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Abstract: Recently, a homogeneously weighted moving average (HWMA) chart has been suggested
for the efficient detection of small shifts in the process mean. In this study, we have proposed a new
one-sided HWMA chart to effectively detect small changes in the process dispersion. The run-length
(RL) profiles like the average RL, the standard deviation RL, and the median RL are used as the
performance measures. The RL profile comparisons indicate that the proposed chart has a better
performance than its existing counterpart’s charts for detecting small shifts in the process dispersion.
An application related to the Dhahran wind farm data is also part of this study.
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1. Introduction

In every industrial environment, product quality is affected by the variation in the manufacturing
process. The presence of variation in the manufacturing processes is quite obvious, which blemishes the
product’s quality characteristics. To maintain the product quality, it is necessary to monitor the changes
that occur due to assignable causes. Control charts are very popular statistical process monitoring
(SPM) tools used to monitor the changes that occur due to assignable causes. There are two main types
of control charts: memory-less and memory-type control charts. Memory-type control charts have
received much attention in modern era industries to handle the unusual variations in the parameters
of the distribution of manufacturing/service process characteristics. The cumulative sum (CUSUM)
and the exponentially weighted moving average (EWMA) introduced by References [1,2] respectively,
are frequently used memory-type charts, and the most commonly used memory-less charts are the
Shewhart charts proposed by Reference [3].

Generally, assignable causes affect both the process mean and variance. A process can go to an
out-of-control (OOC) process if the mean is shifted to another level. Likewise, an increase in variance
can also cause inconsistency in the process [4]. In real-life applications, it is essential to monitor the
process output for early detection of deviation in process parameters, i.e., mean and variance. However,
we prefer to stabilize the variance first, as we know the mean structure depends on it, and also the
decrease in variance leads to an enhancement in the process production [5].
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The transformation of the sample variance (S2) is the most useful procedure to monitor the
process variance. The authors of Reference [6] suggest a one-sided EWMA chart by adopting the
log transformation on S2 , labeled as the CHE chart. The S2-EWMA and S2-CUSUM charts were
introduced by References [7] and [8] by applying the three parametric logarithmic transformations
on S2. The one-sided CH-EWMA chart was suggested in Reference [9] by applying the truncating
log transformation on S2 and is hereafter named the SJE chart. The work of Reference [10] suggested
the one-sided EWMA chart to monitor the increase in the process variance and labeled this chart as
the H-EWMA chart. The CS-EWMA and mixed CUSUM-EWMA (S2-MCE) charts were suggested
in References [11] and [12] by applying the same transformation used in Reference [7]. Motivated
by Reference [11], the authors of Reference [13] introduced a mixture of generally weighted moving
average (GWMA) and CUSUM charts for monitoring small deviations in the process variance.

Recently, a homogeneously weighted moving average (HWMA) chart was proposed in
Reference [14] to overcome the deficiency in the EWMA chart statistic. Numerous works have been
done with the HWMA chart due to its earlier shift detection ability in the process mean as compared
to the EWMA chart. The authors of References [15,16] developed the auxiliary information-based
HWMA chart and multivariate form of the HWMA chart. The HWMA chart using the neoteric
ranked set sampling was proposed in Reference [17]. To enhance the HWMA chart’s performance, a
double HWMA chart for efficient monitoring of the process mean was suggested in Reference [18].
The literature mentioned above on the HWMA chart has only monitored the changes in the process
mean. To the best of our knowledge, no work has been done in the SPM literature to monitor the
changes in the process variance under the HWMA chart scenario. In this study, we fill this gap and
suggest a HWMA chart to evaluate the changes in the process variance.

Moreover, most industrial and manufacturing processes are usually affected by the increase in the
process variance. The increase in the process variance deteriorates the performance of the production
processes. This study’s main objective is to propose an effective control chart that performs efficiently
in the case of often increases in the process variance. So, inspired by Huwang et al. [10] and Abbas [14],
we suggest a one-sided HWMA chart to monitor the changes in the increase of the process variance,
hereafter labeled as SJH. To evaluate the performance of the SJH chart, we have used various run-length
(RL) profiles like the average RL (ARL), the standard deviation RL (SDRL), and the median RL (MDRL).
A chart having a larger value of in-control (IC) ARL, i.e., ARL0, and a smaller value of OOC ARL, i.e.,
ARL1 is considered to be efficient.

The other sections of this article are in the following sequence: In Section 2, we provide the
suggested chart’s proposal. The tabulated and graphical comparisons are offered in Section 3. Real-life
applications are provided in Section 4. In Section 5, conclusions are drawn based on findings from
this research

2. Design and Performance Evaluation of the Proposed Chart

Let us assume that Xt1, Xt2, . . ., Xtn be n independent and identically distributed normal random
variables with mean µt and variance σ2

t , i.e., Xti ∼ N
(
µt, σ2

t

)
for, i = 1, 2, 3, . . ., n, where σ2

t = σ2
0

for an IC process, and let σ2
t , σ

2
0 for an OOC process. Let τ = σt/σ0 be the ratio of the OOC and

IC standard deviations. For an IC process, τ = 1, and for an OOC process, τ , 1. Without loss of
generality, we have assumed that µt = 0. Let Xt and S2

t be the sample mean and sample variance at
time t, respectively. Let Yt = ln

(
S2

t /σ2
0

)
. The distribution of the random variable S2

t /σ2
0 is the gamma

distribution with shape (n− 1)/2 and scale 2δ2
t /(n− 1), and the parameters and the distribution of Yt

is log-gamma distribution. Later on, the authors of Reference [19] showed that Yt is approximately
normally distributed with mean µY and variance σ2

Y, where

µY ≈ ln
(
δ2

t

)
−

1
n− 1

−
1

3(n− 1)2 +
2

15(n− 1)4
and σ2

Y ≈
2

n− 1
+

2

(n− 1)2 +
4

3(n− 1)3 −
16

15(n− 1)5 .
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Let the sample mean of Yt be defined as: Zt =
∑n

i=1 Yti
n . Motivated from Reference [10], the statistic

of the suggested SJH chart is defined as:

Ht = max
(
λZt + (1− λ)Zt−1, 0

)
(1)

where λ ∈ (0, 1] is the smoothing constant and Zt−1, is the mean of all the previous Zt values. It is

defined as Zt−1 =
∑t−1

i=1 Zi
t−1 . We consider Z0 = 0. The statistic given in (1) can also be defined as:

Ht = max
[
λZt +

{(1− λ
t− 1

)
Zt−1 +

(1− λ
t− 1

)
Zt−2 + . . .+

(1− λ
t− 1

)
Z1

}
, 0

]
(2)

The SJH chart triggers an OOC signal if Ht is greater than

UCLt =
Ct

√
λ2σ2

Y
n i f t = 1

Ct

√
λ2σ2

Y
n + (1− λ)2 σ2

Y
n(t−1) , i f t > 1

(3)

and it indicates the increase in the process variance, where Ct is the width of the control limits and can
be chosen to achieve the desired ARL0.

So many methods are available, like integral equations, Markov chains, and Monte Carlo (MC)
simulations, to calculate the ARL. We have performed MC simulations to evaluate the ARL of the SJH
chart because this method is more accurate than the integral equations and Markov chain methods [13].
The flow chart for the computation of the ARL of the SJH chart is given in Figure 1.
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Figure 1. Flow chart procedure for the proposed chart.

The RL profiles’ values of the proposed SJH chart are provided in Table 1 for selective choices of λ
by fixing ARL0 ≈ 200. From Table 1, it is observed that if we increase the value of λ, the ARL1 values of
the SJH chart decrease, and vice versa (for example, when δt = 1.1, λ = 0.05, ARL1 = 22.25 vs. δt = 1.1,
λ = 0.5, ARL1 = 45.93). The MDRL values are smaller than ARL values which specify that the
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distribution of the RL is positively skewed (Table 1). The SDRL values are decreased as the value of
δt increases (for example, when δt = 0, λ = 0.05, SDRL = 246.86 vs. δt = 1.2, λ = 0.5, SDRL = 9.61
(Table 1)). We have also checked the performance of the proposed SJH chart for various choices of n
and it is reported in Table 2. The ARL1 values of the SJH chart decrease as the value of n is increased
for a fixed choice of δt and λ (for example, when δt = 1.1, λ = 0.05, n = 3, ARL1 = 43.6 vs. δt = 1.1,
λ = 0.05, n = 15, ARL1 = 16.12). Moreover, the RL curves of the proposed SJH chart are provided in
Figures 2 and 3 for various combinations of λ and n. It is noted that as the value of λ increases, the RL
values of the SJH chart are decreased for a fixed choice of n and δt (Figure 2). From Figure 3, it is seen
that as the value of n increases, the RL values of the SJH chart decrease or are fixed values of λ and δt.
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Table 1. The RL profiles of the proposed chart under various choices of λ for n = 5.

τ RL Characteristic
λ

0.05 0.1 0.2 0.3 0.5

1

ARL 199.90 201.42 201.47 202.11 202.38

MDRL 113.00 154.00 149.00 146.00 141.50

SDRL 246.86 182.73 183.48 188.57 200.84

1.05

ARL 50.04 65.53 73.66 77.56 89.27

MDRL 29.00 51.00 58.00 58.00 64.00

SDRL 58.62 57.67 61.46 69.86 85.98

1.1

ARL 22.25 32.47 37.57 39.39 45.93

MDRL 12.00 26.00 30.00 31.00 33.00

SDRL 25.80 27.70 30.35 33.26 42.84

1.2

ARL 8.78 13.68 15.88 16.19 18.14

MDRL 5.00 11.00 13.00 13.00 14.00

SDRL 9.61 11.82 12.25 12.82 16.05

1.3

ARL 5.15 7.66 9.11 9.44 9.89

MDRL 4.00 6.00 8.00 8.00 8.00

SDRL 5.14 6.63 6.78 7.20 8.38

1.4

ARL 3.64 5.20 6.23 6.40 6.45

MDRL 3.00 4.00 5.00 5.00 5.00

SDRL 3.35 4.30 4.55 4.73 5.19

1.5

ARL 2.86 3.93 4.62 4.65 4.68

MDRL 2.00 3.00 4.00 4.00 4.00

SDRL 2.40 3.16 3.38 3.38 3.67

1.6

ARL 2.40 3.16 3.71 3.67 3.67

MDRL 1.00 3.00 3.00 3.00 3.00

SDRL 1.96 2.46 2.64 2.58 2.70

1.7

ARL 2.12 2.66 3.08 3.08 3.05

MDRL 1.00 2.00 3.00 3.00 3.00

SDRL 1.65 2.01 2.14 2.11 2.17

1.8

ARL 1.88 2.32 2.64 2.66 2.61

MDRL 1.00 1.00 2.00 2.00 2.00

SDRL 1.43 1.70 1.85 1.83 1.81

1.9

ARL 1.74 2.08 2.33 2.32 2.27

MDRL 1.00 1.00 2.00 2.00 2.00

SDRL 1.24 1.51 1.60 1.56 1.49

2

ARL 1.57 1.91 2.10 2.10 2.05

MDRL 1.00 1.00 1.00 2.00 2.00

SDRL 1.09 1.35 1.40 1.37 1.30

Ct 1.3 1.932 2.402 2.55 2.65



Mathematics 2020, 8, 2136 6 of 14

Table 2. The RL profiles of the proposed chart under various choices of n for λ = 0.1.

τ RL Characteristic
n

3 5 7 10 15

1

ARL 202.85 201.42 198.01 198.44 196.41

MDRL 143 154 153 158 155

SDRL 209.11 182.73 176.45 170.88 167.69

1.05

ARL 80.57 65.53 56.92 47.78 39.4

MDRL 60 51 46 39 33

SDRL 77.68 57.67 48.25 39.29 31.72

1.1

ARL 43.9 32.47 26.54 21.37 16.12

MDRL 33 26 22 18 13

SDRL 41.44 27.7 22.2 17.61 13.21

1.2

ARL 19.48 13.68 10.32 7.71 5.83

MDRL 14.5 11 8 6 5

SDRL 18.45 11.82 8.7 6.28 4.58

1.3

ARL 11.67 7.66 5.88 4.41 3.22

MDRL 8 6 5 4 3

SDRL 10.84 6.63 4.76 3.45 2.35

1.4

ARL 8.14 5.2 3.96 3.02 2.25

MDRL 6 4 3 3 1

SDRL 7.54 4.3 3.11 2.24 1.56

1.5

ARL 6.05 3.93 3.01 2.33 1.77

MDRL 4 3 3 1 1

SDRL 5.5 3.16 2.26 1.65 1.17

1.6

ARL 4.9 3.16 2.48 1.91 1.49

MDRL 4 3 2 1 1

SDRL 4.34 2.46 1.78 1.3 0.91

1.7

ARL 4.06 2.66 2.1 1.64 1.31

MDRL 3 2 1 1 1

SDRL 3.51 2.01 1.47 1.06 0.73

1.8

ARL 3.62 2.32 1.83 1.47 1.18

MDRL 3 1 1 1 1

SDRL 3.05 1.7 1.27 0.9 0.56

1.9

ARL 3.15 2.08 1.65 1.34 1.11

MDRL 3 1 1 1 1

SDRL 2.6 1.51 1.09 0.77 0.44

2

ARL 2.81 1.91 1.5 1.25 1.07

MDRL 2 1 1 1 1

SDRL 2.25 1.35 0.95 0.66 0.35

Ct 1.591 1.932 2.09 2.215 2.32
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3. Comparisons between Proposed and Existing Charts

The ARL1 comparisons of the proposed SJH chart with the existing charts are provided in
this sub-section. For comparison purposes, the following existing charts are included: CHE, SJE,
and H-EWMA proposed by References [6,9,10], respectively. The performance comparisons between
proposed and existing charts are also judged by using another measure called the percentage
decrease in ARL, hereafter labeled as PD-ARL. The PD-ARL can be computed by using the formula(ARL0−ARL1

ARL0

)
× 100 [18]. A chart having a larger PD-ARL value is considered to be efficient. We have

fixed the ARL0 at 200 for valid comparisons.
To compare the ARL1 performance of the SJH chart with existing charts, we have found the

following interesting points:

i. The ARL1 performance of the SJH chart is relatively improved compared to the CHE chart
(for example, in the CHE chart with = 0.05, δt = 1.1, 1.2, 1.3, 1.4, and 1.5, ARL1 =

43.24, 18.09, 10.77, 7.13, and 5.98, and in the SJH chart forλ = 0.05, δt = 1.1, 1.2, 1.3, 1.4, and 1.5,
ARL1 = 22.25, 8.78, 5.15, 3.64, and 2.86 (Table 1 vs. Table 3)). Also, at δt = 1.1, the values of
PD-ARL in CHE and SJH charts are 78.38% and 88.87% respectively, for λ = 0.05.

Table 3. The ARL1 performance of the existing charts for various choices of λ for n = 5.

τ

λ

0.05 0.1 0.2 0.3

CHE SJE H-EWMA CHE SJE H-EWMA CHE SJE H-EWMA CHE SJE H-EWMA

1 200.33 200.75 200.92 200.02 200.36 199.51 200.64 199.48 199.43 199.4 199.67 200.22

1.1 43.24 32.26 28.89 44.26 35.15 34.32 46.63 39.73 41.18 48.48 43.45 46.14

1.2 18.09 14.43 11.69 18.23 14.96 14.1 18.79 16.05 16.66 19.52 17.25 18.65

1.3 10.77 9.17 6.85 10.56 9.09 8.2 10.54 9.21 9.45 10.67 9.56 10.35

1.4 7.63 6.73 4.75 7.35 6.53 5.65 7.16 6.4 6.45 7.09 6.43 6.9

1.5 5.98 5.38 3.62 5.68 5.13 4.28 5.41 4.89 4.83 5.24 4.8 5.11

1.6 4.96 4.51 2.94 4.68 4.27 3.46 4.38 3.99 3.86 4.2 3.88 4.06

1.7 4.29 3.92 2.51 4.02 3.69 2.91 3.73 3.41 3.25 3.53 3.26 3.39

1.8 3.8 3.5 2.2 3.56 3.27 2.53 3.27 3 2.81 3.06 2.83 2.91

1.9 3.44 3.17 1.96 3.22 2.96 2.25 2.92 2.69 2.48 2.73 2.53 2.57

2 3.18 2.93 1.8 2.95 2.72 2.03 2.67 2.45 2.24 2.47 2.3 2.32

Ct 1.055 1.568 1.828 1.303 1.943 2.079 1.513 2.27 2.253 1.598 2.433 2.302

ii. The SJH chart has an enhanced ARL1 performance over the SJE chart (for example, when
λ = 0.05, and δt = 1.1, 1.2, 1.3, 1.4, the ARL1 values of the SJE and SJH charts are 32.26, 14.43,
9.17, 6.73 and 22.25, 8.78, 5.15, 3.64, 2.86, respectively (Table 1 vs. Table 2)). Also, at δt = 1.2,
the value of PD-ARL in the SJE chart is 92.52% but the value of PD-ARL in the SJH chart is
93.16%, for λ = 0.1.

iii. It is revealed that the ARL1 performance of the SJH is quite efficient against the H-EWMA chart
(for example, in the H-EWMA chart with = 0.05, δt = 1.1, 1.3, 1.5, ARL1 = 28.89, 6.87, 3.62, and
in the SJH chart forλ = 0.05, δt = 1.1, 1.3, 1.5, and ARL1 = 22.25, 5.15, 2.86 (Table 1 vs. Table 3)).
The PD-ARL values of the H-EWMA and SJH charts are 79.11% and 81.26% respectively, with
δt = 1.1 and λ = 0.2.

Graphical Comparisons between Proposed and Existing Charts

In this sub-section, we have also presented the ARL1-based graphical comparisons of the SJH
chart with the existing charts. From Figure 4a–d, it is noted that the performance of the proposed SJH
chart is relatively better than the CHE, SJE, and H-EWMA charts for all selected choices of λ and δt.
It is found that as the value of λ increases the ARL1, differences between the proposed SJH and existing
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charts are decreased (Figure 4a–d). The performance of the SJH is far better than the CHE and SJE for
selected choices of λ under selected choices of δt (Figure 4a–d).

From tabulated and graphical comparisons, we have concluded that the SJH chart performs well
against the CHE, SJE, and H-EWMA charts.
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4. Application: Monitoring of Daily Power Generation at Dhahran Wind Farm

In this section, we present the application related to monitoring the daily power generated at the
wind station located at the eastern coast of Dhahran (26◦32′, 50◦13′), Saudi Arabia. The daily energy
generated was recorded during the winter period (15 November to 29 February 2020). The obtained
data are given in Table 4 in the form of 21 subgroups, each of size 5, along with the plotting statistics of
the charts considered for the application section.

Table 4. The description of the wind farm data along with the plotting statistics of SJH, SJE, and CHE.

Subgroup X1 X2 X3 X4 X5
Example 1 Example 2

SJH SJE CHE SJH SJE CHE

1 0.6243 0.3376 −0.9172 0.0709 0.5376 −0.0199 −0.0199 0.0000 −0.0798 −0.0798 0.0000

2 0.0718 0.3996 −0.0596 1.3659 0.3227 −0.3989 −0.0389 0.0000 −0.3989 −0.1436 0.0000

3 −0.0353 −1.2937 −0.0296 0.0709 0.6338 −0.3989 −0.0569 0.0000 −0.3989 −0.1947 0.0000

4 −0.4403 −1.4717 0.0898 −0.4838 1.2130 −0.3847 −0.0598 0.0000 −0.3422 −0.1787 0.0000

5 −0.7443 −1.8528 −0.1009 0.9281 1.8177 −0.2703 −0.0155 0.0357 −0.0972 0.0222 0.1426

6 −1.1330 −1.6470 0.6685 1.3644 −0.6021 −0.0671 0.0105 0.0566 0.0231 0.1186 0.2051

7 −1.6013 −1.7784 0.6058 1.5148 0.2711 0.0450 0.0520 0.0901 0.1708 0.2632 0.3092

8 −1.3388 −1.4219 1.3121 1.1986 0.0989 0.1482 0.0810 0.1134 0.2244 0.3367 0.3587

9 −0.1471 −0.7052 0.6952 1.8248 −0.2702 0.1741 0.0740 0.1079 0.1375 0.2578 0.2877

10 0.4738 −1.2046 1.3146 1.5710 0.2134 0.1594 0.0785 0.1116 0.1601 0.2390 0.2664

11 −0.6251 −0.5070 2.4901 1.6751 −0.0464 0.1907 0.1136 0.1399 0.1931 0.2565 0.2756

12 −0.9566 −0.1195 −0.1200 0.4168 0.2475 0.1854 0.0880 0.0693 0.0601 0.1254 0.0000

13 −1.2295 0.8355 −0.9625 −0.2670 −0.4800 0.1367 0.0636 0.0434 0.0218 0.0206 0.0000

14 −0.5131 −0.8745 1.6919 −0.6865 −1.8279 0.1447 0.0897 0.0672 0.0954 0.0426 0.0310

15 0.6651 −0.3131 3.1758 −0.4326 −0.1728 0.1952 0.1335 0.1051 0.1742 0.1365 0.1170

16 0.8609 1.2055 0.7537 −0.5934 0.6171 0.1783 0.1069 0.0621 0.0145 0.0294 0.0000

17 −0.0632 −3.9879 −0.3150 −0.0427 −0.2883 0.2258 0.1652 0.1126 0.4340 0.3891 0.3036

18 −1.1750 −0.0632 −0.2966 0.2486 0.1488 0.2038 0.1370 0.0506 0.0707 0.2315 0.1070

19 −1.8194 −0.1347 2.6720 −0.3043 0.6523 0.2487 0.1886 0.0976 0.4695 0.5303 0.3727

20 −1.2295 −1.6588 1.8223 −1.1769 0.3310 0.2814 0.2219 0.1295 0.4724 0.7062 0.5346

21 −0.3456 −1.3377 0.7569 0.2470 0.6539 0.2474 0.1908 0.1081 0.2619 0.5895 0.4574

Data Description

It is a tenable fact that the world is shifting focus from fossil fuels to renewable energy owing to
CO2 emission associated with fossil fuels during operation. Saudi Arabia subscribed to this initiative.
Also, the increase in energy demand calls for the exploitation of other available cost-effective energy
sources. Harnessing the readily available renewable energy sources such as wind and solar helps meet
energy demand in a remote area and contributes significantly to the national grid. Extensive work has
been carried out on wind data from various wind farms in the Kingdom; however, in the context of the
control charts this is the first application. Wind speed data is available from different sources in the
Kingdom. Among these are Saudi Aramco, Meteorology and Environmental Protection Administration
(MEPA), and King Fahd University of Petroleum and Minerals (KFUPM) [20]. Wind power is the
application of air flow through wind turbines to generate electric energy. The important parameter
influencing the rate of energy generated in a wind farm are wind speed, wind direction, air temperature,
and global solar radiation. Hourly metrological data was obtained from the meteorological monitoring
station in the Eastern Province of Saudi Arabia [21]. The pictorial representation of the Dhahran wind
farm is presented in Figure 5. We have also applied the Anderson Darling test to check the distribution
of the Dhahran wind farm data, and from this test, it is observed that the distribution of the wind farm
data is normal (Figure 6). We have considered the SJH, CHE, and SJE charts to possibly examine the
deviations in the process variance by fixing ARL0 ≈ 200.
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We have presented two examples based on wind farm data. In the first example, the first
10 subgroups are considered IC, and a shift of size 1.2 is introduced in the next 11 subgroups with
λ = 0.05 (Figure 7a). In the second example, the first 16 subgroups are considered IC, and a shift
of size 1.5 is introduced in the next 5 subgroups with λ = 0.2 (Figure 7b). The description of the
wind farm data along with the plotting statistics of SJH, CHE, and SJE charts are reported in Table 4.
From Figure 7a, it is seen that both the SJH and SJE charts trigger the OOC signal at the 17th subgroup
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point, whereas the CHE charts do not trigger any OOC signal. From Figure 7b, it is observed that the
SJH chart has detected the OOC signals at the 17th subgroup point. However, SJE and CHE charts
trigger the OOC signal at the 19th and 20th subgroup points, respectively. These illustrative examples
clearly show the superiority of the SJH chart as compared to the CHE and SJE charts. The real life
application also supported the findings in Section 3.
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5. Concluding Remarks

The increase in the process variance deteriorates the performance of the production processes
under consideration. In this study, we have suggested the SJH chart for quickly and efficiently
monitoring the changes in the upward increase of the process variance. Monte Carlo simulations were
used to compute the various RL profiles of the SJH chart. The RL profiles of the SJH chart have been
compared with CHE, SJE, and H-EWMA charts. The RL comparisons revealed that the SJH chart shows
superior performance compared with existing charts for monitoring upward shifts in the process
dispersion. Hence, we recommend the practice of the SJH chart to the SPM practitioners to monitor the
upward shifts in the variance of a normally distributed process.

The scope of this study may be extended to develop efficient non-parametric and multivariate
charts using the design structure of the SJH chart.
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