. Rather than using the output of all
the neurons in the previous layer like fully connected perceptrons,
CNNs use a hierarchical model that enables them to construct com-
plicated features utilizing tiny and basic patterns. One of the most
important considerations to make when creating a CNN, or more
broadly a neural network, is how to encode the input data. Several
input representations are accessible in the literature, each with
benefits and downsides. Our model is developed using multiple
one-dimensional (1D) CNN layers used for feature extraction from
the acquired signal. The filters of each 1D layer move in one direc-
tion to calculate the output. This allows the extraction of essential
features that enables the model to analyze the signal and detect the
type of jammer with higher accuracy.

3 SCENARIO AND THREAT MODEL
The adversarial scenario presented in this work is shown in Fig-
ure 1. We assume that a powerful jammer is deployed in a WSN to

Figure 1: The scenario assumed in this work. An adversary
carries a jamming attack in a dense IoT wireless network to
block the communications over the wireless channel. The
surrounding nodes are able to detect the jamming and per-
form channel measurements to evaluate the data with a pre-
trained Tensorflow lite model to determine the jamming
type.

disrupt all types of communications on a particular frequency (e.g.,
2.4GHz), through broadcasting AWGN. In addition, we assume that
the adversary deployed the jammer in a hidden place that cannot
be easily identified. Further, the jammer is of an unknown type. We
assume that this signal mainly blocks all communications between
the nodes and, hence, disables any communication between the
surrounding nodes located within the jamming radius. Further-
more, we emphasize that the jamming effects do not only affect
the communications between the nodes; in fact, we consider that
the strength of the signal is extremely powerful that it makes it im-
possible for the nodes to establish communications in the network.
We aim to deploy a Raspberry Pi with an SDR attached that can
effectively detect and identify the jamming type. This will facilitate
the sensing of the WiFi channel and acquire RSS readings; then,
these readings will be evaluated against the onboard TinyML model
to identify the type of jamming carried within the WSN.

4 SYSTEM ARCHITECTURE
In this section, the proposed system architecture is discussed in de-
tail. It encompasses two major components: hardware and software
implementation.

4.1 Hardware Setup
HackRF SDR: HackRF One is an SDR peripheral that can transmit
and receive radio signals ranging from 1 MHz to 6 GHz. HackRF
One is an open-source hardware platform that may function as a
USB peripheral or stand-alone device. The main reason for using an
SDR rather than using the existing WiFi module onboard the edge
device is due to the sensitivity of the transceiver. The SDR has a
higher sensitivity when compared to the regular WiFi chip and can
process up to 20 million samples per second. Unlike regular edge
devices’ WiFi chips, SDRs support a wider range of frequencies.
Initially, two HackRFs’ were used to instantiate the setup. One
HackRF is connected to a laptop running Ubuntu 21.10 through
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Table 1: Constant and Periodic jammer parameters.

Parameter Value

Frequency 2.412 GHz
Sampling Rate 32K

Radio Frequency Gain 40 dB
Intermediate Frequency 40 dB

Baseband Gain 40 dB
Bandwidth 40 MHz

Power Bank

SDR Raspberry Pi 3

USB 
connection

Micro-USB 
connection

Constant 
Jammer: 99%

Figure 2: Jamming detection module experimental setup.
This setup constitutes a Raspberry Pi connected to a HackRF
and powered by a power bank.

USB2.0. This laptop runs GNU Radio, which is used to program the
HackRF with the different types of jamming attacks investigated.
The second HackRF is connected to the Raspberry Pi to acquire the
RSS readings and feed them to the TinyML model. Both devices
are placed 1 meter apart. The jammer is set to transmit Adaptive
White Gaussian Noise with an amplitude of 4 on the 2.412 GHz.
Table 1 lists all the jammer parameters. Finally, the configurations
are the same for each type of jamming attack. Figure 3 illustrates
the hardware setup.

Raspberry Pi 3 B+: The Raspberry Pi is an open-source, Linux-
based, low-cost, small-sized computer board. It can be used for
many applications. It has wireless LAN and Bluetooth connectivity,
ideal for powerful connected designs. The Raspberry Pi runs a
“PiSDR” image pre-loaded with multiple SDR software. Figure 2
illustrates the Raspberry Pi, which is connected to a HackRF to
facilitate sensing and reading the channel.

4.2 Software Setup
As previously discussed, the jammer is a laptop that is connected
to a HackRF that is programmed to continuously broadcast AWGN
to emulate the constant jammer. As for the periodic jammer, the
HackRF is programmed to transmit AWGN for a specific amount
of time, after which the jammer is put to sleep for a period of time,

SDR
Laptop running 

GNURadio

USB 
connection

Figure 3: Jamming source (adversary) experimental setup.
The adversarial setup consists of a portable laptop that runs
GNU Radio and is connected to a HackRF.

with the cycle repeating indefinitely. We set the jamming period to
2 seconds and the sleeping time to 3 seconds for this experiment.

The receiver side consists of a Raspberry Pi connected to a
HackRF and has the TensorFlow lite classification model. The
HackRF is programmed to sense the channel and record the RSS.
Despite applying different techniques in GNU Radio (i.e., imple-
menting a custom block or modifying the C code of some of the
existing blocks), it is worth mentioning that it was extremely chal-
lenging to be able to extract the RSS value from the sink due to the
lack of documentation of the included blocks. However, after multi-
ple attempts, we utilized the "Log Power FFT "block to perform the
conversion operation. Further, we made the code for this available
[2].

4.3 Data Collection
Despite obtaining existing datasets [4, 16], it was convenient to
generate our data as it was challenging to find a dataset that fulfills
our requirements in addition to being collected from an actual
jamming setup, not simulation-based. Our solution considers using
the RSS as the main metric for training and classification, and this
was hardly available in the existing datasets. We recorded the data
for each jamming type for 30 minutes based on the software setup.
The considered setup is made of two modules, Raspberry Pi and the
jamming source (Figure 2, 3). Both modules are deployed 1 meter
apart. The jamming module injects the channel with high power
AWGN with the settings previously mentioned (recall Table 1). A
shell script is coded to facilitate emulating periodic jammer, and
the corresponding code is released with the dataset. This resulted
in having 1230 signals for each type of jamming and the normal
channel. Figure 5 illustrates the RSS and the shape of the signal
associated with the collected data for each type.
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Figure 4: Structure and details of the implementedConvolutional Neural Network. The structure consists of two one-dimensional
convolutional layers with a dropout layer. The output is then flattened with a flattened layer, followed by a fully connected
dense layer and a softmax layer.
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Figure 5: Acquired RSS readings associated with the different
types of jamming (constant and periodic) and the normal
channel.

5 TINYML-BASED JAMMING DETECTION
METHODOLOGY

This section discusses the Deep Learning architecture implementa-
tion and the TinyML implementation and deployment.

5.1 Deep Learning Architecture and Procedures
To classify the different types of jamming attacks, a multi-layer 1D
CNN model is built and trained. Table 2 summarizes the training
options of our model, the details of which are discussed in the text
below.

Data Preprocessing: From the 410 signals per jamming type, the
first 310 signals are considered for the training set, while the re-
maining 100 signals are part of the test set. Each signal consists of
1000 samples. The signals for each jamming type in the training
and testing were then concatenated, resulting in a training set and
test set of size 930 and 300, respectively. The training and test data
sets were then assigned labels. One hot encoding was applied to
the labels to ensure that the model does not presume that higher
labels have higher importance than others.

Data Validation: The training set is separated into training and
validation sets at a ratio of 70/30. The validation set estimates the
model’s performance after each epoch during the tuning of the
hyperparameters.

Optimizer: The optimizer works to reduce the loss function by
tuning the parameters of the network. Here, the optimizer Adam is
used, which is widely popular.

Activation Function: After each convolution, our neural network
relies on the Rectified Linear Units (ReLU) activation function.
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Option Value

Optimizer Adam
Loss Function Categorical Cross-entropy
Learning Rate 0.001 (Default)

Epochs 60
Shuffle Every Epoch

Validation Data Random 30% of the data
Table 2: Training Parameters of the network.

Loss Function: The loss function used is the Categorical cross-
entropy which is a loss function that is employed for multi-class
classification, where the average difference between the predicted
probability distribution and the actual probability distribution is
calculated and minimized.

Network Architecture: The overall architecture of the CNN model
is shown in Figure 4, which consists of two 1D convolutional layers
with ReLu activation, then three fully connected layers that feed
into a 3-way softmax layer.

Output: The softmax function is used as the output layer, which
scales its inputs into a probability distribution between 0 and 1 and
adds up to 1, which can be used as probabilities.

5.2 TinyML Implementation and Deployment
In this work, the proposed implementation relies on deploying
the developed CNN model using Tensorflow on IoT edge devices.
Deploying regular CNNmodels on small devices is very challenging
due to (i) the size of the model, and (ii) when decreasing the size of
the model, the accuracy is dramatically reduced. To overcome these
challenges when deploying the model on edge devices, we convert
it using Tensorflow lite. This will result in a model of size 62.7MBs
that falls within the memory budget of our Edge device. Several
optimization methods can be applied to reduce the model’s size,
such as quantization, pruning, and clustering, intended to reduce the
model size and latency with minimal or no loss in accuracy. These
optimization techniques are beneficial when deploying the model
on devices with very constrained resources. In our scenario, the
Raspberry Pi provides enough storage to host models of bigger sizes.
To deploy the trained model on the Raspberry Pi, we convert the
model using Tensorflow lite. The conversion process is as follows:

(1) Using the TFlite converter, we convert the saved model to a
“.tflite” model.

(2) The converted model is then deployed on the Raspberry Pi.
(3) On the Raspberry Pi, the interpreter loads the model, allo-

cates memory for the input tensors, then invokes the model
to perform inference.

6 PERFORMANCE EVALUATION
In this section, we discuss the performance of the deep learning
model in terms of training, validation, and testing. Besides, we eval-
uate the performance of the deployed TinyML model by detecting
and classifying jamming in the wild.
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Figure 6: Accuracy as a function of the epochs.
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Figure 7: Loss as a function of the epochs.

6.1 Model Training
Training the model for several epochs with a large number of la-
beled training data, the model’s internal parameters are updated
to minimize the loss (error) and maximize the accuracy. Addition-
ally, to prevent the over-fitting of the model, dropout was applied.
The accuracy and loss for each epoch can be seen in Figure 6 and
Figure 7.

Figure 6 shows that the training accuracy increases with increas-
ing the number of epochs; this indicates that the model is capable
of further learning when increasing the number of training epochs.
The training accuracy at the last epoch was 99.39%, while the vali-
dation accuracy was around 91.76%. Additionally, in Figure 7, the
training and validation loss curves of the model are illustrated. We
can see that the loss does not decrease and shows that the model
over-fits. To further verify the model’s accuracy, the model per-
formed inferences using the test data, obtaining a testing accuracy
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Ref. Network Type Purpose Type of
Jammer

Data Source Method Metrics Detection in
the Wild

Edge-based
Solution

Accuracy [%]

[7] Wireless
Network

Classification Constant,
Random, and
Reactive

Simulation KNN, Decision
Trees, and
Random
Forests

RSS, PDR, and
Noise

✗ ✗ 79, 75, and 81

[19] Wireless IoT
Network

Detection Random Simulation and
Real Dataset

SVM, Decision
Trees, and
Random
Forests

RSS ✗ ✗ 98 and 89.7

[10] Wireless
Network

Classification Constant,
Random, and
Reactive

Simulation KNN, Decision
Trees, Random
Forests, and

Gradient Boost

RSS and PDR ✗ ✗ 67.6, 73.03,
88.86, and 94.03

[9] WSN Detection Random Simulation Deep Neural
Network

RSS, PDR, etc ✗ ✗ —

[5] Wireless
Network

Detection Constant Dataset Random Forest,
cubic SVM, and

NN

RSS, PDR ✗ ✗ 97.5, 96.4, and
97.1

This
work

Wireless
Network
(802.11)

Detection and
Classification

Constant and
Periodic

Real-time
Acquired
Dataset

1D CNN,
TinyML

RSS
✓

✓ 86.3

Table 3: The proposed solution in comparison with existing solutions.

of 86.33%. Figure 8 illustrates the confusion matrix for each class.
Indeed, the prediction accuracy for the constant jammer is 100%
due to the nature of the constant RSS. On the one hand, the model
does not accurately classify the periodic jammer (72.0%). This drop
inaccuracy is due to several mismatching samples with the behavior
of the normal channel. On the other hand, classifying the normal
channel resulted in 13 instances that were mismatched with the
periodic jammer, resulting in an accuracy of 87.0%. Table 4 provides
more insights and evaluation metrics for the model.

Constant Jammer

Norm
al C

hannel

Periodic Jammer

Predicted Class

Constant Jammer

Normal Channel

Periodic Jammer

T
ru

e 
C

la
ss

28

13

72

100

87

72.0%

13.0%

28.0%

100.0%

87.0%

24.3% 15.3%

100.0% 75.7% 84.7%

Figure 8: Confusion Matrix of the CNN Model associated
with the classification of the data

6.2 Detection in the Wild
To evaluate the performance of the TinyML model, we deploy the
model on the Raspberry Pi and perform several experiments to test
the detection accuracy. On startup, a Python script is executed on

the Raspberry Pi. This script runs the GNU Radio code for acquiring
the samples from the spectrum and computing the RSS. Once 1000
samples are acquired, the data is reshaped and fed to the TinyML
model. The model evaluates the data and classifies the jamming
type accordingly. This operation is performed continuously and
indefinitely. The average accuracy achieved is 86% for 10 experi-
ments. This shows that the trained model can effectively detect the
type of jamming deployed with a confidence rate above 80%.

Type Precision Recall F1 Score Support

Normal 0.80 0.70 0.75 100
Constant Jammer 1.00 1.00 1.00 100
Periodic Jammer 0.73 0.83 0.78 100

Accuracy 0.84 300
Macro avg 0.85 0.84 0.84 300

Weighted avg 0.85 0.84 0.84 300
Table 4: Model Evaluation Metrics

6.3 Comparison with Existing Solutions
Table 32 illustrates the existing solutions in terms of several param-
eters against the solution proposed in this paper. Despite the low
accuracy when compared to the existing solutions, we highlight
several points that we consider crucial:

(1) Existing solutions rely mainly on data acquired during sim-
ulation to perform the classification. In contrast, the data
used to train our model is obtained from an actual jamming
source, i.e., an actual setup where the jamming attack is
carried out.

(2) The majority of the contributions perform detection of jam-
ming attacks, while our solution performs detection and
classification of different types of jamming attacks.

2In [7], noise is considered as the power measured on the channel during the idle time
of the transmitting end.
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(3) Further, onemajor benefit of our solution is portability. Porta-
bility enables the deployment of the IoT-edge device any-
where for detection. It can even be connected to a 5G modem
to communicate with a base station to report the classifica-
tion results. None of the listed solutions consider an IoT-edge
device that performs detection while being portable.

6.4 TinyML Model Optimization
To optimize our TinyML model, we resorted to using two tech-
niques. Namely, post-training quantization and pruning. When
quantization is applied, the model’s size is indeed reduced by 73.88%,
corresponding to 15.7MB. This, however, resulted in a very low
inference accuracy of 33.3%. This means that the model is unable to
predict the type of jamming. Additionally, after pruning the model,
there was no reasonable reduction in the size. For quantization, this
drop in accuracy could result from the model overfitting.

6.5 Limitations
The first limitation is related to the deep learning model. The de-
signed and implemented model is over-fitting. When training the
model, it over-fits after 18 epochs. This can be resolved by collecting
more data to train the model with. The second limitation is associ-
ated with the model mismatching between the periodic jammer and
the normal channel status. This can be resolved by using advanced
signal processing and slicing techniques and preprocessing the data
in such a way as to reduce the noise.

7 CONCLUSION AND FUTUREWORK
In this paper, we presented an IoT TinyML-based jamming detec-
tion and classification system implementation that improves on the
existing solutions from several aspects, in particular, portability.
We emulated two types of jamming attacks, namely, constant and
periodic, using commonly available off-the-shelf equipment such
as HackRF. The proposed implementation includes a HackRF con-
nected to an IoT device, Raspberry Pi, which senses the channel
and records RSS readings. The Raspberry Pi has a trained deep
learning model capable of detecting and classifying the type of
jamming attacks carried in the network by analyzing the recorded
RSS data fed to the model. As reported by our performance evalua-
tion, we demonstrated that a jamming type could be detected with
an accuracy of 86.3%. The portable nature of the proposed system
enables the deployment in various scenarios. For example, jamming
attacks could be carried out in VANETs or a swarm of drones. The
proposed implementation could be easily deployed to help identify
jamming attacks in such mobile situations. For future work, we
consider conducting more experiments with more devices, different
jamming settings including various amplitudes, and frequencies. As
well as at different distances. Additionally, future research activities
in this direction intend to profoundly investigate the novelty of the
proposed approach and evaluate the performance achieved herein.
We believe that this contribution paves the direction for further
research directions in both academia and the industrial sector.
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