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Abstract: Common carotid intima-media thickness (CIMT) is a common measure of atherosclerosis,

often assessed through carotid ultrasound images. However, the use of deep learning methods

for medical image analysis, segmentation and CIMT measurement in these images has not been

extensively explored. This study aims to evaluate the performance of four recent deep learning

models, including a convolutional neural network (CNN), a self-organizing operational neural

network (self-ONN), a transformer-based network and a pixel difference convolution-based network,

in segmenting the intima-media complex (IMC) using the CUBS dataset, which includes ultrasound

images acquired from both sides of the neck of 1088 participants. The results show that the self-ONN

model outperforms the conventional CNN-based model, while the pixel difference- and transformer-

based models achieve the best segmentation performance.

Keywords: ultrasound imaging; image segmentation; intima-media thickness; carotid artery; deep

learning

1. Introduction

The primary mechanism in the human body that sustains life is the cardiovascular
system. Cardiovascular system diseases (CVDs) have been regarded as a major cause
of death in the world. Lifespan can be increased and the death rate from CVDs can be
decreased with early diagnosis and treatment of the diseases. The cardiovascular system
is made up of blood vessels that carry blood, necessary for all of the body’s organs to
operate. The primary components of the blood vessels that transport blood to and from the
heart and to all organs are arteries and veins. Any obstruction in blood flow or disease in
the arteries or veins will seriously affect how well the organs operate. The most common
types of cardiovascular disease include peripheral vascular disease, coronary artery disease
and carotid artery disease. These disorders manifest as a result of the development of
atherosclerotic plaques in the arteries, as illustrated in Figure 1. One of the effects of carotid
artery stenosis is an ischemic stroke, due to the accumulation of plaque on the carotid
arterial walls. If the stenosis is detected early and the amount of plaque can be determined,
the problem can be addressed immediately. For this, a variety of imaging modalities are
used. Computed tomography (CT), EEG, ECG, ultrasound imaging, laboratory tests for
coagulation status and cardiac monitoring are among the diagnostic techniques used in
the assessment of carotid artery stenosis or stroke. Both sides of the neck contain the
common carotid artery. The soft tissue features in the arteries allow for imaging using
a variety of methods or modalities, such as computerized tomography (CT), ultrasound
imaging and magnetic resonance imaging. The analysis of the generated images can
enhance diagnosis and support clinical judgment. Medical image analysis algorithms have
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advanced significantly from image processing and pattern recognition methods to machine
learning and deep learning algorithms that see it as a computer vision problem. A notable
development in the automatic segmentation, analysis and grading of stenosis is the use of
carotid artery imaging generated by CT scans, MRIs and ultrasound images [1,2]. Due to
the complexity of scanning the carotid artery, ultrasound scanning is the preferred method
to capture images with acceptable resolutions. Ultrasound images have been used for many
studies using medical imaging analysis algorithms [3].

Figure 1. Visualization of plaque build-up and obstruction to the normal flow of blood in the

artery (https://my.clevelandclinic.org/health/diseases/16845-carotid-artery-disease-carotid-artery-

stenosis, accessed on 9 January 2023).

In order to segment the plaques on the carotid artery, many methods have been
proposed even in the absence of large datasets. Previously, the proposed methods used
CIMT measurement to detect and localize the carotid artery walls and then the plaques [4,5].
The ground truth was presented using some points representing the plaques generated
by specialists [6]. The analysis using these types of data used different statistical and
machine learning algorithms, including Snake’s segmentation and contour [4,5], bulb edge
detection [6], wind-driven optimization techniques [7] and SVM [8].

Using convolution neural networks, the proposed methods used binary segmentation
instead of CIMT measurement. By generating binary images containing labeled regions in
the images instead of using points, the deep learning methods could successfully segment
these regions with better precision [8]. Furthermore, the segmented regions could be helpful
in computing CIMT [9], related to the performance accuracy of segmentation. This makes
segmentation a crucial task.

Although CNNs have succeeded in solving many computer vision problems, recent
studies have shown many drawbacks for CNNs, such as the need for large datasets [10] and
the reliance on linear neuron models [11–14]. Operational neural networks (ONNs) [14–17]
are heterogeneous networks with a non-linear neuron model that have recently been
proposed as a solution for highly non-linearly separable problems. With the help of
predefined nodal, pool and activation operators, ONNs are able to learn highly complex and
multi-modal functions. The transformer neural network has recently been a successful non-
CNN alternative for computer vision problems. Instead of convolution, vision transformers
utilize self-attention to combine information from several locations [18]. In this paper, we
performed a segmentation of common carotid intima-media using deep learning models.
For this, we updated existing deep learning models, such as DeepCrack [19] and the
transformer-based model [20]. We used a self-ONN instead of normal convolutional layers
for DeepCrack. In order to improve the segmentation quality, we used morphological

https://my.clevelandclinic.org/health/diseases/16845-carotid-artery-disease-carotid-artery-stenosis
https://my.clevelandclinic.org/health/diseases/16845-carotid-artery-disease-carotid-artery-stenosis
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operations, such as erosion to enhance the output results. The main contributions of the
research are summarized as follows:

• We develop and investigate various recent deep learning models for the segmentation
of IMC in B-mode ultrasound images of the carotid artery.

• We propose a pioneer application for self-organized operational neural networks
(self-ONNs) for IMC segmentation.

• We investigate the level of non-linearity for operational layers required to achieve a
better segmentation performance.

The rest of the paper is divided as follows; in Section 2, we highlight the recent work of
carotid intima-media segmentation. Then, in Section 3, we present the model architecture
for the deep learning models, and in Section 4, we present the experimental setup along
with the evaluation metrics and the results of the model. Finally, we conclude and explain
the future work in Section 5.

2. Related Works

The carotid artery segmentation, including the walls and plaques in the intima-media
complex (IMC), can be used for the estimation of intima-media thickness (IMT). Which
makes it an important operation for atherosclerotic risk evaluation.

There are numerous methods for segmenting the intima-media complex. However,
the majority of them are semi-automatic and require manual intervention. Medical experts
must define the boundary between the media adventitia and lumen. However, the subjec-
tivity and variability of manual segmentation can be reduced using image segmentation
algorithms. Additionally, IMT is assessed using active contours [21–28], dynamic program-
ming [29–34] and edge detection algorithms and gradient-based approaches [35,36]. For
active contour-based approaches, the authors in [21] began with a simple segmentation
of B-mode ultrasound images followed by segmentation of the far wall intima-media–
adventitia, then applied the active contour to obtain the desired region in the images. The
same process was used in [22], but this time using some morphological operations, such
as opening. Subsequently, an LI contour function was applied to detect the final common
carotid artery result. In [23], the authors started with non-linear filtering followed by the
detection of the intima layer using an iterative relaxation procedure to detect the wall using
a modified energy function and an optimal initial contour.

For dynamic programming-based approaches, the researchers in [29] used a multi-
scale dynamic programming (DP) algorithm to estimate the vessel wall positions leading
to boundary detection. The obtained results with geometrical characteristics were used
to obtain the final results. In the same context and to detect the arterial wall, the authors
in [31] proposed a dual dynamic programming (DDP) technique to detect the intima and
adventitial layers of the common carotid artery. Furthermore, in [33] an improved dynamic
programming method was proposed for carotid artery wall thickness evaluation.

Machine and deep learning techniques have becoming intriguing as promising meth-
ods for medical image analysis tasks, such as image de-noising, segmentation and clas-
sification. Before the development of deep learning models, machine learning was the
most commonly utilized technology, where comprehensive feature extraction techniques
were applied to find several areas of carotid artery risk estimation. The deep learning
strategy takes advantage of a neural network architecture that mimics the human brain
by having more hidden layers. The neuron is the fundamental building block of a deep
neural network (DNN), which accepts several inputs, linearly combines them and then
passes them to a non-linear network to produce the desired output. Multiple processing
layers make up a deep learning network, which uses deep graphs to extract high-level rep-
resentations of meaningful information from low-level inputs. CNNs are among the most
widely used networks in the medical image analysis domain [37]. U-Net is a CNN-based
architecture used to solve the automatic image segmentation problem. This architecture
has been adopted in many IMC segmentation works [38–40]. For example, in [38,41] the
authors used the U-Net architecture for plaque segmentation in carotid ultrasound images.
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Furthermore, in [42] the authors used U-Net, U-Net+, U-Net++, U-Net+++ and three types
of hybrids, namely, Inception-U-Net, Fractal-U-Net and Squeeze-U-Net architectures, to
segment and measure the plaque far wall area of the common carotid (CCAs) and internal
carotid arteries (ICAs) in B-mode ultrasound images. Using M-Net [43] as the backbone,
the authors in [44] proposed an automatic joint segmentation method named CSM-Net
with triple spatial attention and cascaded dilated convolution modules.

3. Methods

Medical image segmentation is a challenging task. As our ultimate goal is to find the
most accurate deep learning model for ultrasound IMC segmentation, we tested several
deep learning methods. Three recent deep learning networks were used in this study:
DeepCrack [19], PidiNet [10] and CCTrans [45]. These networks have been used previously
in different tasks such as edge detection, crack segmentation and crowd counting. The
DeepCrack network is a CNN-based architecture which we modified with the recently
proposed self-operational neural network (self-ONN) with the goal of seeing whether
the CNN- or self-ONN-based architecture worked better on our dataset. CCTrans is a
transformer-based model used for crowd counting. For this, we adapted the model to be
suitable for ultrasound IMC segmentation by exploiting the same first layers of the model.
The following sections describe a detailed description of how these methods have been
adapted to our problem.

3.1. Self-Operational Neural Network-Based Model

Self-organized operational neural networks with generative neurons, proposed by [46],
are a type of artificial neural network designed to operate in a self-organizing manner.
Instead of using a predefined set of operators as an ONN, the self-ONNs with generative
neurons generate nodal operators during backpropagation training. This property of self-
ONNs allows for maximum learning performance, diversity and flexibility. The use of
generative neurons can improve the network’s robustness to unseen data and reduce the
risk of overfitting. A generative neuron uses a Taylor series expansion around the point a
to approximate the non-linear function f (x):

Y =
S

∑
s=1

f n(a)

n!
(x − a)2 (1)

If we truncate the Taylor series to q terms then the approximation g(w, x, a) will be
given by:

Y = w0 + w1(x − a) + . . . + wq(x − a)q (2)

where wn = f n(a)
n! (x − a)2, w0 is the bias for the c-channel input tensor wn and n = 1, . . . , q

are the q-banks of c-channel convolution kernels that are learned during backpropagation.
To investigate the performance of self-ONNs, we chose the DeepCrack [19] model

as a baseline model. The DeepCrack network, proposed by [19], is a CNN-based model
built for crack segmentation. The architecture of the DeepCrack network is shown in
Figure 2a. It has thirteen convolutional layers, each with convolution, batch normalization
and ReLU layers. The convolution produces a set of feature maps. At the same time, batch
normalization is used to reduce the covariate shift and the ReLU function is the activation
function used to learn non-linearity in the data. A max-pooling with 2 × 2 pixel filter layers
is added between the convolutional layers. A convolutional layer with kernel size 1 is
used to obtain side-output features. Deconvolutional layers are then used (except for the
first side output layer) to upsample the feature maps’ plane size to match the input image.
Following the concatenation of the upsampled feature maps to obtain the final features, a
convolutional layer and a Softmax layer are applied. Then a convolutional layer followed
by a Softmax layer are used for predicting two classes. According to this prediction, for
each pixel, the predicted label can be obtained. We modified the network to be flexible
to use self-ONN layers instead of CNN layers, as shown in Figure 2a. We used Tanh
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activation layers instead of ReLU. The level of non-linearity can be adjusted on the network
by modifying the parameter q.

(a) Self-ONN–DeepCrack.

(b) Transformer network.

Figure 2. Networks used for ultrasound IMC segmentation.

3.2. Pixel Difference-Based Model

Although CNNs can achieve human-level performance in many computer-vision-
based applications, the high performance of CNN-based models is achieved with a large pre-
trained CNN backbone [47], such as VGG, ResNet and DenseNet, which is memory- and
energy-consuming, while some methods have been proposed with simple and light-weight
architectures, such as pixel difference networks (PiDiNets), that use edge detection [10].
PiDiNet adopts novel pixel difference convolutions that integrate the traditional edge
detection operators into popular convolutional operations in modern convolution neural
networks for enhanced performance to enjoy the best of both worlds. We used a PiDiNet
model for IMC segmentation.
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3.3. Transformer-Based Model

Traditionally, convolutional neural networks (CNNs) have been the preferred archi-
tecture for image segmentation tasks due to their ability to extract features from the input
image. However, in recent years, transformer-based models have shown remarkable per-
formance in a variety of natural language processing (NLP) tasks and have been extended
to computer vision tasks, such as image segmentation.

CNNs have a strong ability to extract local features, but they inherently fail in modeling
the global context due to the limited receptive fields. The transformer can model the global
context easily. Furthermore, it has become the most used technique in computer vision. Due
to this, we used a transformer model for IMC segmentation. The proposed method used a
pyramid vision transformer backbone to capture the global information, a pyramid feature
aggregation (PFA) model to combine low- and high-level features and an efficient regression
head with multi-scale dilated convolution (MDC) to predict the final results [20]. The input
image is transformed into a 1D sequence first, then the output is fed into the transformer-
based backbone. The pyramid transformer in [45] is adopted to capture the global context
through various downsampling stages. The outputs of each stage are reshaped into 2D
feature maps for pyramid feature aggregation. Finally, a simple regression head with multi-
scale receptive fields regresses the final results. The proposed architecture is illustrated in
Figure 2b.

3.4. Post-Processing

The IMC segmentation is a difficult task, due to the difficulty of generating the precise
thickness from an image, even when using deep learning methods. While the carotid
intima-media region can be segmented, for some images, this region can be very skinny,
affecting the performance of the segmentation method. We noticed that when using deep
learning methods the segmented thickness is generally fat, as presented in Figure 3b.
Because of this and in order to make the segmented thickness skinny to meet the ground
truth, we applied morphological erosion. Morphological erosion is a post-processing step
commonly used in medical image segmentation. In the context of IMC segmentation,
morphological erosion is used to refine the initial segmentation results by removing small
regions of noise or non-IMC tissue that may have been included. This helps to improve the
accuracy and reliability of the segmentation by ensuring that only the true IMC structure is
retained. The erosion operation is typically performed using a structuring element, which
determines the size and shape of the erosion. The choice of structuring element depends
on the characteristics of the image and the desired level of erosion. For example, a small
circular element may be used to remove small regions of noise, while a larger rectangular
element may be used to remove larger areas of non-IMC tissue. Figure 3c presents an
example of the erosion result.

(a) Ground-truth (b) Segmentation result (c) Erosion result

Figure 3. Morphological erosion on ultrasound IMC segmentation results.
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4. Experimental Results

In this section, we demonstrate the experimental results of the proposed self-ONN–
DeepCrack approach on the CUBS dataset, and compare the obtained results with other pub-
lished image segmentation methods, including DeepCrack [19], PidiNet [10] and adapted
CCTrans [45]. The comparison was performed using image segmentation metrics as well
as visual illustrations.

4.1. Implementation Details

The implementation details for training the proposed and implemented models are
presented in Table 1. The implementation was performed using the Pytorch library, while
the post-processing and evaluation metrics were performed using Matlab.

Table 1. Training hyperparameters and parameters for each model.

Method Learning Rate Optimizer Epochs Training Parameters

DeepCrack 0.0001 Adam 100 14.720 M

DeepCrack_Self_ONN 0.0001 Adam 100 44.144 M

PidiNet 0.005 Adam 70 1.150 MB

Transformer 0.00001 Adam 70 104.609 M

4.2. Dataset and Evaluation Metrics

The dataset used in this study is the CUBS dataset, acquired from both sides of the
neck of 1088 participants, totalling 2176 images. All images are annotated by a skilled
analyst. The images in Figure 5 are samples of the images and the ground truths taken from
the dataset. A total of 80% of the data are used for training and 20% are used for testing.
The segmentation metrics used to evaluate the performance of the proposed models are
precision, recall, F1 measure (Equation (3)), Jaccard index (Equation (4)) and Dice coefficient
(Equation (5)). Precision measures how many true positive (TP) predictions there are out
of all the positive predictions or how many positive predictions there are in total. Recall
calculates the true positive rate (TPR) or how many true positive predictions are made out
of all the true positives. Both precision and recall are used to handle the class imbalance
problem and to compute the F1 measure.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

Jaccard Index =
True Positive

True Positive + False Negative + False Positive
(4)

Dice =
2 ∗ 2True Positive

2 ∗ True Positive + False Negative + False Positive
(5)

4.3. Evaluation

To evaluate the ultrasound IMC segmentation using the deep learning methods on the
CUBS dataset, a set of metrics as mentioned above are used. These metrics are predomi-
nantly used for image segmentation in computer vision tasks. Moreover, we compare the
frames per second (FPS) for each model on the same dataset. In this section, we present
the obtained results from the dataset using the proposed method for ultrasound IMC
segmentation. The results are reported in the tables and figures to show the performed
techniques using the different architectures.

We first investigated the effect of replacing CNN layers with self-ONN layers in the
DeepCrack model. The level of linearity was controlled using the parameter q = 3, 5, 7,
9 or 11. Figure 4a shows that the best performing model uses q = 3, then the accuracy of
the model starts to drop as we enlarge the level of non-linearity. Compared with the CNN
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version of the model, Figure 4b shows that the best precision and recall accuracies at q are set
to 3 and 5. The performance of all the deep learning models on the CUBS dataset is shown in
Table 2. From the table, we can observe that both the transformer- and pixel difference-based
models act similarly in all the performance measures with a slight increase for PiDiNet
in the F-measure, Dice and Jaccard index. Both the transformer- and pixel difference-
based models achieved better performances with exceptional margins compared to the
CNN- and self-ONN-based models. From Table 2, we can also see that the post-processing
operations improved the performance metrics of all the methods, including DeepCrack,
DeepCrack_Self_ONN, PiDiNet and the transformer-based models. The models achieved
an improvement of about 20, 14, 19 and 20% for the DeepCrack, DeepCrack_Self_ONN,
PiDiNet and transformer-based models, respectively, on the precision metric, while the
transformer-based + post-processing model demonstrated the best metrics followed by
PiDiNet + Post-processing with an average difference of 1% and 10% and less than 1% for
dice, recall and precision, respectively. In addition to the qualitative results, we present the
qualitative results in Figure 5 that show the visual outputs from the segmentation results.
From Figure 5, we can see that all the proposed methods demonstrated segmentation with
good performance with a difference in terms of thickness.

(a) (b)

Figure 4. (a) The precision-recall curve for ultrasound IMC segmentation using the self-ONN with

different q settings, (b) using the CNN and self-ONN with q = 3 and q = 5.

Table 2. Performance of the proposed and implemented models on the CUBS dataset. The bold and

underline fonts respectively represent the first and second place.

Model Precision Recall F-Measure Dice Jaccard FPS

DeepCrack_CNN 0.631 0.675 0.652 0.652 0.484 17.074

DeepCrack_CNN + Post-processing 0.834 0.618 0.697 0.697 0.544 17.074

DeepCrack_Self (q = 3) 0.652 0.688 0.669 0.669 0.503 13.45

DeepCrack_Self + Post-processing 0.792 0.691 0.721 0.721 0.571 13.45

PiDiNet 0.687 0.825 0.750 0.750 0.60 20.62

PiDiNet + Post-processing 0.876 0.740 0.791 0.791 0.661 20.62

Transformer 0.68 0.826 0.746 0.746 0.595 11.427

Transformer + Post-processing 0.882 0.849 0.801 0.801 0.656 11.427

It is worth mentioning that image segmentation algorithms typically rely on edge
detection and thresholding techniques to separate regions of interest from the background.
However, these techniques can be affected by image noise, leading to the detection of
false edges and the inclusion of noise as part of the segmented object. Additionally, image
segmentation algorithms may also introduce a level of smoothing or blurring to the image,
which can further contribute to the fattening effect. This smoothing operation can cause the
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boundaries of the segmented object to become slightly blurred and more diffuse, resulting
in a larger area being assigned to the object than is actually present in the ground truth.

Figure 5. Original and ground truth sample images and the corresponding segmentation results for

the proposed deep learning models.

5. Conclusions

We developed and investigated various novel deep learning models for the seg-
mentation of IMC in B-mode ultrasound images of the carotid artery. Compared to the
conventional CNN-based model, the self-ONN-based model performs better in all evalua-
tion metrics; however, the pixel difference- and transformer-based models perform better in
all metrics, potentially due to the absence of enough data. The pixel difference model per-
forms better when data are scarce. A further investigation into suitable data augmentation
techniques is needed to increase the accuracy.

Author Contributions: Conceptualization, H.H.M. and O.E.; data curation, H.H.M., O.E. and N.O.;

formal analysis, H.H.M. and O.E.; methodology, H.H.M. and O.E.; project administration; supervision,

S.A.-M., M.E.H.C., A.B. and S.M.Z.; validation, H.H.M and O.E.; visualization, H.H.M. and O.E.;

writing—original draft, H.H.M. and O.E.; writing—review and editing, H.H.M., O.E. and S.A.-M. All

authors have read and agreed to the published version of the manuscript.

Funding: This publication was supported by the Qatar University Internal Grant #QUHI-CENG-

22/23-548. The findings achieved herein are solely the responsibility of the authors.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2023, 13, 4821 10 of 12

Abbreviations

The following abbreviations are used in this manuscript:

DR Diabetic retinopathy

DL Deep learning

AI Artificial intelligence

CNN Convolutional neural network
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