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Abstract: This review summarizes the main achievements in basic and clinical research of atheroscle-
rosis. Focusing on desialylation as the first and the most important reaction of proatherogenic
pathological cascade, we speak of how desialylation increases the atherogenic properties of low
density lipoproteins and decreases the anti-atherogenic properties of high density lipoproteins. The
separate sections of this paper are devoted to immunogenicity of lipoproteins, the enzymes contribut-
ing to their desialylation and animal models of atherosclerosis. In addition, we evaluate the available
experimental and diagnostic protocols that can be used to develop new therapeutic approaches
for atherosclerosis.

Keywords: atherogenesis; desialylation; LDL; HDL; apolipoproteins; sialidase; trans-sialidase;
anti-LDL antibodies; animal models of atherosclerosis; diagnostics of atherosclerosis; treatment
options for atherosclerosis

1. Atherogenicity

Atherogenicity is the ability of atherogenic lipoproteins (LP) circulating in the blood
to promote the formation of atherosclerotic plaques [1]. The appearance of foam cells in the
arterial wall is probably the earliest known event in the pathogenesis of atherosclerosis and
the modified atherogenic low-density lipoprotein (LDL) is the main source of accumulating
lipids in these foam cells.

In healthy individuals, the interaction of LDL with the artery cells is mediated by
the specific receptor LDLR. It does not lead to an excessive deposition of intracellular
lipids. The native LDL is not atherogenic since it does not induce the formation of foam
cells. Some lipid components of LDL are utilized by the cells, and the excess of the lipids
is removed.

In patients, changes in the composition of LDL due to its preliminary chemical modifi-
cation facilitate the self-association of LDL causing its enlargement in size. The enlarged
LDL stimulates phagocytosis that, in turn, activates the secretion of proinflammatory fac-
tors. These proinflammatory factors promote a development of the inflammatory response
and stimulate the accumulation of lipids in the artery wall.
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2. Desialylation of Lipoproteins as a Risk Factor in Atherosclerosis

Although high levels of cholesterol associated with LDL (so-called “bad cholesterol”)
is one of well-known risk factors for heart disease, about 50% of initial cardiovascular
events occur in people with normal LDL levels [2]. For this reason, it is a common belief
that atherosclerosis is caused by alterations in composition of LDL rather than by elevation
of plasma LDL. In 1989, we were the first who reported that the plasma of individuals
with cardiovascular disorders had a higher atherogenicity compared to the healthy control
group [3]. We also found that the treatment of LDL with sialidase significantly increased
the deposition of cholesterol to cultured human aortic intimal cells [3] and promoted the
transformation of artery cells, primarily, pericytes, endothelial cells and macrophages into
foam cells [4,5]. Moreover, we showed that the level of sialic acid in LDL particles of the
individuals with coronary artery disease (CAD) was several-fold less compared to the
healthy control group. Based on these findings, we hypothesized that desialylation of LDL
makes them atherogenic.

3. Chemical Modification of Lipoproteins and Its Impact

Sialic acids (Sia/N-acetylneuraminic acid/Neu5Ac) are a group of negatively charged
amino sugars. In the extracellular matrix, the plasma and the glycocalyx, they are covalently
bonded to lipids and glycoproteins. The terminal residues of Sia act as ligands to the cellular
receptors [6]. They also regulate the retention of apolipoproteins in the circulation [7].
Cleaving the terminal Sia changes the charge of the glycan and causes conformational
changes. In turn, these conformational changes are capable of preventing the interaction of
the glycan with a cellular receptor. They can also modulate the other biological effects of
the desialylated molecule such as cell-cell adhesion, inflammation, binding of calcium ions,
prevention of proteolytic degradation of glycoproteins etc. For these reasons, desialylation
plays an important role in the pathogenesis of many disorders, including atherosclerosis.

The major protein constituents of LDL, namely apolipoprotein B-100 and GM2 gan-
gliosides are sialylated [8,9]. For instance, there is about a dozen of Sia in the core protein
of LDL, APOB100 that is covalently bonded to the termini of its N-linked glycans [8].
Their removal changes the chemical and biological properties of APOB100. Particularly, the
APOB100-containing lipoproteins (LP), primarily very low density lipoproteins (VLDL) and
intermediate density lipoproteins (IDL) become more susceptible to self-association [10,11].
Desialylation of APOB100 also stimulates the accumulation of cholesterol by smooth
muscle cells of human aortic intima and increases the uptake of cholesterol by human
macrophages in vitro and in vivo [11]. Desialylated (atherogenic) LDL is smaller and its
density is higher compared to LDL obtained from healthy individuals. Desialylated LDL
contains less neutral carbohydrates and major lipids. It also contains less vitamins and
antioxidants. In addition, it is more susceptible to copper-dependent oxidation [12] and
self-association [13].

The other modifications that LDL may undergo in vivo include glycol-oxidation [14],
glucosylation [15], oxidation [16] and deglycosylation [11] also make it atherogenic. More-
over, glucosylation of desialylated LDL increases its atherogenic potential [13]. For the
individuals with diabetes mellitus, the latter suggests glycosylation as an additional risk
factor for atherosclerosis [13]. In turn, the decisive role of desialylation in gaining athero-
genicity by LDL is proven by the fact that either degalactosylation of already desialylated
LDL, i.e., the cleavage of galactose (Gal) that was covalently bonded to the terminal Sia
or their complete deglycosylation, i.e., getting rid of carbohydrates, does not increase
atherogenicity of LDL [17]. In addition, free sialic acid protects the artery walls from the
development of neointima competing with LDL for the binding to fibrinogen [18].

4. Immunogenicity of Desialylated Lipoproteins

Although the specific anti-LDL antibodies are present in the plasma of healthy indi-
viduals [19], their level significantly increases in the plasma of CAD patients [20]. These
antibodies have different specificities and recognize different epitopes. For instance, a
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chemical modification of purified LDL with malondialdehyde (MDH-LDL) demonstrated
that the antibodies were potentially capable of reacting with short fragments of oxidized
polyunsaturated fatty acids covalently bonded to apolipoprotein B [21].

The experiments performed in our lab discovered that anti-LDL antibodies had a
much higher affinity to desialylated LDL, compared to LDL modified in any other way,
including oxidized LDL [20]. Moreover, the anti-LDL antibodies recognized neither HDL
nor LDL obtained from healthy individuals. Binding of anti-LDL antibodies to atherogenic
LDL transformed the LDL into the low-density lipoprotein—circulating immune complex
(LDL-CIC) and increased immunogenicity and atherogenic potential of LDL. Particularly,
LDL-CIC promoted the accumulation of cholesterol and deposition of collagens and gly-
cosaminoglycans in cultured vascular endothelial cells [22,23] as well as increased their
proliferation rate [20].

Later, the deposits of LDL-CIC were also discovered in vascular atherosclerotic le-
sions [24–26]. In the artery wall, the presence of LDL-CIC stimulated the deposition of the
extracellular matrix (ECM) and stimulated the influx of cholesterol to the macrophages.
In addition, accumulation of LDL-CIC promoted the conversion of macrophages into
foam cells [27,28]. It is believed that anti-LDL antibodies are produced in vivo in response
to desialylation of LDL because desialylated LDL exhibits higher immunogenicity and
atherogenicity compared to native LDL [29,30]. In turn, even increased atherogenicity
and immunogenicity of LDL-CIC, compared to desialylated LDL suggests an existence
of a positive feedback between the production of anti-LDL antibodies and the increase
of LDL-CIC in the plasma. In other words, more LDL-CIC is present in the circulation
than more anti-LDL antibodies are produced. However, the picture would be incomplete
if we did not mention low affinity of anti-LDL antibodies to native LDL [31] that does
not exhibit yet atherogenic potential. Binding to the epitopes in native (non-atherogenic
and non-immunogenic) LDL would convert native LDL particles to LDL-CIC with high
immunogenicity and atherogenicity accelerating the immune response and making them
involved in the pathogenesis of atherosclerosis.

Importantly, these theoretical assumptions were confirmed experimentally [28]. First,
the authors of the cited paper demonstrated that LDL-CIC were capable of inducing
of atherosclerotic activities causing an increase in the intracellular contents of free and
esterified cholesterol in normal intimal smooth muscle cells cultured from undamaged
areas of human aorta. Second, they found that the selective elimination of LDL-CIC from
the circulation dramatically reduced atherogenicity of the remaining LDL. Third, they
showed that CIC-LDL differed in many aspects from native LDL. The level of Sia in these
particles was low. It was comparable to one in desialylated LDL. The removed CIC-LDL
contained fewer neutral lipids and phospholipids. They were of a smaller size and higher
on their density. They are also more electronegative and, respectively, they exhibited a
higher electrophoretic mobility [28].

The atherogenicity of CIC-LDL can be also modulated by changing the glycosylation
pattern of the anti-LDL antibodies. This suggests another layer of complexity in the
regulation of their atherogenic potential. The process of protein glycosylation occurs in
the endoplasmic reticulum, where a glycan containing N-acetylglucosamine, mannose,
and glucose is transferred to the newly synthesized protein [32]. After trimming, the
glycosylated protein is transported to the Golgi apparatus. In the Golgi apparatus, the
glycans are getting modified by glycosyltransferases that attach to them the residues of
fucose (Fuc), Gal and Sia. In turn, the composition and type of glycosylation influence
protein functions. Particularly, they affect the protein conformation and its ability to bind
to the other proteins. Specifically, the composition of the glycans, the order of carbohydrate
residues and the numbers of glycans attached to the protein will determine its efficiency
and stability.

Desialylation/sialylation of the Fc domain is a common mechanism that modulates
the proinflammatory properties of the antibody. Although desialylation decreases the
affinity of the Fc domain to the specific receptors [33], blocking the sialylation of antibodies
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using the genetic technologies enhances the inflammatory response. At the same time, the
sialylated IgG produces the opposite effect in vivo [34]. In humans, sialylation of N-glycans
reduces the risk of cardiovascular disorders [35] and the appearance of atherosclerotic
lesions in the carotid artery. Moreover, the sialylated antibodies are less immunogenic [36].

The presence or absence of the other specific carbohydrates in the glycans, such as Fuc
is also important for the functionality of antibodies. Defucosylation significantly increases
the antibody-dependent cellular cytotoxicity (ADCC) and promotes phagocytosis [37].
Moreover, the defucosylation of antibodies improves their interaction with the low affinity
Fc specific receptor FCGR3A [38]. In contrast, the fucosylation of antibodies has a negative
effect on ADCC and reduces the affinity of the antibodies to the named receptor [39].

Although the glycosylation of antibodies is subjected to a strict control at different
levels (reviewed in [40]), the changes in their glycosylation patterns occur in chronic
conditions, during the development of the inflammatory response. In some autoimmune
disorders, the glycans contain less Gal residues, compared to the control [41]. In contrast, a
higher galactosylation of antibodies is associated with a reduction of their inflammatory
activity [42,43]. For instance, a reduced representation of Gal and Sia was discovered in the
antibodies of individuals with rheumatoid arthritis compared to healthy controls [44].

5. Enzymes Implicated in Desialylation

Previous studies performed by us [45] and others [46–48] led to the detection of
sialidase activity in the plasma. We were the first who purified the enzyme responsible
for desialylation of LP and described this protein as plasma “trans-sialidase”. We assessed
its molecular weight (96 kDa) and characterized the pH optimum. We also found that its
activity was enhanced in the presence of Ca2+ [49]. Moreover, the named enzyme exhibited
a much higher affinity to LDL, compared to HDL. In LP, the enzyme hydrolyzed α2,6
bond that connected the residues of Sia to the glycoside moiety. At the same time, the
proposed human plasma trans-sialidase also hydrolyzed α2,3 and α2,8 bonds, while to a
lesser extent. Analyzing the mechanism of the enzyme reaction, we found that the enzyme
transferred sialidase residues to the plasma proteins, primarily, fetuin and transferrin. We
also found them in gangliosides. In addition, we showed that the interaction of LDL with
“trans-sialidase” in vitro induced the accumulation of esterified cholesterol in human aortic
intimal smooth muscle cells [45].

Although, the exact identity of the protein responsible for desialylation of LDL still
has yet to be revealed, several groups of enzymes that are capable of cleaving or trans-
ferring sialidase, namely sialidases (neuraminidases) and trans-sialidases can contribute
to this process. Sialidases, which are exoglycosidases, cleave the α-glycosidic linkages of
Sia/Neu5Ac (Figure 1). Trans-sialidases, which are mainly present in protozoans, transfer
Sia from one sialogalactoside to another via a reverse sialylation of CMP [50]. In addition,
viral and bacterial sialidases can be also involved. Alternatively, it can also be either
protein(s) with miscellaneous sialidase activity (e.g., KLOTHO [51]) or catalytically active
antibodies (abzymes).

From a side, it seems that human sialidases are not involved in desialylation of
LP. NEU1, which is also known as lysosomal sialidase, degrades glycoproteins in the
lysosomes. To remain catalytically active, NEU1 interacts with cathepsin A, CATHA that
protects NEU1 from the degradation [52,53]. NEU2 is constitutively expressed at a low
level in the cytoplasm where it recognizes misfolded glycoproteins. NEU3 is located in the
cellular membrane [54]. However, it has narrow substrate specificity. NEU4 is found in
several intracellular organelles, such as mitochondria and lysosomes. Moreover, three of
four human sialidases, namely NEU1, -3 and -4 have acidic pH optimums (4.5–4.8).
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Figure 1. The mechanism of enzyme reaction catalyzed by sialidase. Sialidase hydrolyzes the terminal
Sia residue of glycolipids and glycoproteins. Sialosyl cation (in the square brackets), the transition
state complex of the reaction; Neu5Ac2en-2-deoxy-2, 3-didehydro-D-N-acetylneuraminic acid, the
unsaturated derivative of sialic acid.

On the other hand, NEU1, NEU2 and NEU4 can be recruited to the cellular membrane
of various blood cells [53]. For instance, NEU1, CATHA and elastin binding protein (EBP)
constitute an elastin receptor complex on the cellular membrane [55] of circulating mono-
cytes and tissue macrophages and can access LP. Moreover, NEU1 and NEU3 are found in
exosomes [56]. In this regard, they can contribute to the development of atherosclerosis by
removing Sia residues from glycoproteins and glycolipids [57].

6. Contribution of Viral Sialidases

Sialidase plays an important role in the life-cycle of some viruses [58], such as influenza
virus (Figure 2). To clarify whether viral sialidase represents an additional risk factor for
cardiovascular diseases, such as atherosclerosis, we evaluated changes in sialidase activity
during and after the flu season. We found that in 40–45% volunteers experienced flu
symptoms, the activity of viral sialidase increased by factor 2–3. Moreover, their total
sialidase activity correlated with viral mRNA encoding sialidase suggesting that, in the
human blood, viral sialidase is an additional atherogenic factor [59]. In addition, influenza
virus aggravates the apoptosis induced by oxidized LDL in human endothelial cells [60]
increasing the probability of blood clog [61].

These results are consistent with other findings. The incidence of admissions due
to acute myocardial infarction is 6 times higher among the patients that contracted the
flu virus [62] and vaccination against it substantially decreases the risk [63–67]. The flu
virus is considered as a risk factor for other cardiovascular events, namely myocarditis,
ventricular arrhythmia, and heart failure [68]. Moreover, similar results were obtained for
the other viruses [69] and bacteria [70–73] that express either sialidase or trans-sialidase.
Respectively, the chronic infectious diseases that may increase the risk of stroke include
periodontitis, chronic bronchitis and infection with Helicobacter pylori [74].
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Figure 2. The life cycle of influenza virus. Approaching the cell surface the virus (a) cleaves Sia
residues (b) by viral sialidase from the decoy receptors (1) allowing the viral hemagglutinin to
interact with the entry receptors and enter the host cell by endocytosis (2). After releasing from the
endosome viral RNAs translocate to the nucleus (3) to replicate the genome and synthesize mRNAs
(d). Then, viral mRNAs translate to viral proteins in the cytoplasm and viral mRNAs and proteins
(e) assemble virions (4) that quit the cell by budding. The released virions infect the other host cells
(5). (c) - transmembrane domain of the decoy receptor.

7. Abzymes Exhibiting Sialidase Activity

The catalytic antibodies, also known as “abzymes”, were discovered by Tramontano
A. et al. in 1986 [75]. Abzymes were found in various autoimmune disorders, such as
systemic lupus erythematosus [76], multiple sclerosis [77] and asthma [78]. The catalytic
IgG antibodies capable of hydrolysing the terminal Sia of glycoproteins were firstly isolated
by Bilyy R. et al. from the blood of the individuals with multiple myeloma [79] and systemic
lupus erythematosus [80]. The catalytic mechanism of the abzyme is similar to that of
human sialidases since the reaction was inhibited by pan-sialidase inhibitor 2,3-dehydro-2-
deoxy-N-acetylneuraminic acid (DANA) and the pH optimum of the abzyme (4.5–6.0) was
close to the pH-optimums of human sialidases. In vitro, these antibodies were capable of
desialylating glycolipids and glycoproteins located on the surface of human red blood cells
and in vivo, they also activated phagocytosis [80].

8. Multiple Modification of LDL in the Blood

Chemical modification of LDL is a cascade of well-arranged changes that includes
desialylation, partial loss of the lipids, reduction of the particle size, acquiring a negative
charge and oxidation, and peroxidation of the oxidized lipids. Although desialylation of
LDL is the initial step of their modification, loss of Sia makes LDL atherogenic. The fol-
lowing steps also increase its atherogenicity [22]. The other non-enzymatic and enzymatic
modifications can contribute to the modification of LDL and promote the accumulation of
lipids by artery cells. Moreover, the modification of LDL does not stop after attachment of
the particle to the arterial walls [81].

The existence of multiple steps explains the heterogeneity of modified LDL in the blood
of the individuals with atherosclerosis and/or diabetes. Following the described order, the
modification of LDL particles facilitates their self-association. Concurrently, cholesterol
and cholesterol esters conjugate with apolipoproteins. Since their accumulation increases,
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it causes conformational changes in apolipoproteins increasing the immunogenicity of LP
and making them a target for autoantibodies [22].

9. Changes in Glycosylation of HDL

Making desired changes in the composition of LP, such as reduction of LDL and
increase of HDL, is often considered as a beneficial therapeutic approach for cardiovascular
diseases. HDL plays a crucial role in the reverse transport of cholesterol and cholesterol
esters transferring them from the peripheral tissues to the liver. HDL also reduces the
deposition of cholesterol in the arterial wall preventing the transformation of artery cells
into foam cells [82]. Moreover, HDL possesses anti-inflammatory [83,84], antioxidant [85],
antimicrobial [86] and vasodilating [87] activities.

The plasma HDL is heterogeneous. There are several subclasses of HDL with different
biological activities. Moreover, they undergo significant remodeling in vivo. As with
other LP, the HDL particles have different size, charge and density. Their composition is
also different (reviewed in [88]). According to the references, a small, dense HDL that is
enriched in proteins, known also as HDL3c, protects LDL from oxidation. Transferring
the oxidized lipids from LDL to HDL is the first step of HDL-mediated protection from
oxidative damage. Inactivation of oxidized lipids by HDL represents the second step in this
protective pathway [89,90]. The levels of aldehydes and oxidized short-chain phospholipids
in HDL decreases due to subsequent inactivation by reduction to inactive hydroxides [90].
In addition, HDL3 acquires oxidized lipids from the cellular membrane [90].

Increasing atherogenicity of LDL, desialylation is also making HDL less
anti-atherogenic [17]. Primarily, desialylation of native HDL diminished its capacity to
efflux cellular cholesterol from artery cells [17]. For instance, the macrophages possess
two mechanisms to efflux cholesterol. First, the transfer of cholesterol from the cell can be
mediated by the scavenger receptor SR-BI due to the gradient of concentration. Second,
cholesterol can be transferred from the cell by the transporter ABCA1 in the ATP-dependent
manner [91,92]. Since desialylation of HDL impairs both mechanisms [17], the transfer of
cholesterol through the receptors relies on sialylation of HDL [93].

Moreover, desialylation of apolipoprotein E (ApoE), a protein component of HDL,
inhibits its incorporation into HDL impairing the reverse cholesterol transport [94]. It
also alters the interaction of apolipoprotein A1 (ApoAI) with cellular proteins, including
ABCA1 and inhibits the association of HDL with lipases [94]. In addition, desialylation
of HDL inhibits heavily N-glycosylated lecithin–cholesterol acyltransferase (LCAT) that
mediates esterification of cholesterol [17,95].

9.1. Coronary Artery Disease

HDL particles obtained from the individuals with cardiovascular disorders are com-
positionally different from healthy control. They contain less apolipoproteins, including
ApoAI, ApoAII, and ApoE. They are also enriched in C3, a protein essential for the activa-
tion of complement pathways (classical, alternative and lectin pathways) [96]. Moreover,
the patients’ HDL contains oxidized ApoAI and higher levels of ApoCIII.

The changes observed in the patients’ HDL alter their functionality [97]. For instance,
HDL proteome profile is enriched by proinflammatory proteins [96], such as the acute
phase response protein SAA2 that inhibits the efflux of cholesterol to HDL and decreases
the ability of HDL to remove cholesterol from the artery cells [98]. Moreover, low levels of
ApoAI and its oxidation are considered as risk factors for the patients, since they diminish
cardioprotective, and antiatherogenic effects of HDL [99].

9.2. Type II Diabetes

The composition and biological functions of HDL are under a tight genetic con-
trol [100–104]. The biological effects of small, dense HDL are changed markedly in the
individuals with insulin resistance and chronic inflammation [105–107]. Patients with type
II diabetes typically have dyslipidemia characterized by high triglycerols and low HDLC
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levels [106]. Their altered glycemic status preferentially affects small, dense HDL3c parti-
cles. These particles display distinct compositional alterations due to an increased activity
of cholesteryl ester transfer protein (CETP) [85]. In the patients with poor glycemic control,
these changes coincide with reduced ability of HDL3c to prevent oxidation of LDL [106].
Moreover, the replacement of ceramides by triglycerides in their lipid core results in a
reduced penetration of ApoAI into the lipid phase [108], impairing the functionality of
HDL [106,109,110]. In addition, the enrichment of HDL3 in triglycerides is accompanied
by the loss of ApoAI by these particles [85].

9.3. Familial Apolipoprotein A-I (ApoAI) Deficiency

Familial apolipoprotein AI deficiency (FAID) is characterized by low levels of both
ApoAI and HDL cholesterol and is associated with accelerated atherosclerosis. ApoAI is the
major protein of HDL, comprising ~35% of total HDL mass and ~70% of HDL protein [111].
Respectively, ApoAI deficiency in the patients’ blood impairs HDL structure, composition,
metabolism and function.

The previous studies discovered that HDL of the patients with nonsense mutation
in APOA1, (Q(-2X) contained less ApoAI, phospholipids and cholesteryl esters and more
ApoAII, free cholesterol and triglycerides compared to healthy controls. The altered lipid
and apolipoprotein composition correlated with a deficiency of intrinsic atheroprotec-
tive properties, such as reduced antiatherogenic activity as HDL as well as small, dense
HDL3 [112,113].

In continuation of these studies, we found that the most prominent alterations were
observed in phospholipids and sphingolipids species possessing multiple unsaturations in
their fatty acid residues [97]. We confirmed that the alterations in HDL content reduced
anti-atherosclerotic activities of HDL. In this regard, the abundances of the species that
were decreased in ApoAI–deficient HDL discovered positive correlations with the HDL
functional metrics, whereas negative correlations were observed for the species whose
HDL content was increased. For instance, the increased amounts of proinflammatory
lipids, such as lysophosphatidylcholine and phosphatidic acid, made ApoAI–deficient
HDL more susceptible to oxidation. In contrast, the altered biological functions of HDL
in ApoAI–deficient individuals did not include the ability to suppress apoptosis because
ApoAI–deficient HDLs contained the normal level of S1P per a protein unit.

To summarize the importance of desialylation for functioning of the arteries, we would
like to raise a few important questions that urgently require to be answered. First, we
would know whether the modification of LP is reversible. The ability to delay it or turn it
over would revolutionize the treatment of cardiovascular diseases substantially prolonging
human lives. Second, the factors causing desialylation should be uncovered, their role has
to be revealed and their potential harm needs to be assessed. The knowledge of reasons that
cause atherogenicity would allow us to intervene and offer reasonable treatment options to
control the disease. Third, we would address the problem of immunogenicity and it would
help us to manipulate the production and properties of the specific antibodies in vivo.
Answering these questions requires experimental models of higher complexity, such as
genetically modified lab animals.

10. Animal Models of Desialylation

The previously developed Apoe(-/-) and Ldlr(-/-) mice with genetic deficiency of Neu1,
-3 and -4 or those treated with specific inhibitors of sialidases often serve us as common
models of atherosclerosis [57,114]. Apoe(-/-) mice have significantly higher levels of total
cholesterol and LDL cholesterol in blood when fed with a high cholesterol diet [114].
Ldlr(-/-) mice do not develop spontaneous lesions when fed with a normal rodent diet.
However, they develop atherosclerotic plaques similar to those in Apoe(-/-) mice, when
their food is supplemented with moderate amounts of cholesterol [114,115].

The recent study discovered a new Neu1-dependent pathway that contributes to
atherosclerosis [57]. It was shown that an injection of Apoe(-/-) mice with desialylated
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LDL labeled with a fluorescent dye led to an accumulation of LDL in the artery roots and
the uptake of LDL by the artery cells was mediated by the lectin receptor Asgr1. The
importance of the identified pathway in atherosclerosis was confirmed by other findings
including the experiments performed in our lab (e.g., [116]).

To prove the role of Neu1 in atherosclerosis, the progression of atherosclerosis was
compared in two species of knockout mice, namely Neu3(-/-) Apoe(-/-) and Neu4(-/-) Apoe(-/-)

and CathAS190A-Neo Apoe(-/-) mice, which were deficient in Neu1 by 90%. It was found that
either 90% reduction in Neu1 activity or complete inactivation of Neu3 in Apoe(-/-) animals
slowed down the progression of atherosclerosis. In contrast, the progression of atheroscle-
rosis in Neu4(-/-) Apoe(-/-) mice was not significantly different, compared to Apoe(-/-) animals
with normal Neu4 activity [57]. Moreover, the arteries of CathAS190A-Neo Apoe(-/-) mice
were less susceptible to infiltration by macrophages compared to their Neu3(-/-) Apoe(-/-)

and Neu4(-/-) Apoe(-/-) counterparts suggesting that two different mechanisms should be
responsible for the initiation of the inflammatory response and triggering atherosclero-
sis [57,117]. Particularly, both Neu1 and Neu3 were capable of desialylating LDL whereas
Neu1 was also involved in activation of the inflammatory response.

Although the analysis of mouse plasma did not reveal significant differences in the lev-
els of total cholesterol, LDL cholesterol, HDL-cholesterol or triglycerides between Apoe(-/-),
and CathAS190A-Neo Apoe(-/-) mice, a higher sialylation of ApoB was discovered in the
plasma of CathAS190A-Neo Apoe(-/-) mice [57]. This finding indicated that Neu1-deficiency
rather than changes in the levels of plasma cholesterol was responsible for a delayed
development of atherosclerosis in CathAS190A-Neo Apoe(-/-) animals. This conclusion was
confirmed by the analysis of constitutive Neu1 knockout mice, namely Neu1ENSMUSE141558

and Neu1∆Ex3.
The comparative analysis of the plasma samples obtained from Neu1 knockout mice,

CathAS190A-Neo and wild type animals demonstrated a 3-fold increase of LDL in the plasma
of Neu1 knockout mice, compared to the other phenotypes. On the other hand, the
reduction of the residual Neu1 activity in the CathAS190A-Neo Apoe(-/-) mice to 10–20%
significantly delayed the atherogenesis without interfering with the LDL level. These
results confirmed that Neu1 drives the uptake of LDL and helped to assess the threshold
for the inhibition of Neu1 in circulation [57].

However, White with coauthors [118] using hypomorphic NEU1 expression in Apoe(-/-)

mice showed the reduced serum levels of VLDL and LDL cholesterol in these mice. The
difference with the study performed by Demina with coauthors [57] was in using 7 months-
old mice males [118] instead of less than 4 months-old females [57], analysis of serum [118]
instead of plasma [57], and different constructs for hypomorphic NEU1 expression.

To prove the role of sialidase as a proatherogenic factor in vivo, we analyzed the
sialylation of LDL after an injection of healthy mice with immobilized sialidase. We found
that even a single dose of the preparation reduced the level of Sia in LDL by 50% (Figure 3).
The sialylation reached the minimum within an hour suggesting that sialidase activity in
the murine plasma was very low and a higher dose of the preparation could be used to treat
the animals. We also discovered that the observed effect persisted for five days. In turn, this
finding indicated that the replacement/sialylation of LDL was a much slower compared to
desialylation. Respectively, we assumed that the capability of blood cells and exosomes to
compensate desialylation was insignificant and a pharmacological intervention could be
needed to compensate for an increased sialidase activity in vivo.
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Figure 3. Desialylation of plasma proteins by immobilized sialidase in vivo. Green bars—control
animals treated with saline (N = 10); Red bars—animals treated with immobilized sialidase (N = 10).
The data are represented as mean ± SE.

In turn, the selective inhibition of Neu1 and Neu3 Ldlr(-/-) mice fed with a high fat
diet and Apoe(-/-) mice showed that daily treatment of mice for several weeks decreased
Neu1 activity by 70–80% and reduced the size of atherosclerotic lesions by 25–30% [57]. In
contrast, the inhibitors did not affect the levels of total cholesterol, LDL cholesterol, HDL-
cholesterol or triglycerides in plasma. In addition to that, Bocquet with coauthors [119]
discovered that the administration of the sialidase inhibitor oseltamivir phosphate by
Ldlr(-/-) mice fed with high fat diet significantly decreased plasma levels of LDL-cholesterol
in these mice. Demina with coauthors [57] did not study effects of oseltamivir phosphate
in Ldlr(-/-) mice and they used another sialidase inhibitors. The existing differences in the
literature point in the direction that more research should be done in this field in order to
clarify effects of hypomorphic NEU1 expression and sialidase inhibitors on LDL cholesterol
levels in mice.

Summarizing the obtained results we would like to highlight the atherogenic and
proinflammatory potential of the murine Neu1. The 90% Neu1-deficiency in CathAS190A-Neo

Apoe(-/-) mice delayed the growth of atherosclerotic plaques and the infiltration of the
arterial intima by immune cells. We would also mention a preventive effect on atheroma
formation of selective Neu1 inhibitors. In the future studies, we aim to prove that Neu1
activity in plasma negatively correlates with atherogenicity. This can be achieved by the
maintenance of the enzymatic activity at a certain level using different doses of the specific
inhibitors. Alternatively, one of the sialidases can be immobilized on an inert carrier and
periodically injected to the bloodstream.

11. Clinical Impact of Desialylation

One of the most widely used treatment options for atherosclerosis is lowering LDL
levels with statins, which are inhibitors of hydroxymethyl glutaryl coenzyme A reductase.
However, statins only benefit only 35% of patients with CAD. Moreover, >20% of patients
experience a recurrent event within 2–3 years of an acute coronary syndrome, despite
receiving high-doses of statins [120]. Together, the evidence presented and discussed above
underline the necessity of finding new therapeutic targets for atherosclerosis.



Biomedicines 2021, 9, 600 11 of 17

Chemical modifications of LP can be used to diagnose cardiovascular disorders, eval-
uate the available treatment options and treat the diseases. To date, several methods were
developed to screen panels of experimental drugs for the compounds with antiatherogenic
activity [121–123]. Some other techniques allow to assess trans-sialidase and sialidase
activities in the plasma [124], to quantify modified LDL [125–127], LDL-CIC [128–130] and
anti-LDL antibodies [23,131].

The data obtained by us and the others suggest that new therapeutic approaches may
involve a transfusion of lipoprotein particles containing anti-atherogenic plasma lipids,
apolipoproteins and plasma enzymes. To date there are several examples of successful
antiatherogenic therapy with LCAT [132,133] and HDL enriched by native ApoAI [134].
Moreover, lipoprotein particles designated for transfusion can be enriched by vitamins, an-
tioxidants and antiatherogenic lipids, such as the isomer of phosphatidylcholine 34:2, palmi-
toyllinoleoyl phosphatidylcholine [97]. Moreover, non-lipid atherogenicity factors, such as
anti-LDL antibodies can be removed from the patients’ blood using LDL-apheresis [135]
and immobilized LDL [135,136]. Alternatively, it may be one of the specific sialidase in-
hibitors that increases sialylation of LP, reduces the lipid uptake by the artery cells and
increases the cholesterol efflux to HDL [137].

12. Conclusions

In conclusion, we would like to mention that atherogenicity of plasma LP is prob-
ably one of the major vulnerabilities in the human body. In individuals predisposed to
atherosclerosis, the LP, primarily LDL and HDL are subjected to multiple chemical mod-
ifications and physical transformations that favor their accumulation by foam cells and
interfere with the normal flow of their catabolism. A failure to translate the pharmaceuti-
cal manipulations with LDL and HDLC levels in plasma into a cardiovascular benefit to
the patient requires us to zoom in and take into account the new compelling evidences
for the critical role of the enzymes metabolizing lipid and non-lipid constituents of LP
in atherogenesis.

In this review, we provide multiple evidences that desialylation of LDL causes the
uncontrolled accumulation of lipids by the artery cells. In turn, desialylation of HDL
impairs its capability to extract lipids from the peripheral tissues and deliver them to the
liver. As we also show, either genetic inactivation of sialidases or their pharmacological
inhibition significantly delays the progression of the disease. For these reasons, the future
pharmacological research should be extended to regulation of the enzymes involved in the
metabolism of glycolipids and glycoproteins rather than remaining focused on stabilization
of plasma LDL and HDLC levels.
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