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ABSTRACT We report the genome sequences of Escherichia phage C600M2 (length,
88,162 bp; G1C content, 38.98%) and Escherichia phage CL1 (length, 87,820 bp; G1C
content, 41.32%), which were isolated from a wastewater treatment plant in Qatar. Both
Escherichia phage C600M2 and Escherichia phage CL1 genomes contain 128 protein-coding
genes and 26 tRNAs.

Genomes of bacteriophages isolated from wastewater could be a repository of lytic
enzymes, termed “enzybiotics” (1), with the capability of antibiotics to control drug-resist-

ant pathogenic bacteria. In this study, using two laboratory strains of Escherichia coli (C and K-
12), we enriched and purified bacteriophages present in wastewater samples collected from
Doha West Wastewater Treatment Plant (WWTP) in the State of Qatar, prior to the start of sub-
sequent treatment processes. Escherichia phage C600M2 was isolated from stage 1 (2), while
Escherichia phage CL1 was isolated from stage 2 (2). Negative staining and transmission elec-
tron microscopy of purified phages revealed that they had possibly contractile thick tails rang-
ing from 93 to 100 nm and polyhedral heads with diameters of 51 to 55 nm (Fig. 1).

Bacteriophages were isolated from wastewater samples using Escherichia coli strains
K-12 C600 and C; wastewater samples diluted 1:10 were applied to log-phase bacterial
cultures (Klett units of 60 to 80) in selected growth media for 48 h at 37°C at 220 rpm. For
phages isolated using Escherichia coli K-12 C600, peptone-yeast extract-1 mM CaCl2 (PYCa)
was used as the growth and enrichment medium. PYCa top agar was used for pour plating
onto PYCa (peptone, yeast extract, 0.1% dextrose, and 4.5 mM CaCl2) agar plates to form a
uniform layer. For phages isolated using Escherichia coli C, LB supplemented with 0.2% glu-
cose and 1 mM CaCl2 was used as the growth and enrichment medium. LB top agar with
CaCl2 was used for pour plating onto tryptone-potassium-calcium chloride (TKC) plates to
form a uniform layer. Phages were selected based on the morphology and diameter of the
plaques, and plaques were picked for at least five rounds of purification (3).

DNA from high-titer lysates of corresponding phages was isolated using the standard
SDS/phenol-chloroform-isoamyl alcohol (PCI) method with some modifications (4). The
whole-genome sequence data were generated with the Ion Torrent S5 next-generation
sequencing (NGS) platform (Thermo Fisher Scientific, Waltham, MA). One hundred nanograms
of phage DNA was used to generate a 300-bp-read sequencing library using the Ion Xpress
Plus genomic DNA (gDNA) fragment library kit; the library was loaded onto an Ion S530 chip
using the Ion Chef system and subsequently sequenced on the Ion S5 NGS platform according
to the manufacturer’s instructions.

Sequenced reads assigned to unclassified or viral taxonomy by the Kaiju taxonomy
assignment tool (5) were extracted and assembled using SPAdes (6) with default parameters.
The assembly statistics are summarized in Table 1. To further improve the genome assembly,
phage genomes (https://doi.org/10.1184/R1/16965004) related to the SPAdes-assembled

Editor Simon Roux, DOE Joint Genome
Institute

Copyright © 2022 Ramadoss et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Annette Shoba
Vincent, annettev@andrew.cmu.edu.

The authors declare no conflict of interest.

Received 10 November 2021
Accepted 30 November 2021
Published 6 January 2022

Volume 11 Issue 1 e01090-21 mra.asm.org 1

GENOME SEQUENCES

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

ra
 o

n 
29

 M
ay

 2
02

3 
by

 1
85

.3
7.

11
0.

20
.

https://orcid.org/0000-0002-6227-730X
https://doi.org/10.1184/R1/16965004
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://mra.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.01090-21&domain=pdf&date_stamp=2022-1-6


contigs were identified from the INPHARED bacteriophage database (7) using the get_
closest_relatives.pl program (https://github.com/RyanCook94/inphared), and only the
read sequences that mapped to those identified genomes were extracted with the BWA
tool (8) and reassembled using the Unicycler (9) assembly pipeline (with default settings).
A contig of length 88,162 bp was assembled for Escherichia phage C600M2, and a contig
of length 87,820 bp was assembled for Escherichia phage CL1. Quality assessment of the
assembled phage genomes was done using QUAST (10) and CheckV (11). CheckV estimates
of completeness (approximately 90%, with the hidden Markov model [HMM]-based approach)
for the genomes of both Escherichia phage C600M2 and Escherichia phage CL1 indicated high
confidence for completeness.

The assembled genomes were further validated with BLAST, and the open reading
frames (ORFs) were annotated for functional proteins using DNA Master (12) and the
Center for Phage Technology (CPT) Galaxy platform (13). ORF predictions were man-
ually and individually confirmed based on the assessment of the Shine-Dalgarno
sequence, translation start/stop sites, and PHANOTATE (14) gene prediction output.
Gene functions were manually and individually assigned upon review of protein BLAST
(15) results in DNA Master. tRNAs were annotated based on ARAGORN (16) results.

Escherichia phage C600M2 and Escherichia phage CL1 shared 99.92% identity and were
95.99% and 96.27% identical, respectively, to Escherichia phage SSBS18_WS_10_728 (GenBank
accession number MT322327.1), which was inferred using the ANIb subcommand in the pyani

FIG 1 Transmission electron microscopy images of phages isolated using Escherichia coli strains. (A and B)
Escherichia phage CL1, isolated using E. coli C from water isolated from wastewater stage 2. (C to E) Escherichia
phage C600M2, isolated using E. coli K-12 from water isolated from wastewater stage 1. Purified high-titer
phage samples were directly applied on the carbon-coated nitrocellulose grid. Subsequently, all excess liquid
was drained using filter paper before staining with two drops of 2% uranyl acetate (pH 4.5). The samples were
examined using a Morgagni 268D transmission electron microscope (FEI, Hillsboro, OR, USA). The features
exhibited include an expanded sheath and tail, which are typical of Myoviridae (subfamily Ounavirinae).

TABLE 1 Assembly statistics and GenBank accession numbers for the bacteriophage genomes

Bacteriophage
GenBank
accession no.

No. of
contigsa

N50

(bp)a
No. of
reads

Largest contig
size (bp)

G+C
content (%)b

Avg
coverage (×)b

Escherichia phage C600M2 OK040807 676 320 2,761,492 88,162 38.98 6,746
Escherichia phage CL1 OK040806 195 982 2,625,009 87,820 41.32 37
aInitial assembly statistics.
bEstimated for the largest contigs from the improved assembly.
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v0.2 Python module (17). Hence, probably both Escherichia phage C600M2 and Escherichia
phage CL1 belong to unclassified Felixounavirus in subfamily Ounavirinae of familyMyoviridae.

Data availability. The complete genome sequences of Escherichia phage C600M2
and Escherichia phage CL1 have been deposited in the NCBI database under the GenBank
accession numbers OK040807 and OK040806, respectively. Original sequence reads corre-
sponding to Escherichia phage C600M2 and Escherichia phage CL1 genomes have been de-
posited in the Sequence Read Archive (SRA) under the SRA accession numbers SRX12131445
and SRX12131444, respectively, as part of BioProject number PRJNA762188.
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