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Abstract

Sand production is a critical issue in petroleum wells. The critical total draw-

down (CTD) is an essential indicator of the onset of sand production. Although

some models are available for CTD prediction, most of them are proven to lack

accuracy or use commercial software. Furthermore, the previous correlations

have not studied the trend analysis to verify the correct relationships between

the parameters. Therefore, this study aims to build accurate and robust models

for predicting CTD using response surface methodology (RSM) and support

vector machine (SVM). The RSM is utilized to obtain the equation without

using any software. The SVM model is an alternative method to predict the

CTD with higher accuracy. This study used 23 datasets to develop the proposed

models. The CTD is a strong function of the total vertical depth, cohesive

strength, effective overburden vertical stress, and transit time with correlation

coefficients (R) of 0.968, 0.963, 0.918, and �0.813. Different statistical methods,

that is, analysis of variance (ANOVA), F-statistics test, fit statistics, and diag-

nostics plots, have shown that the RSM correlation has high accuracy and is

more robust than correlations reported in the literature. Moreover, trend anal-

ysis has proven that the proposed models ideally follow the correct trend. The

RSM correlation decreased the average absolute percent relative error

(AAPRE) by 12.7% compared to all published correlations’ AAPRE of 22.6%–
30.4%. The SVM model has shown the lowest AAPRE of 6.1%, with the highest

R of 0.995. The effects of all independent variables on the CTD are displayed in

three-dimensional plots and showed significant interactions.
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1 | INTRODUCTION

Around 70% of the world’s oil and gas wells are produced
from weakly consolidated reservoirs.[1,2] Sand production
causes numerous issues like equipment erosion and plug-
ging; consequently, sand production leads to a drop in oil
recovery, high maintenance cost, and safety, environ-
mental, and health concerns.[2-5] Nevertheless, early pre-
diction of sand production is highly recommended to
ensure successful sand control management strategies,
according to Khamehchi et al.[6]

Prediction of sand production from oil and gas wells
has been addressed through numerical, analytical, and
empirical methods. Numerical techniques apply the finite
element method (FEM) or finite difference method to
account for three-dimensional (3D) stresses, complex
material behaviour like plasticity, and fluid flow. Fan
et al.[7] used mechanical analysis on a potentially col-
lapsed pore throat system to quantify sand production
using a pressure-gradient-based sand-failure-criterion.
They state that the failure criterion can be applied to
characterize the sand production in cold heavy-oil pro-
duction with the sand process.[7] However, the numerical
methods have some drawbacks since they are time-
consuming with high complexity. Furthermore, to build
a numerical prediction, the key required input parame-
ters are difficult to find and need advanced laboratory
measurements of fluid, mechanical, and petrophysical
rock properties.[8] On the other hand, analytical methods
have disadvantages, like assuming symmetrical geometry
and boundary conditions such as ignoring stress anisot-
ropy. Consequently, ignoring the fundamental effect of
stress anisotropy on sanding, a method may not explain
the sanding risk related to the borehole orientation. In
general, assumptions or approximations without actual
data render the models unreliable and inaccurate despite
their complexity.[8]

Alternatively, empirical approaches use well data and
field observations to predict sand production. These sand
prediction methods correlate the well data on sand pro-
duction and field operation parameters. This technique is
classified into one, two, and multi-parameter correlations
according to Khamehchi et al.[6] For instance, Tixier
et al.[9] used acoustic log data to obtain the shear modu-
lus ratio to bulk compressibility to predict sand produc-
tion. When the ratio is higher than 0:8�1012 psi2, there
is low sand production, whereas when the ratio is less
than 0:7�1012 psi2, there is a high probability of sand
production.[9] Veeken et al.[10] applied a two-parameter
model: the depleted reservoir pressure and drawdown
pressure to indicate sand risk. Increasing the number of
parameters involved in a model will improve sand predic-
tion modelling.[10]

Response surface methodology (RSM) has been applied
in many fields to create models and acquire a relationship
between the parameters. The optimal condition for the
synthesis of mesoporous carbon is obtained using the
RSM.[11] The RSM was used to find the reaction condition
optimization for the single-walled carbon nanotubes syn-
thesis.[12] Nam et al.[13] used RSM to determine drilling
torques, edge radii, and thrust forces as a function of drill
diameter, spindle speed, nanofluid weight concentration,
and feed rate. The obtained regression models were able to
identify the parameters affecting the drilling performance.
Salehnezhad et al.[14] investigated and optimized the rheo-
logical behaviour of drilling fluid composed of ZnO nano-
particles and starch by applying RSM. Ishak and Ayoub[15]

used RSM to define oil removal performance using an
anionic polymer. They stated that their model has R2 of
94.9% and AAPE of 12.2%.[15] Umar et al.[16] utilized RSM
for forecasting the viscosity of petroleum emulsions with
an R2 of 0.8716. They proved that the aging time of an
emulsion has the highest impact on its viscosity, and the
viscosity of the emulsion improves with time.[16] Alakbari
et al.[17] developed RSM to predict the apparent and plastic
viscosities of water-based drilling fluids. Their model was
developed based on temperature, bentonite, nanosilica,
and nanoclay concentrations, and pressure. The apparent
and plastic viscosities have an R2 of 0.978 and 0.961,
respectively.[17] Alhajabdalla et al.[18] applied RSM to
investigate the stability of fibrous dispersion used in dril-
ling and completion operations. They showed that their
model has an R2 of 0.91–0.99.[18] They proved that polymer
concentration is the primary factor influencing fibrous sus-
pension stability.[18] Zhang et al.[19] utilized RSM to fore-
cast profile control by clay particles for a polymer flooded
reservoir and stated that the results agree very well with
the numerical simulation. The RSM developed statistical
models for cuttings transport in non-Newtonian drilling
fluids.[20]

Many researchers have recently applied innovative
modelling techniques in petroleum engineering calcula-
tions, namely machine learning (ML). Zendehboudi et al.
and Sircar et al.[21,22] represented comprehensive reviews
of the machine learning methods in petroleum engineer-
ing applications. They explained the ML techniques and
revealed their benefits and limitations.[21,22] The support
vector machine (SVM) method is one of the ML methods
successfully applied in many applications. An SVM algo-
rithm was used to solve non-linear pattern recognition
problems of high generalization capability, few tuning
parameters, and small sample size.[23] Kamari et al.[24]

applied the least-square-support-vector machine to pre-
dict the unloading pressure gradient region in different
oil production rates and tubing sizes. Their model has an
average absolute relative deviation and squared
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correlation coefficient of 1.084% and 0.9994.[24] Olatunji
and Micheal[25] used a SVM classification method to
detect the sand production in the Niger Delta reservoirs.
They used fluid, rock, geotechnical, and other data to
build their model and stated that their model could accu-
rately forecast sand production.[25] SVM models have
been used for determining the bubble point pressure and
oil formation volume factor and have proved the flexibil-
ity and reliability of the model, according to El-Seba-
khy.[26] Al-Azani et al.[27] used an SVM model to obtain
the hole cleaning efficiency,[27,28] while Cheng et al.[29]

applied SVM to detect sand deposition in the pipeline.
An SVM model was also applied to predict sandstone
thickness using the geological and geophysical character-
ization data (Li et al.[30]). Yasin et al.[31] utilized SVM to
find the spatial distribution of porosity using seismic and
log data.

Some researchers used multi parameters, that is, total
vertical depth (TVD), transit time (TT), cohesive strength
(COH), and effective overburden vertical stress (EOVS),
to determine the critical total drawdown (CTD) for
detecting sand production. Total drawdown (TD) is the
difference between the original static reservoir pressure
and the bottom hole flowing pressure. This parameter is
determined at the onset of sanding for problematic wells
and is known as the CTD.[32] Some empirical correlations
were used to predict the CTD as an indicator of the onset
of sand production. Kanj and Abousleiman[32] used artifi-
cial neural networks (ANNs) to predict the CTD for
31 wells of the Adriatic Sea. Khamehchi et al.[6] applied
multiple linear regression (MLR) with the regression
Equation (1) and a genetic algorithm evolved MLP (GA-
MLR) to determine the CTD for 23 wells of the Adriatic
Sea. Alakbari et al.[33] applied the fuzzy logic-based
model using TVD, TT, COH, and EOVS as inputs to pre-
dict the CTD. Table 1 summarizes the previous correla-
tions and models used to determine the CTD and their
used input parameters.

Y ¼ b1X1þb2X2þ…þbnXnþC ð1Þ

However, the previously published correlations and
models are shown to lack accuracy or use sophisticated
commercial software. Alakbari et al.[33] utilized commercial
software to predict the CTD. Kanj and Abousleiman[32] and
Khamehchi et al.[6] showed the correlations to predict the
CTD with more than 20% average absolute percent relative
error (AAPRE). Alakbari et al.[33] stated that the fuzzy
logic-based model could predict the CTD with 8.6%
AAPRE; however, there is a need to improve the CTD accu-
racy, and exploration of other techniques to predict the
CTD is required. In addition, the published correlations
have not conducted the trend analysis to indicate the proper

relationships between the input and output parameters to
prove the correct physical behaviour.

Therefore, this study aims to apply RSM and SVM to
develop more accurate CTD prediction models than the
models that exist in the literature. The RSM correlation and
SVM model were developed using data from 23 gas wells of
the Adriatic Sea. The data parameters include CTD as out-
put and TVD, TT, COH, and EOVS as input parameters.
The RSM correlation and SVM models used in this study
have been statistically analyzed and validated using analysis
of variance (ANOVA), F-statistics test, fit statistics, diagnos-
tic plots, and trend analysis to show their reliability and
accuracy. In addition, some statistical error analyses, such
as AAPRE, maximum absolute percent relative error
(Emax :), minimum absolute percent relative error (Emin :),
root mean square error (RMSE), standard deviation (SD),
and R have been conducted to describe, validate, and
compare the RSM correlation and SVM model with the
existing models. The SVM is the highest accuracy model
to predict the CTD compared to all models; however, the
use of RSM was found to have some benefits compared to
the SVM. These benefits include providing a direct equa-
tion, as no software is needed to predict the CTD. The
RSM also helps identify interaction by plotting the 3D
surface response of the CTD model used to assess the
interactive relationships between (TVD, TT, COH, and
EOVS) inputs and the CTD output. Moreover, the RSM
correlation outperformed the studied equations used to
predict the CTD. The RSM and SVM methods are used
for the first time in this study to predict CTD. By applying
RSM and SVM techniques, the study aims to develop
accurate and robust models to predict the CTD, an essen-
tial indicator of the onset of sand production. Such a
model will help control costly sand production issues and
may be consequential.

2 | METHODOLOGY

This research was performed by following the phases, as
shown in Figure 1. First, the datasets were collected from

TABLE 1 Inputs’ previous correlations and models

Correlation/model Used input parameters

Kanj and Abousleiman[32] COH.

Khamehchi et al.[6] (MLR) TVD, TT, COH, and EOVS.

Khamehchi et al.[6] (GA-MLR) TVD, TT, COH, and EOVS.

Alakbari et al.[33] TVD, TT, COH, and EOVS.

Abbreviations: COH, cohesive strength; EOVS, effective overburden vertical

stress; GA-MLR, genetic algorithm evolved multiple linear regression; MLR,
multiple linear regression; TT, transit time; TVD, total vertical depth.
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the literature.[34] Then, the collected datasets were
divided into two subdivisions, that is, training or develop-
ing and testing or validation datasets. After that, the RSM
and SVM models were developed to determine the CTD.
The developed models were evaluated by applying differ-
ent methods, that is, ANOVA, F-statistics test, fit statis-
tics, diagnostics plots, and trend analysis, to indicate that
the models are robust and show the proper relationships

between the inputs and outputs to prove the correct phys-
ical behaviour. Then, cross plots and various statistical
error analyses, namely R, SD, APRE, AAPRE, and RMSE,
were conducted to indicate the accuracy of the proposed
models and the previous models. Finally, different corre-
lations and the proposed models were compared, and the
highest accuracy model was selected to predict the CTD.

2.1 | Data collection and description

The current study data are obtained from 23 gas wells
from the Adriatic Sea collected from the literature.[34]

The data were divided into two sections; the first
section contains 15 wells used to develop the RSM corre-
lation and train and validate the SVM model. The second
section has eight wells to test the RSM correlation, SVM
model, and existing correlations to indicate that the pro-
posed RSM and SVM models are more robust. In addi-
tion, the testing dataset can be used to make a fair
comparison between all models by using the same data-
set. Statistical analyses, namely, minimum, maximum,
mean, and range of the collected data, are demonstrated
in Tables 2 and 3.

2.2 | Leave-one-out cross-validation

Leave-one-out cross-validation is one of the cross-validation
methods in which each dataset can be individually assigned
to the testing set and the rest to the training set. The num-
ber of folds equals the number of datasets.[35] The applica-
tion of leave-one-out cross-validation is proper in small
datasets.[36] Furthermore, the leave-one-out cross-validation
is less biased than other methods because the training set is
n � 1 size.[37] In addition, the leave-one-out cross-validation
was conducted to overcome problems such as over-fitting
and under-fitting. Therefore, the leave-one-out cross-
validation is applied. In this study, 15 wells were used for
training and leave-one-out cross-validation. Hence, the

FIGURE 1 Flowchart of the proposed response surface

methodology (RSM) and support vector machine (SVM) models

TABLE 2 Statistical analysis of the

data used to develop the response

surface methodology correlation

training and validating the support

vector machine model

Parameter TVD (m) TT (μsec/ft) COH (MPa) EOVS (MPa) CTD (MPa)

Minimum 1070 85.00 0.539 10.88 0.314

Maximum 4548 170.0 5.217 80.71 43.97

Mean 2564 115.0 1.775 38.16 15.28

Median 2380 110.0 1.275 29.42 12.81

Range 3478 85.00 4.678 69.82 43.66

Skewness 0.187 0.940 1.234 0.398 0.600

SD 10.23 0.208 0.012 0.228 0.123

Abbreviations: CTD, critical total drawdown; COH, cohesive strength; EOVS, effective overburden vertical

stress; TT, transit time; TVD, total vertical depth.
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average of all the 15 wells’ validation results was performed
to indicate the performance of the SVM model for the vali-
dation datasets. Finally, the datasets that were not used for
training and validating the SVM model (eight datasets that
are independently assigned) were used to test the SVM
model.

2.3 | CTD model applying RSM

RSM is a common method utilized for conducting the
design of experiments (DOE). RSM is used as a statistical
and mathematical tool for optimizing industrial processes
or chemical reactions and is generally used for experi-
mental design.[38,39] RSM uses a mathematical model to
analyze the independent variables. RSM includes DOE
and a regression analysis technique that provides a rela-
tionship between independent and dependent parameters
in a mathematical model that analyzes the independent
variables.[40] This relationship could be expressed in the
following Equation (2). The RSM can generate a mathe-
matical model that defines the overall process.[41] In addi-
tion, the RSM can be used to save time and cost by
decreasing the number of trials in the design of
experiments.[42]

Ƞ¼ f x1, x2,…xnð Þþ ε ð2Þ

where Ƞ is the response in this study, represented by
selected CTD; f is the unknown function of response;
x1, x2,…xn are the independent variables in this study,
represented by total vertical depth (TVD), transit time
(TT), cohesive strength (COH), and effective overburden
vertical stress (EOVS); n is the number of the indepen-
dent variables; and ε is the statistical error.

RSM uses a low-order polynomial equation to obtain a
predetermined region of the independent variables, which
are later analyzed to locate the optimum values of the inde-
pendent variables to identify the response.[43] Central com-
posite design (CCD), historical data design (custom design),

D-optimal designs, and Box–Behnken–Behnken are the
most commonly used forms in the RSM.[44] CCD is a design
approach for continuous experimentation; it allows for test-
ing a lack of fit when an adequate number of experimental
values are provided.[45] The custom designs are applied
when the process involves changes to the experiment that
cannot be adjusted by a standard design and data has
already been gathered.[46] The historical data design was
applied in this research.

In this study, the RSM method has been utilized to
obtain relationships between the following parameters:
TVD, TT, COH, and EOVS, and the CTD response. The
CTD model was obtained by a statistical association
between independent parameters and dependent parame-
ters (responses). Design-Expert software and Statistica
software have developed new empirical correlations for
predicting the CTD as a function of TVD, TT, COH, and
EOVS. The Design-Expert and Statistica software have
recently been used with the regression method to obtain
the best match for the data.[47] Regression analysis is uti-
lized to obtain the relationships between the features and
the responses to acquire a mathematical model that sat-
isfies the relationship between test factors and objective
functions.[48] The regression method is applied to investi-
gate the behaviour of the response surface.[49] An RSM
mathematical correlation can be generated by utilizing a
polynomial function fitted by the least square method.[50]

Generally, the response surface model is determined by
the following equation:

Y ¼ boþ
Xk

i¼1

bixiþ
Xk

i¼1

biix
2
i þ

Xk�1

i¼1

Xk

j¼1

bijxixjþ e ð3Þ

where Y is the response, xi and xj are the variables (i and
j from 1 to k), bo is the model intercept coefficient, bj, bjj,
and bij are the interaction coefficients of the linear, qua-
dratic, and second-order terms, respectively, k is the
number of the features (k = 5 in this work), and e is the
error.[51]

TABLE 3 Statistical analysis of the

data used for testing the previous and

response surface methodology

correlations and the support vector

machine model

Parameter TVD (m) TT (μsec/ft) COH (MPa) EOVS (MPa) CTD (MPa)

Minimum 1122 85.00 0.559 11.28 0.883

Maximum 4088 150.0 3.874 76.59 32.60

Mean 2618 116.5 1.812 41.02 16.27

Median 2660 108.5 1.618 41.87 16.22

Range 2966 65.00 3.315 65.31 31.71

Skewness �0.008 0.387 0.728 0.065 0.125

SD 10.57 0.229 0.012 0.265 0.119

Abbreviations: CTD, critical total drawdown; COH, cohesive strength; EOVS, effective overburden vertical
stress; TT, transit time; TVD, total vertical depth.
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2.4 | CTD model using an SVM

SVM is a supervised learning technique derived from sta-
tistical learning theory for regression and classifica-
tion.[52] SVM can be used to determine a hyperplane that
puts the data into two classes.[53] As illustrated in
Figure 2, the SVM structure comprises input vectors, hid-
den layers (kernel functions), the w and b (the adjustable
model parameters), and the output y. SVM has advan-
tages like non-convergence to local minima, accurate
generalization, and predictive ability for small and non-
linear datasets.[54,55] The SVM is a constrained non-linear
optimization problem. Therefore, the SVM can provide a
unique solution in many applications.[21] Moreover, the
SVM incorporates the structural risk minimization
(SRM) principle by applying a maximum margin
approach. The SVM model has been proposed to decrease
its computational cost while enhancing its generalization
ability.[56] Richhariya and Tanveer[56] used a small-sized
rectangular kernel matrix. The decreased kernel-based
approach leads to a computationally efficient model of
Universum-based SVM. Hence, this removes the over-
head of the higher computation cost of Universum based
algorithms.[56] The SVM technique is robust due to its
ability to control noisy data.[21,57] Furthermore, the SVM
can learn the feature space dimensionality indepen-
dently. Thus, SVM provides a good generalization even in
the presence of many features.[58] The SVM can classify
two linearly conceivable classes of the data, utilizing a
linear hyperplane with a maximum margin from both
classes.

The SVM model in this research was developed using
MATLAB R2020b. The SVM model includes the idea of
the kernel function. Some kernel functions are used in
the SVM, namely linear, polynomial, radial basis func-
tion (RBF), sigmoid, and Gaussian kernel functions.[59]

Selecting the kernel function and optimized SVM model
parameters are essential for improving the SVM model’s

performance.[60] In this study, the linear kernel function
was chosen because it provides the highest accuracy
results compared to other kernel functions, that is, poly-
nomial, RBF, and sigmoid kernel functions. The linear
kernel function can be applied when the data is linearly
separable and can be separated utilizing a single line.[61]

The datasets are not projected onto higher dimensions
when the linear kernel is applied. Therefore, the linear
kernel is the inner product of x1 and x2 with the c con-
stant. The linear kernel function can be determined by
using Equation (4). The advantage of the linear kernel is
that it is the simplest of all the kernel functions and has
only the c term.[62]

k x1, x2ð Þ¼ x1
T :x2þ c ð4Þ

Table 4 shows the optimized SVM model parameters
used to generate the CTD. The epsilon parameter
plays a crucial role in enhancing the SVM perfor-
mance and is 0.03308 in this study. The solver used in
this study is SMO, and the box constraint is 10.831.
Additionally, the kernel scale and standardize are
3.2800 and accurate, respectively. The optimized
parameters in Table 4 are selected to provide the best
proposed SVM model that can accurately and robustly
determine the CTD.

Before applying the SVM model, the data were nor-
malized between one and minus one by using (mapmin-
max) function in MATLAB or utilizing the following:

Y ¼ Y max �Y minð Þ� X�Xmin

Xmax �Xmin
þY min ð5Þ

where Y is the parameter in the normalized form, Y max is
the maximum value of the normalized form (1), Y min is
the minimum value of the normalized form (�1), X is the
parameter to be normalized, Xmin is the maximum
parameter, and Xmax is the minimum parameter.

After normalization, the dataset is divided into two
subparts, 15 wells for the training and validation of the
SVM model and eight wells for testing the model, as
shown in Tables 2 and 3, respectively.

The correlation coefficient (R) is calculated to evalu-
ate and determine the importance of each input parame-
ter (TVD, TT, COH, and EOVS) to the output CTD. The
CTD is a strong function of the TVD, COH, and EOVS,
where the correlation coefficients were 0.968, 0.963, and
0.918, respectively. In addition, it is a strong function in
the opposite direction of the TT, where the R was �0.813,
as shown in Figure 3. A negative R implies that the vari-
ables are inversely related.[63]

The following stages were used to evaluate and vali-
date the proposed SVM model and compare it with the

FIGURE 2 Support vector machine (SVM) architecture
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other models: Initially, the SVM model was checked,
applying trend analysis to ensure the model is stable
and simulates the physical process trends. Second,
the proposed SVM performance was shown by using
cross plots and statistical error analysis, that is, R,
SD, APRE, AAPRE, and RMSE. Finally, the proposed
SVM performance was compared with the RSM cor-
relation and the current correlations and models in
the literature.

3 | RESULTS AND DISCUSSION

3.1 | Mathematical RSM correlation

The RSM correlation resulted in an empirical relation-
ship between the response CTD. The features are shown
in the following equation:

Y ¼ 1:521 680 784 615þ0:007 103 677 883 743 7�X1

�0:072 458 817 372 904�X2þ4:615 005 616 577 1�X3

�0:661 282 992 199 99�X4þ5:239 182 293 300 3e�05
�X1�X4þ0:003 814 386 245 673�X2�X4 ð6Þ

where Y is CTD (MPa), X1 is TVD (m), X2 is TT (micro s/
ft), X3 is COH (MPa), and X4 is EOVS (MPa).

3.2 | Verification of the RSM and SVM
models

The proposed RSM and SVM models were tested by using
eight unseen wells data points that were not used to
develop the RSM model and to train and validate the
SVM model. Statistical error analyses, namely R and
AAPRE, have been performed to evaluate the proposed
RSM and SVM models. The equations to determine the
R, AAPRE, RMSE, and other statistical error analyses are
presented in (the Supporting Information file:
Appendix S1). As shown in Table 5, the proposed RSM
and SVM models have low AAPRE, RMSE, and fSD, and
a high R. Therefore, according to Table 5, the proposed
RSM and SVM models’ accuracies are high.

The cross plots in Figures 4 and 5 show that the
RSM correlation and SVM model have high accuracy
and high confidence level models. The RSM correla-
tion and SVM model were built in this research to
determine whether the CTD was acceptable based on
the results found. Comparing the two models, the SVM
model has higher accuracy than the RSM correlation,
as displayed in Table 5.

3.3 | Evaluation criteria

The developed RSM correlation for CTD has been statisti-
cally analyzed and validated by ANOVA, F-statistics test,
fit statistics, and diagnostics plots.

3.3.1 | ANOVA for the CTD model

ANOVA is applied to determine whether the quadratic
model represents the significance of the experimental
data at a 95% confidence interval.[64] ANOVA is utilized
to obtain the influence of features (TVD, TT, COH, and
EOVS) on the response CTD in the regression study.
Finally, the ANOVA was used for the statistical analyses
implemented to detect the features (TVD, TT, COH, and
EOVS) on the response CTD.[10,65]

From the ANOVA analysis shown in Table 6, the
resulting p-values indicate that the model is significant at

FIGURE 3 Relative importance of input parameters with

critical total drawdown (CTD). COH, cohesive strength; EOVS,

effective overburden vertical stress; TT, transit time; TVD, total

vertical depth

TABLE 4 Specifications of the support vector machine model

Parameter Description/value

Inputs 4

Outputs 1

Box constraint 10.831

Kernel scale 3.2800

Kernel function Linear

Epsilon 0.033 08

Standardize True

Solver Sequential minimal optimization

Bias �0.3374
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a confidence level of 95%. As displayed in Table 6, the
model F-value of 217.86 and the low probability
(model p-value) of (<0.0001) show the significance of
the CTD model. The p-value of less than 0.0500 reveals
the model marking for 95% confidence intervals. How-
ever, if the p-value is greater than 0.100, a model is
insignificant.[66,67] Thus, the model is significant; the

model is enhanced to acquire a high accuracy and
more reliability. The insignificant terms of factors are
required for the RSM model and thus cannot be
eliminated.[55]

3.3.2 | F-statistic test

F-test is a statistical test that signifies the similarity
of variances of two samples to check if the null
hypothesis is governed or not. The null hypothesis
term refers to the no relationship between two mea-
sured phenomena or no association among groups.
Consequently, the null hypothesis must be rejected or
disproved to acquire a relationship between two vari-
ables. In statistical analysis, if the null hypothesis is
rejected, the observed data are significant, and only
then can the model be accepted. In contrast, the
observed data were insignificant if the null hypothe-
sis was accepted, and no relationship existed between
the variables.[68] The F-distribution test is used to
reject the null hypothesis. The F-distribution test can
be applied by using F-calculated and F-statistic
values. The F-calculated value is the F-value for the
model, that is, 217.9 in the ANOVA analysis
(Table 6). F-statistic values are found from F-statistic
Tables (see the sample of F-statistic Tables in
Table S1 in Appendix S1) by utilizing df for the model
and residual, that is, 6 and 7, respectively, in the
ANOVA analysis (Table 6) and α (confidence levels),
that is, 0.1, 0.05, 0.01. For example, the F-statistic
value of df for the model and residual, that is, 6 and
7 and α = 0.1 denote F6,7,0:1. The F6,7,0:1 can be found
from F-statistic Tables (Table S1 in Appendix S1) using df
for model (d1) = 6, df for residual (d2) = 7 and α = 0.1
and equals 2.827. F6,7,0:05= 3.865 and F6,7,0:01= 7.191 are
also obtained from the F-statistic Tables for α = 0.05 and
0.01. To reject the null hypothesis by using the F-
distribution test, the F-calculated value must be greater
than the F-statistic value. As shown in Table 7, all F-
calculated values are higher than the F-statistic values.
Therefore, the null hypothesis for the CTD model is
rejected. The F-statistic test indicated that the CTD model
is acceptable.

TABLE 5 Statistical error analysis of the response surface methodology (RSM) and support vector machine (SVM) models using testing

datasets

Model APRE (%) AAPRE (%) Emax. (%) Emin. (%) RMSE (MPa) SD (MPa) R

Proposed SVM 0.261 6.087 10.86 1.783 0.005 0.031 0.997

Proposed RSM �4.828 12.70 38.47 0.829 0.033 0.138 0.991

Abbreviations: AAPRE, average absolute percent relative error; APRE, average percent relative error; RMSE, root mean square error.

FIGURE 4 Cross-plot of the response surface methodology

(RSM) correlation for the testing datasets. CTD, critical total

drawdown

FIGURE 5 Cross-plot of the support vector machine (SVM)

model for the testing datasets. CTD, critical total drawdown
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3.3.3 | Fit statistics

The RSM correlation was evaluated using fit statistics
analysis like R2 and predicted R2, as shown in Table 8.
The R2 value of 0.995 and the predicted R2 value of 0.978
for the CTD model revealed a better correspondence
between the expected and measurement results. The
R should be at a minimum of 0.8 for a suitable fit
model.[69] The R value attained for the CTD model was
higher than 0.8, which indicates that the empirical model
may not explain the total dissimilarity (only 2.2%). The
difference between actual R2 values and R2 predicted
values is less than 0.1, as shown in Table 8, indicating a
good model correlation. Table 8 also demonstrates that
the adequate precision value for the CTD model is higher
than 4, which reveals good model discrimination.[67]

3.3.4 | Diagnostics plots

The diagnostic plots have been used to examine the ade-
quacy of the model. In Design-Expert 12 software, there
are some plots, such as the Box-Cox, normal, and pre-
dicted versus actual plots. Diagnostics plots are used to
ensure the chosen CTD model can deliver an adequate
approximation of the real system. The diagnostics plots
include Box-Cox plot, the normal plot, predicted versus

actual plots, and residual versus predicted plots. These
plots are discussed in the Appendix S1.

3.4 | The SVM model validation

The 15 wells were applied to train and validate the SVM
model using the leave-one-out cross-validation. As shown
in Table 9, the SVM model has high accuracy with an R
of 0.995. The SVM has a low error, with the AAPRE,
APRE, RMSE, and SD of 6.060%, �1.341%, 0.005 MPa,
and 0.026 MPa, respectively, as shown in Table 9. Emax.

and Emin. for the proposed SVM model are 17.987% and
0.488%, respectively, as shown in Table 9. These statisti-
cal error analyses indicate that the proposed SVM model
can be used to predict the CTD accurately.

3.5 | Trend analysis

Trend analysis is an integral part of this study. Although
the trend analysis can test the model’s robustness in the
presence of uncertainty, it can provide comprehensive
relationships between input and output variables in the
models. Trend analysis can show unexpected relation-
ships between input and output, highlighting the need to
search for the models’ errors. Besides, trend analysis can
simplify the models by fixing model inputs that do not
affect the outputs or identifying and removing redundant
parts of the model structure.[70] Trend analysis is also
applied to show significant connections between features
and responses, guiding the development of robust
models.[71]

In this study, the trend analysis checks the relation-
ships between the inputs (TVD, TT, COH, and EOVS)
and output CTD of the RSM correlation, SVM model,

TABLE 6 Analysis of variance (ANOVA) for the critical total drawdown (CTD)

Source Sum of squares df Mean square F-value p-value

Model 2573 6 428.9 217.9 <0.0001 Significant

A-TVD (m) 3.480 1 3.480 1.770 0.2251

B-TT (μsec/ft) 1.870 1 1.870 0.949 0.3624

C-COH (MPa) 1.820 1 1.820 0.923 0.3688

D-EOVS (MPa) 0.195 1 0.195 0.099 0.7621

AD 0.254 1 0.254 0.129 0.7300

BD 1.980 1 1.980 1.010 0.3488

Residual 13.78 7 1.970

Cor total 2587 13

Abbreviations: COH, cohesive strength; df, degree of freedom; Cor total, the amount of variation around the mean of the observations; EOVS, effective

overburden vertical stress; F, Fisher statistical value; TT, transit time; TVD, total vertical depth.

TABLE 7 F-distribution test for critical total drawdown (CTD)

Fdf model, df

residual, α

F-statistic value < F-calculated
value

F6,7,0:1 2:827< 217:9

F6,7,0:05 3:865< 217:9

F6,7,0:01 7:191< 217:9

ALAKBARI ET AL. 2501
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and the previous correlations to show correct trend physi-
cal behaviours. Graphs were plotted for the input param-
eters values (TVD, TT, COH, and EOVS) as the x-axis
against the output CTD as the y-axis for the previous
models and the RSM correlation and SVM model. The
input parameters vary between the minimum and maxi-
mum values, while the other features are fixed at their
constant mean values.[72–74]

Four input parameters (TVD, TT, COH, and EOVS)
have been chosen for the trend analysis. The trend ana-
lyses were conducted for the proposed RSM correlation
and SVM model and the previous correlations, that is,
Kanj and Abousleiman’s correlations,[32] Khamehchi
et al.’s[6] multiple linear regression (MLR), and Khameh-
chi et al.’s[6] genetic algorithm evolved MLR (GA-MLR).

The trend of TVD has been plotted for the proposed
RSM correlation and SVM model and previous models
from the literature and displayed in Figure 6. Figure 6
shows that Kanj and Abousleiman’s[32] correlation, estab-
lished based on the COH only, showed that the CTD was
independent of TVD. The RSM correlation and SVM
model successfully follow the proper relationship
between the TVD and the CTD. Ahad et al.[75] indicated
that deeper rocks could be more consolidated. Alterna-
tively, shallow formations could be poorly consoli-
dated.[75] Consequently, increasing the TVD increases the
CTD, indicating that sand formation is more consoli-
dated. Therefore, sand production will be decreased by
increasing the CTD and TVD.

The trend of the TT is displayed in Figure 7. The pre-
vious models show that the TT is inversely proportional
to the CTD. Nevertheless, Kanj and Abousleiman’s[32]

correlation shows that the CTD is constant as the TT is
not included. Consequently, the model did not represent
the behaviour accurately. The RSM correlation and SVM
model trend followed the correct trend of the TT, as
shown in Figure 7, indicating that the RSM correlation
and SVM model follow proper physical behaviour. The
shorter TT implies that the sand is more consolidated.[76]

Therefore, reducing TT will increase the CTD. Therefore,

the sand production will be increased by increasing
the TT.

The trends of the COH are shown in Figure 8. The
COH is directly proportional to the CTD. Kanj and
Abousleiman’s[32] correlation followed the existing corre-
lations, but CTD is negative (�2.57 MPa) when the COH
is 0.539 MPa. Consequently, Kanj and Abousleiman’s[32]

correlation has not proven a proper trend for the CTD
correlation. Figure 8 shows that the COH trend of the
RSM correlation and SVM model agrees with the correct
trend of the COH. The cohesive strength can increase the
degree of cementation.[77] Increasing the cementation
degree of sand grains can lead to a reduction in sand pro-
duction. As a result, increasing the rock’s cohesive
strength increases the CTD. The sand production will be
decreased by increasing the cohesive strength of the
rocks.

Figure 9 shows the trends of EOVS. The CTD
decreases the EOVS, as demonstrated by the RSM correla-
tion, SVM model, and Khamehchi et al.’s[6] correlations.
However, Kanj and Abousleiman’s[32] correlation shows a
horizontal line, indicating that their correlation did not
include the EOVS parameter. The trend demonstrated by
the current proposed RSM correlation and SVM model
also follows the proper relationship between the EOVS
and the CTD, as shown in Figure 9. In the literature, there
is not any direct relationship between the EOVS and CTD
explained. The overburden stress remains constant. Nev-
ertheless, the effective overburden stress must increase
when the pore pressure reduces.[77] The CTD decreases by
decreasing the pore pressure.[78] Thus, increasing the
EOVS will reduce the CTD. As a result, sand production
increases by increasing the EOVS.

All the input parameters (TVD, TT, COH, and EOVS)
of the RSM correlation and SVM model follow the proper
trends compared with the existing models. Consequently,
the current trend analysis represented that the proposed
RSM correlation and SVM model follow the correct
trends of the physical behaviours, unlike Kanj and
Abousleiman’s[32] correlation.

TABLE 8 Validation properties of the response surface methodology (RSM) model

R2 SD (MPa) Mean (MPa) Coefficient of variation (%) Adjusted R2 Predicted R2 Adequate precision

0.995 1.403 16.37 8.568 0.990 0.978 44.36

TABLE 9 Statistical error analysis of the support vector machine (SVM) model for the validation datasets

APRE (%) AAPRE (%) Emax. (%) Emin. (%) RMSE (MPa) SD (MPa) R

�1.341 6.060 17.987 0.488 0.005 0.026 0.995

Abbreviations: AAPRE, average absolute percent relative error; APRE, average percent relative error; RMSE, root mean square error.
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3.6 | Comparison of RSM and SVM
models with published models

Several statistical error analyses have been used to
describe, validate, and compare the RSM correlation and
SVM model with the previously published models. The
statistical error analysis applied for the RSM correlation
and SVM model and the previous models included R, SD,
APRE, AAPRE, RMSE, Emax , and Emin (see the Support-
ing Information file: Appendix S1). In this study, the
AAPRE and R are used as key indicators. Kanj and
Abousleiman’s[32] correlation does not follow the proper
trend analyses because their correlation was built based
on the COH only. Therefore, Kanj and Abousleiman’s[32]

correlation was not compared with the other correlations
and models. On the other hand, the models and correla-
tions in the same data ranges are compared in this study.

Figure 10 demonstrates a comparison between the
AAPRE and R of the RSM correlation and SVM model
with previous correlations and Alakbari et al.’s[33] model
that follows the correct trend analysis. Alakbari et al.[33]

stated that their fuzzy logic-based model follows the cor-
rect trend analysis and has an AAPRE of 8.6% and an
R of 0.9947. The figure shows that the SVM model reveals
the lowest AAPRE of 6.087% and the highest R of 0.997.
Thus, the SVM model outperforms all existing models to
predict the CTD. On the other hand, the RSM correlation
has an AAPRE of 12.703% and an R of 0.991, making it
come after the SVM and Alakbari et al.’s[33] fuzzy logic-
based model; however, the RSM can be applied directly
by using the equation, and there is no need to use any
software to obtain the CTD. Therefore, the RSM correla-
tion outperforms existing correlations where Khamehchi

et al.’s[6] (GA-MLR) correlation resulted in an AAPRE of
22.644% and an R of 0.983. The other correlation by Kha-
mehchi et al.[6] (MLR) showed the highest AAPRE of
30.485%.

The prediction performance of the RSM correlation
and SVM model was compared’against the previous cor-
relations and model using the eight testing datasets for
all models. Table 10 demonstrates the critical statistical
parameters for evaluating the earlier correlations and
model, the RSM correlation, and the SVM model. The
RSM correlation, SVM model, and the existing correla-
tions and model are ranked based on the AAPRE and

FIGURE 6 Total vertical depth (TVD) trend analysis of the

response surface methodology (RSM) correlation, support vector

machine (SVM) model, and previously published correlations.

CTD, critical total drawdown; GA-MLR, genetic algorithm evolved

multiple linear regression; MLR, multiple linear regression

FIGURE 7 Transit time (TT) trend analysis of the response

surface methodology (RSM) correlation, support vector machine

(SVM) model, and previously published correlations. CTD, critical

total drawdown; GA-MLR, genetic algorithm evolved multiple

linear regression; MLR, multiple linear regression

FIGURE 8 Cohesive strength (COH) trend analysis of the

response surface methodology (RSM) correlation, support vector

machine (SVM) model, and previously published correlations.

CTD, critical total drawdown; GA-MLR, genetic algorithm evolved

multiple linear regression; MLR, multiple linear regression
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(R), as shown in Table 10. The SVM model has the lowest
APRE, RMSE, and SD compared to all models. The pro-
posed RSM correlation is the third ranked compared to
all models; however, the proposed RSM correlation out-
performed all existing correlations that use direct equa-
tions. This critical comparison of all correlations and
models, the RSM correlation, and the SVM model form a
considerable means of evaluating the previous and RSM
correlations and SVM model performance. These statisti-
cal error analyses indicate that the SVM model surpasses
all published models and correlations considered in this
study. In addition, the RSM correlation outperformed all
existing correlations to predict the CTD. Therefore, both
RSM and SVM methods can determine the CTD accu-
rately compared to the current models and correlations.

3.7 | Effect of input variables on CTD
output

The 3D surface response of the CTD model plots was uti-
lized to assess the interactive relationships between fea-
tures (TVD, TT, COH, and EOVS) and the output CTD,
as shown in Figure 11A–F. The effect of each variable
will be discussed in the following subsections.

3.7.1 | Effect of TVD and TT

Figure 11A displays the influence of TVD and TT on the
CTD while keeping other parameters (COH and EOVS)
constant. As the TVD increases, the CTD is increased

(Figure 11A); the TT slightly affects the CTD
(Figure 11A). This is because deeper rocks can be more
consolidated. On the other hand, shallow formations can
be weakly consolidated.[75] Therefore, increasing the
depth will increase the CTD. This study confirms that
sandstone cementation happens through a secondary
geological process in which deeper formations can be
tighter than shallow ones. Therefore, sand production is
increased in shallow formations.[76]

3.7.2 | Effect of TVD and COH

The combined influence of TVD and COH on the CTD is
shown in Figure 11B. Increasing the TVD and the COH
increases the CTD, Figure 11B. According to Figure 11B,
at low values of TVD, the higher the COH, the higher the
CTD. Also, at low COH, increasing the TVD increases
the CTD. Therefore, the TVD and the COH significantly
affect the CTD, as displayed in Figure 11B. The COH
increases the degree of cementation of the sand grains.[77]

As a result, increasing the TVD and COH increases the
sandstone cementation, and the rocks become more con-
solidated, so the CTD significantly increases and the sand
production decreases.

3.7.3 | Effect of TVD and EOVS

The graphical illustration of the 3D surface response plot
of the TVD and EOVS on the CTD is shown in
Figure 11C. Figure 11C shows that an increase in the
TVD and EOVS increases the CTD. Figure 11C indicates

FIGURE 9 Effective overburden vertical stress (EOVS) trend

analysis of the response surface methodology (RSM) correlation,

support vector machine (SVM) model, and previously published

correlations. CTD, critical total drawdown; GA-MLR, genetic

algorithm evolved multiple linear regression; MLR, multiple linear

regression

FIGURE 10 The correlation coefficient and average absolute

percent relative error (AAPRE) (%) comparison of the response

surface methodology (RSM) correlation and support vector

machine (SVM) model with the previous correlations and model.

GA-MLR, genetic algorithm evolved multiple linear regression;

MLR, multiple linear regression
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TABLE 10 Statistical error analysis of the proposed critical total drawdown (CTD) models and the previous models

Model
rank Model

APRE
(%)

AAPRE
(%)

Emax.

(%)
Emin.

(%)
RMSE
(MPa)

SD
(MPa) R

1 Proposed SVM 0.261 6.087 10.860 1.783 0.005 0.031 0.997

2 Alakbari et al.[33]

(Fuzzy logic)
4.903 8.647 24.515 2.945 0.014 0.082 0.9947

3 Proposed RSM �4.829 12.703 38.469 0.830 0.033 0.138 0.991

4 Khamehchi et al.[6]

(GA-MLR)
16.663 22.644 63.075 6.466 0.085 0.196 0.983

5 Khamehchi et al.[6]

(MLR)
23.257 30.485 109.962 5.015 0.194 0.340 0.980

Abbreviations: AAPRE, average absolute percent relative error; APRE, average percent relative error; GA-MLR, genetic algorithm evolved multiple linear

regression; MLR, multiple linear regression; RMSE, root mean square error; RSM, response surface methodology; SVM, support vector machine.

FIGURE 11 3D response surface

plot of critical total drawdown (CTD)

as a function of (A) total vertical

depth (TVD) versus transit time (TT),

(B) TVD versus cohesive strength

(COH), (C) TVD versus effective

overburden vertical stress (EOVS),

(D) TT versus COH, (E) TT versus

EOVS, and (F) COH versus (EOVS)
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that the CTD increases by increasing TVD and decreases
by increasing EOVS, as discussed early in the trend
analysis.

3.7.4 | Effect of TT and COH

The effect of changing COH by varying the TT on the
CTD and keeping other properties, TVD and EOVS, con-
stant has been investigated. As shown in Figure 11D, it
has been found that the CTD increases with increasing
the COH. The cohesive strength raises the degree of
cementation.[77] The increasing degree of cementation of
the sand grains reduces sand production. Thus, enhanc-
ing the rock’s cohesive strength improves the CTD. The
TT also slightly affects the CTD, as shown in Figure 11A.

3.7.5 | Effect of TT and EOVS

The 3D response surface in Figure 11E demonstrates the
combined effects of TT and EOVS on the CTD. For exam-
ple, from Figure 11E, increasing the EOVS decreases the
CTD at low TT, while at high TT, the EOVS increases
with the CTD, as shown in Figure 11E. The effect of
EOVS and TT on the CTD was explained in the trend
analysis. At a high TT, the TT has more effect on the
CTD than the EOVS to increase the CTD.

3.7.6 | Effect of COH and EOVS

Figure 11F illustrates the 3D response surface plot of the
CTD dependency on COH and EOVS. Other parameters
(i.e., TVD and TT) were kept constant in this case.
Figure 11F shows the increase of COH with CTD. There-
fore, the rock strength increases by increasing the
COH,[79] and sand production decreases with the rise in
COH. The increasing EOVS decreases the CTD, as it was
clarified in the trend analysis study.

4 | CONCLUSIONS

The CTD is an essential indicator of the onset of sand
production. Some correlations and models are used to
determine the CTD in the literature. Nonetheless, the
previous methods have limitations, such as a lack of
accuracy and the use of specific software. Moreover, the
published correlations did not include trend analysis to
prove the correct relationships between the input param-
eters, that is, total vertical depth (TVD), transit time (TT),
cohesive strength (COH), and effective overburden

vertical stress (EOVS) and output parameter, that is,
CTD, to show the proper physical behaviour. Therefore,
this study aims to build new, accurate, and robust models
using RSM and SVM. The proposed RSM and SVM
models were validated using different methods, that is,
ANOVA, F-statistics test, fit statistics, and diagnostics
plots to prove that the proposed models are more robust.
The proposed models were also validated by applying the
trend analysis to indicate the proper relationships
between all input parameters and output. In addition,
various statistical error analyses, such as AAPRE, maxi-
mum absolute percent relative error (Emax :), minimum
absolute percent relative error (Emin :), root mean square
error (RMSE), standard deviation (SD), and correlation
coefficient (R) have been performed to describe, validate,
and compare the RSM correlation and SVM model with
the existing models. The conclusions can be highlighted
as follows:

• The ANOVA, F-statistics test, fit statistics, and diag-
nostics plots showed that the RSM correlation is more
reliable with high accuracy compared with the pub-
lished correlations. The RSM correlation decreased the
AAPRE from 22.644% to 12.703% compared to all exist-
ing correlations.

• The trend analysis of the proposed RSM and SVM
models shows an accurate description of the CTD pro-
file as a function of all the considered parameters
(TVD, TT, COH, and EOVS). Thus, the predicted pro-
file follows the actual trend, as expected from the phys-
ical relationship.

• SVM has some merits: non-convergence to local min-
ima, accurate generalization, and predictive ability for
small and non-linear datasets. The SVM model has
higher accuracy in predicting CTD than previously
published models and the RSM correlation. Further-
more, SVM has good generalization capabilities, pre-
venting it from over-fitting.

• The following values confirm the accuracy of the SVM
model; the highest correlation coefficient of 0.997, the
lowest AAPRE of 6.087%, the lowest APRE of 0.261%,
the lowest RMSE of 0.005, the lowest SD of 0.031, the
lowest Emin : of 1.783%, and the lowest Emax of
10.860%. These values are the best compared with the
RSM correlation and the published correlations and
model.

• The effects of the independent variables (TVD, TT,
COH, and EOVS) on the CTD are shown in 3D
response surface plots. The interaction between vari-
ables in the system was statistically significant. Accord-
ing to the 3D response surface plots, as the TVD
increases and the other variables are held constant, the
CTD increases. Thus, deeper sediments are more
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consolidated. On the other hand, shallow rocks are
weakly consolidated formations. The increase in COH
increases CTD as the COH increases, and the degree of
cementation grows. Thus, the increase in COH
decreases sand production. The decreasing TT indi-
cates that the rock is hard and more consolidated.
Therefore, sand production can be increased by reduc-
ing the CTD and increasing the TT. Increasing the
EOVS will decrease the CTD. As a result, the sand pro-
duction increases by increasing the EOVS.

4.1 | Limitations and recommendations

The proposed RSM and SVM models were built based on
four input parameters, that is, TVD, TT, COH, and
EOVS, to determine the CTD and at their given data
ranges. Therefore, the proposed models will show high
accuracy in their inputs’ ranges. Nevertheless, the pro-
posed models were proven to be more robust and accu-
rate than all literature models. Considering other
parameters that have effects on the CTD and increasing
the datasets from different places are recommended to
enhance the CTD model. In addition, other machine
learning methods can be applied to determine the CTD.

NOMENCLATURE
Latin synonyms
R correlation coefficient
Emax : maximum absolute percent relative error
Emin : minimum absolute percent relative error
Y response
3D three-dimensional
k number of the features (k = 5 in this work)
xi, xj variables (i and j from 1 to k)
bo model intercept coefficient
bj, bjj,
and bij

interaction coefficients of the linear,
quadratic, and second-order terms,
respectively

e error
w and b adjustable model parameters
c constant
df degree of freedom
P probability
F Fisher statistical value
d1 df for a model from the ANOVA table
d2 df for residual from the ANOVA table

Greek synonyms
μsec microsecond
α confidence levels

Abbreviations
AAPRE average absolute percent relative error
ANNs artificial neural networks
ANOVA analysis of variance
APRE average percent relative error
CCD central composite design
COH cohesive strength
CTD critical total drawdown
DOE design of experiments
EOVS overburden vertical stress
FEM finite element method
GA-
MLR

genetic algorithm evolved multiple linear
regression

ML machine learning
MLR multiple linear regression
MPa megapascal (pressure unit)
RBF radial basis function
RMSE root mean square error
RSM response surface methodology
SD standard deviation
SMO sequential minimal optimization
SRM structural risk minimization
SVM support vector machine
TT transit time
TVD total vertical depth
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