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A B S T R A C T

While utilizing Twitter data for crisis management is of interest to different response authorities,
a critical challenge that hinders the utilization of such data is the scarcity of automated tools
that extract geolocation information. The limited focus on Location Mention Recognition (LMR)
in tweets, specifically, is attributed to the lack of a standard dataset that enables research
in LMR. To bridge this gap, we present IDRISI-RE, a large-scale human-labeled LMR dataset
comprising around 20.5k tweets. The annotated location mentions within the tweets are also
assigned location types (e.g., country, city, street, etc.). IDRISI-RE contains tweets from 19
disaster events of diverse types (e.g., flood and earthquake) covering a wide geographical area
of 22 English-speaking countries. Additionally, IDRISI-RE contains about 56.6k automatically-
labeled tweets that we offer as a silver dataset. To highlight the superiority of IDRISI-RE
over past efforts, we present rigorous analyses on reliability, consistency, coverage, diversity,
and generalizability. Furthermore, we benchmark IDRISI-RE using a representative set of LMR
models to provide the community with baselines for future work. Our extensive empirical
analysis shows the promising generalizability of IDRISI-RE compared to existing datasets. We
show that models trained on IDRISI-RE better tackle domain shifts and are less susceptible to
change in geographical areas.

. Introduction

During emergencies and natural disasters, social media platforms, such as Twitter, receive information pertinent to situational
wareness, urgent needs, and reports of damages to infrastructure (Lorini et al., 2021). Information shared by locals or eyewitnesses
ften contains the locations of damaged sites or areas with particular urgent needs such as food and medicine. As response authorities
eed to predict incidents over fine spatial and temporal resolutions for successful response, Twitter data is invaluable for observing
ituational reports and managing response activities when combined with geolocation information (Grace, Kropczynski, & Tapia,
018; Hu & Wang, 2020; Kropczynski et al., 2018; Pettet et al., 2022; Reuter, Ludwig, Kaufhold, & Spielhofer, 2016), either at
ine-grained (e.g., street, city, or neighborhood) or coarse-grained (e.g., province, district, or country) levels.

There are impressive real use cases of employing the extracted geolocation information from Twitter by relief organizations.1
or instance, the Ushahidi platform2 was exploited to map geotagged tweets during the Port-au-Prince earthquake in Haiti in 2010
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for better management. It was also used to map damages and requests during Typhoon Haiyan in 2013. More interestingly, Fairfax
County in Virginia, US, explored the usefulness of employing the Geofeedia platform to monitor and aggregate data from various
social media platforms including Twitter. According to a survey of emergency officials, geotagging and grouping social media content
on a map is perceived as one of the top required features in an information processing system during emergencies (Hiltz et al.,
2020). However, as users tend to set imprecise geotags to their tweets, Twitter announced that they are removing the geotagging
feature in tweets, in June 2019.3 This change had increased the importance of developing automatic tools for extracting geolocation
information.

Nevertheless, there is no public unified evaluation framework with all essential components, including annotated datasets, diverse
open-source (or public) baselines, and fair evaluation metrics. In fact, the absence of large and generalizable LMR datasets makes the
comparison difficult between the existing LMR models. Additionally, the existing English LMR tweet datasets are either nonpublic
non-disaster-specific (Al Emadi, Abbar, Borge-Holthoefer, Guzman, & Sebastiani, 2017; Das & Purves, 2020; Inkpen, Liu, Farzindar,
Kazemi, & Ghazi, 2015; Ji, Sun, Cong, & Han, 2016; Kumar & Singh, 2019; Li & Sun, 2014, 2017; Sultanik & Fink, 2012; Zhang
& Gelernter, 2014), or disaster-specific but suffer from several limitations (Al-Olimat, Thirunarayan, Shalin, & Sheth, 2018; Dutt,
Hiware, Ghosh, & Bhaskaran, 2018; Fernández-Martínez, 2022; Gelernter & Balaji, 2013; Hu & Wang, 2020; Hu, Zhou, Li, et al., 2022;
Khanal, Traskowsky, & Caragea, 2022; Middleton, Middleton, & Modafferi, 2014; Molla & Karimi, 2014; Wallgrün, Karimzadeh,
MacEachren, & Pezanowski, 2018) such as the limited size, the confined domain and geographical coverage, the absence of location
type annotations, among others.

In this work, we focus on the Location Mention Recognition (LMR) task that aims at extracting location mentions (LMs) from the
textual content of tweets. To address the aforementioned drawbacks, we introduce IDRISI-RE,4 the largest manually-labeled (gold
version) and automatically-labeled (silver version) tweet dataset for LMR comprising 19 disaster events, whose tweets are labeled
to identify both toponyms and their geographical types. It covers disaster incidents that occurred in 22 English-speaking countries.

To demonstrate the domain and geographical generalizability of IDRISI-RE, we empirically answer the following research
questions. In comparison to existing datasets, can an LMR model that is trained on IDRISI-RE generalize to:

• Unseen events of the same disaster type? (RQ1)
• Unseen events of different disaster types? (RQ2)
• Unseen events that happen in the same geographical areas? (RQ3)
• Unseen events that happen in different geographical areas? (RQ4)

Our rigorous empirical analysis demonstrates that IDRISI-RE is the best domain and geographically generalizable LMR Twitter
dataset for the disaster management domain, compared to all public datasets of its kind. We also found that both the geographical
coverage and the data size are the top influencers on the generalizability of the LMR datasets. Additionally, IDRISI-RE shows a
descent reliability level, and reasonable geographical, domain, temporal, and location granularity coverage. Furthermore, a thorough
experimental evaluation of a representative set of LMR models show that BERT𝐿𝑀𝑅 model is the state-of-the-art LMR model over
IDRISI-RE dataset.

The contributions of this work are as follows:

• We present IDRISI-RE, the largest manually-labeled publicly-available English LMR dataset of about 20.5k tweets (gold version)
for the LMR task.5 It covers diverse disaster types and geographic areas around the globe. We also release the largest
automatically-labeled LMR dataset (silver version) constituting 57k tweets.

• We annotate the extracted location mentions in IDRISI-RE into coarse- and fine-grained location types to enable building more
accurate LM recognition and disambiguation models, and to allow finer evaluation and comparison between LMR models.

• We benchmark the IDRISI-RE using diverse and representative LMR models to establish a set of baselines for the interested
community.

• We empirically demonstrate that IDRISI-RE is the best domain- and geographically- generalizable dataset for LMR compared to
the existing datasets.

The remainder of the paper is organized as follows. We discuss the related work in Section 2. We define the LMR task in Section 3.
We then list the design objectives of IDRISI-RE dataset in Section 4. We discuss the dataset creation and annotation processes in
Section 5. We then analyze IDRISI-RE for reliability, consistency, coverage, and diversity, and discuss its limitations in Section 6. We
benchmark IDRISI-RE with diverse and representative LMR models and discuss the results in Section 7. We further empirically study
its domain and geographical generalizability and answer the related research questions in Section 8. To show the value of IDRISI-RE
for the research community, we discuss several use cases in Section 9. We finally conclude and list a few future directions in
Section 10.

3 https://twitter.com/TwitterSupport/status/1141039841993355264
4 Named after Muhammad Al-Idrisi, who is one of the pioneers and founders of advanced geography: https://en.wikipedia.org/wiki/Muhammad_al-Idrisi. The

‘R’’ refers to the recognition task and the ‘‘E’’ refers to the English language.
5 https://github.com/rsuwaileh/IDRISI/
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Table 1
Comparison between IDRISI-RE and the existing NER and LMR datasets. ‘‘*’’ indicates the disaster-related datasets, entirely or partially. ‘‘−’’ indicates the
information that we could not obtain.

Dataset # Twt # LM (unique) Annotation LM Type Public

Twitter NER datasets
Ritter, Clark, Etzioni, et al. (2011) 2,400 276 (193) In-house × ✓

Liu, Zhang, Wei, and Zhou (2011) 12,245 – In-house × ×
Li et al. (2012) 7,750 – In-house × ×
Gelernter and Zhang (2013) ∗ 4,488 2,866 (−) Translation × ×
WNUT2017 (Derczynski, Nichols, van Erp, & Limsopatham, 2017) ∗ 2,296 773 (559) In-house × ✓

BTC (Derczynski, Bontcheva, & Roberts, 2016) ∗ 9,551 3,114 (1,295) In- & Crowd × ✓

General Twitter LMR datasets
Sultanik and Fink (2012) 500 99 (−) In-house – ×
Zhang and Gelernter (2014) 956 1,393 (779) In-house – ×
Inkpen et al. (2015) 6,000 4,369 (−) In-house – ×
Ji et al. (2016) 3,611 1,542 (−) In-house – ×
Li and Sun (2014, 2017) 3,570 2,056 (906) Automatic – ×
Kumar and Singh (2019) 5,107 3,230 (−) In-house – ×

Disaster-specific Twitter LMR datasets
GEL (Gelernter & Balaji, 2013) ∗ 3,987 – In-house ✓ ×
MID (Middleton et al., 2014) ∗ 3,996 2,030 (451) In-house × ✓

ALTA (Molla & Karimi, 2014) ∗ 3,003 4,854 (1,704) Crowd × ✓

OLM (Al-Olimat et al., 2018) ∗ 4,500 5,323 (1,619) In-house × ✓

DUT (Dutt et al., 2018) ∗ 1,000 ∼100 (−) In-house × ×
GeoCorpora (Wallgrün et al., 2018) ∗ 6,648 3,100 (1,119) Crowd × ✓

HU1 (Hu & Wang, 2020) ∗ 1,000 2,139 (989) In-house ✓ ✓

HU3 (Hu, Zhou, Li, et al., 2022) ∗ 3,000 3,530 (1,351) In-house × ✓

FGLOCTweet (Fernández-Martínez, 2022) ∗ 9,435 5,958 (3,457) Automatic × ✓

KHAN (Khanal et al., 2022) ∗ 9,339 9,655 (1,639) Crowd ✓ ✓

IDRISI-RE
Gold ∗ 20,514 21,879 (3,830) Crowd ✓ ✓

Silver ∗ 56,682 67,576 (2,675) Automatic ✓ ✓

2. Related work

In this section, we review the Twitter Named Entity Recognition (NER) datasets that were employed in LMR studies, the
eneral Twitter LMR datasets, and the disaster-specific Twitter LMR datasets. We discuss their characteristics and limitations while
omparing them to IDRISI-RE. Table 1 summarizes the existing NER and LMR datasets.

.1. Twitter NER datasets

As LMR is a subtask of NER by definition, different studies explored the effectiveness of the off-the-shelf NER tools for LMR task
r retrained their LMR models using NER datasets (Hoang & Mothe, 2018; Lingad, Karimi, & Yin, 2013; Suwaileh, Elsayed, Imran, &
ajjad, 2022; Wang, Hu, & Joseph, 2020). The data availability is a key obstacle for this line of research. To elaborate, only half of
he Twitter NER datasets presented in Table 1 are public (Derczynski et al., 2016, 2017; Ritter, Clark, Mausam, & Etzioni, 2011). The
ain drawback of Ritter (Ritter, Clark, Etzioni, et al., 2011) and WNUT2017 (Derczynski et al., 2017) datasets is the small number

f Location entities. The Broad Twitter Corpus (BTC) (Derczynski et al., 2016) is the largest public Twitter NER dataset employed
or the LMR task. It offers around 2,852 Location entities only. Nevertheless, the disaster-specific datasets are empirically preferable
ver the general-purpose datasets, e.g., BTC (Derczynski et al., 2016), for training LMR models in the disaster domain Suwaileh,
mran, Elsayed, and Sajjad (2020). We note here that there is a burgeoning literature on NER models and datasets (Hu, Zhou, Li,
t al., 2022; Nasar, Jaffry, & Malik, 2021; Yadav & Bethard, 2018), but we solely list the datasets that were exploited in the LMR
esearch. For an exhaustive list of Twitter NER models and datasets, Hu, Zhou, Li, et al. (2022) evaluated the effectiveness and
fficiency of 27 approaches over 26 public datasets (many of them are adopted from NER studies) from different data domains
e.g., social media posts and newswire).

.2. General Twitter LMR datasets

The LMR problem is of interest to many domains such as emergency management (refer to Section 2.3), traffic monitoring (Alkouz
Al Aghbari, 2020; Paule, Sun, & Moshfeghi, 2019; Shang, Zhang, Youn, & Wang, 2022), POIs recommendation (Zhang et al., 2017;

hao, Zhao, King, & Lyu, 2017), geographical text analysis and retrieval (Hong, Ahmed, Gurumurthy, Smola, & Tsioutsiouliklis,
012; Purves, Clough, Jones, Hall, & Murdock, 2018), to name a few. There are a few existing general English LMR tweet datasets
refer to the second group of datasets in Table 1). These datasets are not event-centric, however, they are useful to evaluate the
eneralizability of the LMR models to different domains other than the disaster domain. Although the size of these datasets is fair
3

nd the annotation is done by in-house annotators, none of them is public due to the issue of third-party copyrights.
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2.3. Disaster-specific Twitter LMR datasets

Despite the abundance of disaster datasets that are made available by academic researchers (Imran, Elbassuoni, Castillo, Diaz,
Meier, 2013; Imran, Mitra, & Castillo, 2016; Olteanu, Vieweg, & Castillo, 2015), a few of them are labeled for the LMR task. In

his section, we review both disaster-specific Twitter Recognition and Disambiguation (refer to definitions in Section 3) datasets as
he latter could be used to develop and evaluate LMR models.

Generally, the existing LMR disaster-specific datasets (refer to the third group in Table 1) are limited in size with the largest being
GLOCTweet dataset which constitutes only 9435 automatically-labeled tweets and 3457 unique LMs (Fernández-Martínez, 2022).

All other manually-labeled LMR datasets contain around half of the unique LMs in the FGLOCTweet dataset. For example, KHAN
being the largest human-annotated dataset contains only 1639 unique LMs. Our IDRISI-RE dataset offers 3830 manually-labeled and
automatically-labeled LMs. Additionally, the existing LMR datasets suffer from the confined domain and geographical coverage. For
instance, in all public natural disaster event-centric English LMR datasets, five flood events happened in Australia, India, the UK, and
the US (ALTA, KHAN, and OLM), 3 hurricane events happened in the US (ALTA and KHAN), and two earthquake events happened
in New Zealand (MID) and Nepal (KHAN).

Another group of LMR datasets are the keyword-based datasets. For example, the GeoCorpora dataset was collected using general
disaster keywords such as ‘‘earthquake’’, ‘‘flood’’, ‘‘fires’’, among others. The geographical coverage of LMs is dominated by the
United States (42%), and United Kingdom (12%). The remaining LMs cover other different countries. Albeit reasonable diversity, the
small number of data per disaster type forms the main barrier to exploiting these datasets. FGLOCTweet dataset was also collected by
tracking general disaster keywords such as ‘‘earthquake’’, ‘‘car accident’’, ‘‘bombing attack’’, etc. Unfortunately, we could not obtain
its geographical distribution for comparison. The major weakness of the keyword-based datasets is the information loss associated
with limiting the sample to tweets containing specific keywords that may not appear in many informative tweets.

Moreover, a few datasets contain location type annotations of LMs (Gelernter & Balaji, 2013; Hu & Wang, 2020; Khanal et al.,
2022; Middleton et al., 2014). GEL (Gelernter & Balaji, 2013) contains 4,000 tweets collected during the 2011 Christchurch Earth-
quake in New Zealand. The LMs are annotated into four categories including street, building, toponym, and abbreviation. However,
the GEL dataset is not available to the research community. MID dataset (Middleton et al., 2014) contains three types of locations
including ‘‘admin’’, ‘‘building’’, and ‘‘transport’’. However, it suffers from annotation issues such as incompleteness (Middleton,
Kordopatis-Zilos, Papadopoulos, & Kompatsiaris, 2018). KHAN dataset (Khanal et al., 2022) offers categories of locations that
requires further annotations for lower-level location types. For example, all fine-grained locations (e.g., buildings, landmarks) are
labeled into one category called ‘‘lan’’. We note that the major issue in KHAN dataset is the noisiness associated with its broad
definition of LMs. For example, ambiguous locations are labeled such as ‘‘cities’’, ‘‘college’’, ‘‘earth’’, ‘‘elsewhere’’, ‘‘at home’’,
‘‘inside’’, to list a few. HU1 dataset (Hu & Wang, 2020) is also labeled for location types but it contains solely 1000 tweets
sampled from Hurricane Harvey 2017 event, thus it is limited in size, disaster domain, and geographical coverage. To overcome
this shortcoming in existing datasets, we collect location type annotations for all LMs in IDRISI-RE.

Furthermore, during disasters, new LMs within the affected areas emerge in the Twitter stream which demands a long temporal
coverage of data during the entire disaster period. The OLM dataset is the only one that we could analyze its temporal coverage
because other datasets do not contain the IDs (MID), or the event notion is ignored (keyword-based datasets) when they are collected
or released. Using the tweets that we managed to crawl at the time of this writing, we found that the OLM dataset misses critical
periods of the disaster events, especially during the Chennai Floods, 2015. To elaborate, the flood happened between 8 Nov–14 Dec
2015,6 but the covered period in the dataset is between 2–4 Dec 2015. While constructing IDRISI-RE, we ensure that the sampled
tweets cover the critical periods of disaster events.

While an LMR dataset could cover all relevant topics discussed during the respective disaster, it has to mainly contain informative
tweets that are useful for the response authorities. Unfortunately, solely the ALTA dataset is labeled for relevance and the nonpublic
GEL dataset is labeled for informativeness. When constructing IDRISI-RE, we aim to select events that are already filtered for
relevance and contain informative tweets.

A key issue of the existing LMR datasets is the inconsistency of the ‘‘location mention’’ definition between and within datasets.
Indeed, the guidelines used to train annotators are rarely discussed (Wallgrün et al., 2018; Zhang & Gelernter, 2014). We release
our annotation task instructions that articulate our ‘‘location mention’’ definition and further elaborate on this issue in Section 6.1.
Furthermore, the tweets’ metadata is required for incorporating multimodal features for LMR systems such as utilizing different
types of social networks or simulating real-time processing, among others. Nevertheless, the public datasets lack some metadata. For
instance, the MID dataset does not provide tweet identifiers for all events, the ALTA dataset releases only the tweet identifiers, and
OLM and GeoCorpora datasets release some of the tweet attributes such as identifiers and text but not timestamps, user identifiers,
etc. The FGLOCTweet dataset contains only the BIO-scheme textual annotations. While the full JSON data of the original collection
is available on request, one has to replicate the preprocessing (e.g., removing duplicates and near duplicates) to get the final version.

6 https://en.wikipedia.org/wiki/2015_South_India_floods
4

https://en.wikipedia.org/wiki/2015_South_India_floods


Information Processing and Management 60 (2023) 103340R. Suwaileh et al.

H
i

t
w
T

t
a

5

t
i
h
m
f

a

3. Task overview

During disaster events, response authorities rely on situational information to operate (e.g., make decisions or take actions).
owever, with the abundance of information captured on Twitter, the response authorities need automatic tools to extract

nformative and reliable tweets that locate incidents and requests. In this work, we consider the Location Mention Recognition (LMR)
task that aims to automatically extract toponyms (places or location names) from text.

To distinguish the LMR from other tasks, we emphasize that the LMR task aims at removing geo/non-geo ambiguity of tokens in
ext. It is also known as location extraction or geoparsing in the literature. Differently, the Location Mention Disambiguation (LMD),
hich is a consecutive task for LMR, aims at removing geo/geo ambiguity between candidate LMs extracted by LMR systems.
he LMD task is also known as location resolution, location linking (looking up a geo-positioning database), or geocoding (assigning

geo-coordinates to LMs) in the literature.
There are two task setups for LMR. The first recognizes toponyms without their types, denoted as ‘‘type-less recognition’’, and

the second distinguishes between types of LMs (e.g., country, city, and street), denoted as ‘‘type-based recognition’’. The latter better
serves the development and evaluation of geolocation processing systems in light of the responders’ needs. It enables a variety of
downstream tasks (e.g., crisis maps) at different location granularity, in addition to being crucial for accurately disambiguating the
toponyms.

4. Design objectives

Creating LMR datasets for practical, event-centric, and fine-grained evaluation requires identifying a set of characteristics
that guide the dataset construction efforts. Grounded on our review of past efforts (refer to Section 2), we introduce the set of
characteristics that we anticipate can form an optimal LMR dataset in the following:

O1. Geographical coverage: The naming conventions of places vary from one country to another which decisively affects the
performance of LMR models. The wider the geographical coverage of an LMR dataset, the more naming conventions it
captures. While constructing IDRISI-RE, we aim to capture various naming conventions by annotating disaster events that
cover a large range of English-speaking countries.

O2. Domain coverage: At the onset of disaster events, acquiring training data is impractical and expensive. Alternatively, an
acceptable performing LMR model could be trained using previous disasters of the same type (i.e., in-domain data) (Suwaileh
et al., 2022). As such an approach is infeasible due to the limited domain coverage of existing datasets, we aim to cover a
variety of disaster types with larger number of tweets when constructing IDRISI-RE.

O3. Location type annotations: The location types (e.g., cities, streets, POIs, etc.) allow customizing the downstream applications
to meet the responders’ needs, such as generating crisis maps at different granularities. Additionally, the evaluation per
location type shows the weaknesses and strengths of LMR models based on the responders’ preferences. When constructing
IDRISI-RE, we aim to annotate the LMs into location types to overcome the deficiency of existing LMR datasets.

O4. Large-scale: Learning models, in particular deep neural networks, are data hungry. Models trained on a large number of
training examples tend to yield higher performance and generalize to unseen data. However, most of the existing LMR datasets
are limited in size (refer to Table 1). We aim to overcome this shortcoming while creating IDRISI-RE by annotating larger
number of LMs compared to the existing datasets.

O5. Temporal coverage: As new LMs emerge in Twitter stream during disaster events, longer temporal coverage of the disaster
events is demanded to provide geographical-aware situational reports to responders throughout the disaster event. While
existing datasets do not show reasonable temporal coverage of disaster events, we aim to overcome this issue while creating
IDRISI-RE.

O6. Relevance and informativeness: An LMR dataset has to contain informative and actionable tweets to support effective
disaster management. Unlike existing datasets, in constructingIDRISI-RE, we extend a dataset that is already labeled for
informativeness. This simulates the expected input to the LMR models in real-world information processing systems for
disaster management.

We emphasize here that all of these objectives together constitute a generalizable LMR dataset and should be collectively achieved
o eliminate any barrier against establishing an effective and fair evaluation framework for LMR. We elaborate on how IDRISI-RE
chieves these objectives throughout the paper.

. Dataset annotation

Two main factors guided the choice of our underlying dataset. First, while responders look for informative posts on Twitter, the
weets become more invaluable in the presence of geographical context (Hiltz et al., 2020). Second, the likelihood of LMs occurrence
ncreases during events (Kitamoto & Sagara, 2012). Consequently, we selected an event-centric dataset that is already labeled for
umanitarian categories to simulate the deployment phase of LMR models in real-world information processing systems for disaster
anagement. We analyzed multiple existing disaster-related tweet datasets and selected HumAID (Alam, Qazi, Imran, & Ofli, 2021)

or its geographical wide coverage and disaster domain diversity.
We carried out two annotation versions, namely the gold annotations using crowdsourced human-labeling, and the silver
5

nnotations using a learned model. Before creating our pool of tweets for the gold annotations, we dropped the less informative
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Table 2
Tweet and Location Mention statistics of IDRISI-RE dataset.
Version Tweets Tweets

|𝐿𝑀|=0 LMs (uniq)

IDRISI-RE_𝑔𝑜𝑙𝑑 20,514 5,723 21,879 (3,830)
IDRISI-RE_𝑠𝑖𝑙𝑣𝑒𝑟 56,682 25,034 43,404 (2,675)

classes (to relief authorities) of HumAID including sympathy and support, not humanitarian, do not know or cannot judge, and other
relevant information. The gold annotations contain only tweets that belong to one of the following humanitarian categories: caution
and advice, displaced people and evacuations, infrastructure and utility damage, injured or dead people, missing or found people,
requests or urgent needs, and rescue volunteering or donation effort.

Using our overall cost budget of $4300, we estimated a maximum of 21k tweets to label for the gold version of the dataset. Using
this upper bound estimate, we equally sampled a representative number of tweets from each of the 19 disaster events. This led us
to randomly sample a maximum of 1300 tweets per event. As some events contain fewer tweets that fall within the humanitarian
categories of interest (inherited from HumAID dataset) than our sample size per event, we included all their tweets in the sample.
We used stratified sampling to inherit the distribution of the humanitarian classes from the HumAID dataset. We show the number
of tweets of the gold and the silver versions in the ‘‘Tweets’’ column in Table 2.

5.1. Gold annotations

To collect the gold LMR annotations, we used the Appen crowdsourcing platform7 due to its cost efficiency in labeling large
datasets. In the annotation task, the textual content of tweets is automatically tokenized by the platform using the SpaCy NLP tool.8
The workers were asked to (1) highlight the location spans in text (one token or more) that we refer to as location mentions (LMs),
and (2) assign the most accurate location types from a predefined list of fine- and coarse-grained location types for the potential
LMs. The location types include ‘‘Continent’’, ‘‘County’’, ‘‘State’’, ‘‘City/town’’, ‘‘District’’, ‘‘Island’’, ‘‘Neighborhood’’, ‘‘Road/street’’,
‘‘Human-made POI’’ (features that are built by humans such as schools and hospitals), ‘‘Natural POI’’ (features that are part of the
land such as rivers and seas), and ‘‘Other locations’’ (when LMs do not fall in any of the previous types). We provided detailed
annotation guidelines for annotators with examples to clearly articulate our definition of location mentions.9

Following Appen’s recommendation, we randomly picked around 88 tweets for quality control. For workers to be eligible to
begin and continue working on the annotation task, their annotation accuracy (i.e., trust score) should not fall below 70% while
performing the task. To increase the reliability of the final annotations, we configured the task to collect three annotations per
tweet; however, if the agreement level is below a minimum confidence of 80%,10 we allowed dynamically-collecting up to five
more workers to annotate the tweet, achieving a maximum of eight annotations per tweet. We ran our crowdsourcing task for
around three weeks and collected annotations for 20,527 tweets from all the disaster events.

To decide the final set of gold LMs, we selected the text spans that received at least two votes from annotators, regardless of the
agreement on their location types. Moreover, as the nature of the annotation task allows overlapping annotated spans, we favored
the overlapped span with the maximum number of votes by annotators. In case of ties, we selected the longest span. To ensure the
quality of labels, we deleted all annotated spans of length equals to or longer than 70% of the length of the original tweet text as
we considered them spam or human errors. As a result, we dropped around 13 annotations from all events.

As for the location types, while we cannot prevent the human errors in the crowdsourced annotations, we rely on two factors
to increase the reliability of the location type annotations: (i) the local annotators’ agreement on the types assigned to a potential
LM, and (ii) the global distribution of the types assigned by all annotators to the occurrences of the potential LM within the event’s
tweets. We achieved the former factor via majority voting. We employed the latter in case of ties. Moreover, we plan to extend the
IDRISI-RE dataset for the LMD task in which annotators correct the location types of LMs (whenever needed) while disambiguating
them.

Table 2 shows the final number of tweets (column ‘‘Tweets’’), the number of tweets with no LMs (column ‘‘Tweets
|𝐿𝑀|=0’’), and

the total number of annotated LMs with the unique LMs in parentheses (column ‘‘LMs (uniq)’’).

5.2. Silver annotations

Thus far, we discussed the process of acquiring gold annotations using human workers. To increase the size of the dataset
beyond our limited budget, we automatically amplify the size of IDRISI-RE by using an automatic-labeler, that is the best performing
LMR model on the gold annotations (refer to Section 7). More specifically, we trained a BERT-based model using the entire gold
annotations of IDRISI-RE (all events combined). We then ran the resulted model on the tweets that were not sampled for the gold
annotations from all the 19 disaster events, including the tweets that belong to the low informative classes. Out of this process, we

7 http://success.appen.com
8 https://spacy.io/
9 https://github.com/rsuwaileh/IDRISI/tree/main/annotation_guidelines

10 The confidence level is computed by adding up the confidence scores of the contributed workers.
6
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Fig. 1. 𝑘 − 𝛼 for IDRISI-RE per disaster event.

constructed the largest automatically-labeled LMR dataset comprising 56,682 tweets. We denote this version as silver to imply its
level of reliability, and report its statistics in Table 2. We anticipate it to be useful for training better performing LMR models and
supporting research on advanced learning techniques (e.g., transfer learning and domain adaptation).

6. Dataset description and quality

In this section, we present a thorough evaluation of IDRISI-RE in terms of reliability, consistency, coverage, and diversity in
Sections 6.1 and 6.2, respectively. We further discuss its limitations in Section 6.3.

6.1. Reliability and consistency

To evaluate the quality of IDRISI-RE, we computed the Inter-Annotator Agreement (IAA) that quantifies the reliability of
annotations. We further compared the LM definition against the existing LMR datasets.

Annotation Quality : We computed Krippendorff’s alpha (𝑘−𝛼) (Krippendorff, 1970) to measure the reliability of annotations. Unlike
Fleiss Kappa, 𝑘 − 𝛼 does not require a fixed number of votes per example. We have two types of annotations: location mentions
(LOC) and location types (TYPE). Due to the class imbalance in token-level classes (having dominant non-LOC tokens compared to
the LOC tokens), computing the 𝑘 − 𝛼 for the LOC annotation is unreasonable, as we will get an almost full agreement (a score of
1), since annotators highly agree on non-LOC tokens. Thus, we only report 𝑘− 𝛼 for TYPE annotation (which implicitly encodes the
LOC annotation). Fig. 1 shows the 𝑘−𝛼 per disaster event in IDRISI-RE. We only consider the LMs that received two votes or more.
As a result, annotators achieve approximately 71.5% IAA across all disaster events, showing an acceptable reliability. Overall, the
IAA shows that the annotations are highly reliable for three events, acceptable for twelve events, and of low quality for four events.

LM Definition across Datasets: Table 3 compares the definition of LMs in the public disaster-specific LMR datasets. Columns
‘‘Hashtags’’, ‘‘Mentions’’, ‘‘URLs’’, and ‘‘Location Expressions (LEs)’’ refer to whether these tokens and expressions are considered
LMs or not in the corresponding datasets. Table 4 presents example tweets from IDRISI-RE to articulate our LM definition and
distinguish it from other datasets. In the existing LMR datasets, an LM can be a substring of a hashtag (tokens start with ‘‘#’’),
however, in IDRISI-RE we only consider a hashtag as a potential LM if it is entirely an LM (e.g., Tweet #1 in Table 4). The locations
within user mentions (tokens start with ‘‘@’’) are considered LMs in the ALTA and KHAN datasets, while they are ignored in all
other datasets. Although user mentions could indicate the location of incidents that the tweet discusses, we do not consider them
as LMs in IDRISI-RE, because they typically refer to organizations or people entities, not locations. We follow the same intuition
for URLs. Furthermore, in ALTA, OLM, KHAN, and FGLOCTweet datasets, the LEs and addresses are annotated as a whole, but in
IDRISI-RE we differentiate between LMs and LEs; an LE has to be broken down into its locational units. This is mainly because our
focus in the LMR task is to detect geographical units. Detecting the LEs as a whole requires an additional text processing layer. For
example, in Tweet #3, the annotators have to label ‘‘Mohra-Saang’’ and ‘‘Jatlan’’ separately as two LMs, not the entire expression
‘‘Mohra-Saang, a village 1 km away from Jatlan’’. We follow the same intuition for the full addresses and routes. For instance, in
Tweet #4, the consecutive LMs have to be labeled independently.11

11 The annotation guidelines used to construct IDRISI-RE are available in the GitHub repository.
7
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Table 3
Comparison between IDRISI-RE and the existing LMR dataset in the annotation guidelines for the special cases
of Location Mentions.

Dataset Hashtags Mentions URLs LEs

MID (Middleton et al., 2014) ✓ ✓ × ×
ALTA (Molla & Karimi, 2014) ✓ ✓ ✓ ✓

OLM (Al-Olimat et al., 2018) ✓ × × ✓

GeoCorpora (Wallgrün et al., 2018) ✓ × × ×
HU1 (Hu & Wang, 2020) ✓ × × ×
HU3 (Hu, Zhou, Li, et al., 2022) ✓ × × ×
KHAN (Khanal et al., 2022) ✓ ✓ × ✓

FGLOCTweet (Fernández-Martínez, 2022) ✓ ✓ × ✓

IDRISI-RE ✓ × × ×

Table 4
Example tweets from IDRISI-RE dataset. The single-underlined and double-underlined LMs represent the undesired and desired
LMs, respectively, in our annotation guidelines.
# Tweet text

1 To all my followers please RT: Where to #Donate to #Mexico #Earthquake Victims -
@nytimes #PrayForMexico

2 Stay safe @california Camp Fire burns over 6700 structures and 9 dead become the most
destructive fire in #California history. A state of emergency was declared in @ButteCounty
in response to the growing . . .

3 Mohra-Saang, a village 1km away from Jatlan #Earthquake has been levelled. Not a single
house left in the village. 3 confirmed dead so far, More than hundred injured. Road that
leads to village is no more functional.

4 Flooding. roadway closed in #SilverSpring on Sligo Crk Pkwy Both NB/SB between
Piney Branch Rd and Maple Ave #DCtraffic

6.2. Coverage and diversity

In this section, we discuss how IDRISI-RE satisfies the properties presented in Section 4.

eographical Coverage: To ensure that IDRISI-RE can train generalizable models that are effective in future disaster events, it has to
over different naming conventions of locations that are used in different countries (refer to O1 in Section 4). The disaster events in

IDRISI-RE are indeed geographically-spread over several countries across continents, including Canada, Colombia, Cuba, Dominican
Republic, Ecuador, Greece, Haiti, India, Italy, Madagascar, Malawi, Mexico, Mozambique, New Zealand, Pakistan, Peru, Puerto Rico,
Sri Lanka, The Bahamas, Turks and Caicos Islands, The United States, and Zimbabwe.

Domain Coverage: To remedy the lack of diversity in disaster types (refer to O2 in Section 4), IDRISI-RE has to cover the
frequently-happening natural disaster events in the English-speaking countries during the past decade (between 2010–2019) that
are earthquakes, floods, hurricanes, cyclones, and wildfires (Alam, Joty, & Imran, 2018; Imran et al., 2013, 2016; Nguyen, Ofli,
Imran, & Mitra, 2017; Olteanu, Castillo, Diaz, & Vieweg, 2014; Olteanu et al., 2015). IDRISI-RE contains diverse events including
six hurricanes, five earthquakes, four floods, three wildfires, and one cyclone.

Location Types Coverage: To support advanced development and finer evaluation of LMR models, we labeled IDRISI-RE for fine-
nd coarse-grained location types (refer to O3 in Section 4). Fig. 2 shows the distribution of the location types per disaster event

in IDRISI-RE. HRC, EQK, FLD, CYC, and FIR refer to Hurricanes, Earthquakes, Floods, Cyclones, and Wildfires, respectively. The
coarse-grained LMs (e.g., Country, State, and City) dominate IDRISI-RE by approximately 89%. Upon further analysis, we found
the key factor that explains the dominance of coarse-grain LMs is the HumAID dataset creation method. HumAID was collected by
tracking relevant keywords to the disaster events which are usually the name of the coarse-grained impacted areas. Indeed, these
coarse-grained LMs are less challenging to detect by annotators. Consequently, we could not prevent annotators from detecting
them nor reduce their frequency in the dataset. Furthermore, annotators are more likely to disagree on fine-grained LMs, hence the
annotations of potential fine-grained locations are more probable to be discarded when we had initially selected the gold annotations
from the crowdsourced data. To mitigate this issue, we provided the location type annotations that allows researchers to evaluate
the LMR models at different location granularity. We also reported the number of unique LMs for all datasets in Table 1 showing
that IDRISI-RE contains the maximum number of unique LMs (3830 LMs). Figs. 7–10 show the distribution of the top 15 LMs per
disaster event in Appendix A.

Temporal Coverage: Ideally, the event-centric datasets should span over the entire period of disaster event to allow the response
authorities to efficiently operate during all phases of the disaster events (refer to O5 in Section 4). The events in IDRISI-RE were
8

crawled two days before and two days after their peak incidents (Alam et al., 2021).
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Fig. 2. Distribution of location types in IDRISI-RE. HRC, EQK, FLD, CYC, and FIR refer to Hurricanes, Earthquakes, Floods, Cyclones, and Wildfires, respectively.

.3. Limitations

Our thorough analysis show that there are shortcomings in the annotations of IDRISI-RE that we discuss here.

• Underrepresented Fine-grained LMs: The fine-grained LMs in IDRISI-RE form solely 9.77% of the LMs in the dataset. Although
the skewed distribution is common in the existing datasets, it shapes a limitation when developing LMR models used by
downstream applications that rely on fine-grained locations.

• Human Errors: There are some human errors in the crowdsourced annotations that occurred due to the difficulty of the task.

– In some cases, annotators fail to distinguish between Location and Organization entities. For example, the ‘‘Red Cross’’ is
commonly mentioned as an organization, not the location of its offices, but some of its occurrences are labeled as LMs
in IDRISI-RE.

– Although the annotation guidelines state clearly not to highlight the locations that are mentioned as descriptions within
the context of the tweet, this was a confusing case to the annotators.

We plan to overcome this issue as part of a future Location Mention Disambiguation (LMD) annotation that aims to removing
geo/geo ambiguity between candidate LMs.

• Temporary Locations: Temporary facilities (i.e., medical camps, shelters, etc.) are constructed during emergencies to provide
resources and support for the affected people. However, these facilities could be disassembled (e.q., quarantine centers) once
the emergency is over. Additionally, the names of some locations could change during emergencies, such as allocating a specific
school as a shelter and giving it a new expressive name (e.g., ‘‘main shelter’’). Once the disaster event is over, the school will
return to providing its original services. The difficulty of detecting and disambiguating these temporary locations is due to the
need for comprehending their context. Although these locations are important for the affected people and response authorities,
not all of them are labeled in IDRISI-RE.

7. Benchmarking experiments

To provide baselines for the LMR task, we benchmark IDRISI-RE dataset for different task, data, and disaster domain setups.
As for the task setup, we experiment with type-based and type-less recognition (refer to Section 3). We also use two data setups: (i)
random and (ii) time-based. In the random setup, we ignore tweets’ timestamps and randomly select train, development, and test
examples. Whereas, in the time-based setup, the data is chronologically ordered before splitting it into training, development, and
test sets. We further study the performance of the best model under (i) in-domain setup where training and test events are of the
same disaster type, and (ii) cross-domain setup where training and test events are of different disaster types.

7.1. Learning models
9

We select a representative set of LMR models for benchmarking IDRISI-RE as described below:
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• CRF (Lafferty, McCallum, & Pereira, 2001): The Conditional Random Fields (CRF) is a competitive probabilistic tagging
algorithm, which can be used as a standalone tagger (Li & Sun, 2014, 2017) or integrated into an LMR system (Das & Purves,
2020; Ji et al., 2016; Wang et al., 2020; Xu et al., 2019). We used the crfsuite library12 to train a CRF model using word-level
syntactic features, including the identity, suffix, shape, and POS tags. Additionally, we used words contextual tokens such as
adjacent words and their syntactical features.

• BERT𝐿𝑀𝑅 (Suwaileh et al., 2022): This represents a fine-tuned version of the pre-trained BERT model for the LMR task.
• GPNE (Hu et al., 2021): This is an unsupervised LMR model that specifically shows better detection performance for location

mentions within the disaster-hit areas.
• GPNE2 (Hu, Zhou, Sun, et al., 2022): An enhanced version for GazPNE that employs an LMD module to improve the LMR

accuracy. It exploits Stanza NER model to accelerate recognition and detect hard LMs. This system uses synthesized training
data extracted from gazetteers. Hence, we cannot retrain/finetune it using our data. We use its public CLSTM trained model.

• NTPR𝑂 (Wang et al., 2020): A neural-based toponym recognition tool trained on recurrent neural networks. We run the original
trained model that is made public by the authors.

• NTPR𝑅: A retrained NTPR𝑂 model from scratch on IDRISI-RE dataset per event. We do not tune the hyperparamters and adopt
the values used by the authors (Wang et al., 2020).

• NTPR𝐹 : A fine-tuned NTPR𝑂 on IDRISI-RE dataset per event. Similar to NTPR𝑅, we do not tune the hyperparamters.
• LORE (Martínez & Periñán-Pascual, 2020): an untrainable rule-based recognition model (Martínez & Periñán-Pascual, 2020).

We run the original application that is made public by the authors.
• nLORE (Fernández & Periñán-Pascual, 2021): A deep learning-based model that exploits LORE’s rule-based features for

recognition. We run the original trained application that is made public by the authors. We could not retrain this model
or fine-tune it since it is not open source.13

7.2. Hyperparameter tuning

During training, we tune the hyperparameters of the BERT𝐿𝑀𝑅 model, including the sequence length, the batch size, the number
f training epochs, and the learning rate as recommended by Devlin, Chang, Lee, and Toutanova (2019). We experiment with
ifferent batch sizes (i.e., 8, 16, 32), the number of epochs (i.e., 2, 3, 4), and learning rates (i.e., 5E−5, 3E−5, 2E−5).

For the CRF-based models, we experiment with five training algorithms, namely Gradient Descent using the L-BFGS method
(LBFGS), Stochastic Gradient Descent with L2 regularization term (L2EG), Averaged Perceptron (AP), Passive Aggressive (PA), and
Adaptive Regularization Of Weight Vector (AROW). For LBFGS, we tune the coefficients for L1 and L2 regularization parameters.
For the L2EG, we tune the coefficient for L2 regularization and the initial value of the learning rate used for calibration. For AP,

e tune the epsilon parameter that determines the condition of convergence. For PA, we tune the strategy for updating feature
eights and the sensitivity parameter that determines whether errors are considered in the objective function. For AROW, we tune

he initial variance of every feature weight and the tradeoff between loss function and changes of feature weights (gamma). We tune
he regularization parameters for values between 0.05 and 1 with a step value of 0.05. We tune the initial learning rate and epsilon
sing values {1 × 10𝑖|𝑖 ∈ [2, 6]}. The PA sensitivity parameter is boolean and the updating strategy includes three types: without
lack variables, type I, or type II. We tune the variance and gamma parameters of AROW algorithm for values {2−𝑖|𝑖 ∈ [0, 3]}.

.3. Evaluation measures

To evaluate the LMR models, we compute the harmonic mean (𝐹1 score) of Precision (P) and Recall (R). We evaluate LMR
odels on entity-level rather than token-level. Our evaluation differs from seqeval14 in three aspects: (1) it evaluates per tweet and

eport the average performance, (2) it rewards the models when they correctly predict no LMs for a single tweet, and (3) it accepts
ILOU-like format or JSON formats.

.4. Benchmarking results

ype-less LMR: In this setup, the LMR models are only required to recognize LMs, regardless of their types. Tables 5 and 6 present the
1 results of all LMR models over all events. We also report the detailed results, including precision and recall, with the best hyper-
arameters in Appendix B for the BERT𝐿𝑀𝑅 and CRF models. On average, the BERT𝐿𝑀𝑅 model exhibits a compelling performance
gainst all other type-less LMR models, for both random and time-based scenarios. On average, the NTPR𝐹 and NTPR𝑅 models, except
he NTPR𝑂 model, show the second-best performance followed by the CRF model for the random data setup. In some cases where the
TPR𝐹 and NTPR𝑅 models show the best performance, their absolute results are slightly better than the BERT model. In contrast, the
TPR𝑂 performance is better than the CRF model under the time-based data setup. The CRF model’s average score on the time-based

s around 17% lower than the random data setup. The LORE and nLORE models exhibit modest performance compared to the other

12 https://sklearn-crfsuite.readthedocs.io/
13 It will not be open source in the near future as per the authors.
14 https://pypi.org/project/seqeval/
10
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Table 5
The 𝐹1 results for the LMR models on IDRISI-RE for the type-less LMR task setup and the Random data setup.

Event CRF BERT𝐿𝑀𝑅 GPNE GPNE2 NTPR𝑂 NTPR𝑅 NTPR𝐹 LORE nLORE

Ecuador Earthquake 0.866 0.953 0.242 0.741 0.840 0.920 0.921 0.653 0.632
Canada Wildfires 0.732 0.732 0.435 0.683 0.718 0.708 0.727 0.619 0.647
Italy Earthquake 0.558 0.880 0.730 0.214 0.828 0.851 0.863 0.200 0.167
Kaikoura Earthquake 0.878 0.912 0.594 0.730 0.787 0.906 0.896 0.711 0.756
Hurricane Matthew 0.890 0.941 0.141 0.923 0.862 0.915 0.929 0.857 0.882
Sri Lanka Floods 0.856 0.917 0.421 0.692 0.654 0.908 0.894 0.735 0.548
Hurricane Harvey 0.810 0.906 0.397 0.738 0.788 0.891 0.898 0.672 0.798
Hurricane Irma 0.773 0.835 0.369 0.713 0.704 0.814 0.801 0.651 0.735
Hurricane Maria 0.864 0.925 0.479 0.779 0.708 0.881 0.865 0.712 0.815
Mexico Earthquake 0.860 0.929 0.783 0.759 0.885 0.886 0.902 0.715 0.727
Maryland Floods 0.809 0.890 0.754 0.817 0.794 0.869 0.879 0.487 0.737
Greece Wildfires 0.839 0.927 0.792 0.730 0.807 0.935 0.929 0.694 0.686
Kerala Floods 0.725 0.887 0.664 0.480 0.718 0.863 0.873 0.430 0.441
Hurricane Florence 0.667 0.755 0.466 0.535 0.553 0.742 0.738 0.572 0.531
California Wildfires 0.870 0.920 0.728 0.760 0.750 0.914 0.905 0.669 0.702
Cyclone Idai 0.892 0.925 0.240 0.824 0.716 0.885 0.897 0.472 0.736
Midwestern U.S. Floods 0.904 0.944 0.680 0.785 0.772 0.929 0.920 0.706 0.716
Hurricane Dorian 0.820 0.878 0.589 0.757 0.760 0.870 0.858 0.616 0.722
Pakistan Earthquake 0.879 0.877 0.379 0.770 0.712 0.834 0.849 0.587 0.639

Average 0.815 0.891 0.520 0.707 0.756 0.869 0.871 0.619 0.664

Table 6
The 𝐹1 results for the LMR models on IDRISI-RE for the type-less LMR task setup and the Time-based data setup.

Event CRF BERT𝐿𝑀𝑅 GPNE GPNE2 NTPR𝑂 NTPR𝑅 NTPR𝐹 LORE nLORE

Ecuador Earthquake 0.716 0.916 0.164 0.703 0.854 0.920 0.874 0.640 0.563
Canada Wildfires 0.644 0.767 0.094 0.696 0.719 0.726 0.721 0.608 0.612
Italy Earthquake 0.504 0.842 0.357 0.276 0.777 0.770 0.768 0.234 0.232
Kaikoura Earthquake 0.755 0.896 0.169 0.693 0.769 0.911 0.879 0.723 0.731
Hurricane Matthew 0.790 0.944 0.045 0.862 0.866 0.936 0.945 0.872 0.892
Sri Lanka Floods 0.740 0.904 0.215 0.679 0.753 0.919 0.903 0.756 0.599
Hurricane Harvey 0.599 0.894 0.111 0.739 0.820 0.885 0.857 0.659 0.800
Hurricane Irma 0.538 0.825 0.111 0.722 0.683 0.805 0.813 0.668 0.732
Hurricane Maria 0.768 0.904 0.195 0.733 0.707 0.894 0.861 0.723 0.789
Mexico Earthquake 0.798 0.911 0.339 0.734 0.815 0.865 0.884 0.694 0.722
Maryland Floods 0.648 0.845 0.428 0.792 0.794 0.833 0.892 0.483 0.663
Greece Wildfires 0.778 0.883 0.389 0.767 0.777 0.883 0.842 0.706 0.684
Kerala Floods 0.638 0.923 0.273 0.575 0.786 0.909 0.888 0.530 0.553
Hurricane Florence 0.465 0.784 0.130 0.499 0.562 0.721 0.734 0.614 0.526
California Wildfires 0.832 0.906 0.300 0.800 0.764 0.882 0.874 0.715 0.766
Cyclone Idai 0.696 0.898 0.169 0.789 0.660 0.866 0.863 0.469 0.727
Midwestern U.S. Floods 0.792 0.949 0.440 0.789 0.819 0.927 0.930 0.746 0.754
Hurricane Dorian 0.470 0.862 0.137 0.767 0.791 0.833 0.864 0.548 0.639
Pakistan Earthquake 0.723 0.836 0.089 0.736 0.669 0.814 0.777 0.605 0.620

Average 0.679 0.878 0.219 0.703 0.757 0.858 0.851 0.631 0.663

baselines. GPNE shows poor performance than other baselines. However, its new release (GPNE2) outperforms LORE and nLORE
under the random and time-based data setups and the CRF model in the time-based data setup.

Type-based LMR: In this setup, the LMR models are required to recognize the LMs and predict their types simultaneously. Table 7
showed the results of all models over IDRISI-RE dataset. The CRF model is a strong competitor to the BERT𝐿𝑀𝑅 model under the
ype-based and shows comparable performance for many events in both random and time-based settings.

.5. Domain transfer

We use ‘‘domain’’ to refer to the domain of the target dataset, which is always a specific disaster type, e.g., flood. We study the
omain transfer within IDRISI-RE dataset in two setups: ‘‘in-domain’’, where the source and target sets are of the same disaster type,
nd (ii) ‘‘cross-domain’’, where the disaster type of source and target sets are different.

xperimental Setups: We use the BERT𝐿𝑀𝑅 model as it shows the best 𝐹1 scores. We use the random data setup for both type-
less and type-based task setups. We tune the hyperparameters of the model (refer to Section 7.2) for each transfer setup over the
11
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Table 7
The 𝐹1 results for the LMR models on IDRISI-RE for the type-based LMR task setup.
Data setup Random Time-based

Event CRF BERT𝐿𝑀𝑅 CRF BERT𝐿𝑀𝑅

Ecuador Earthquake 0.932 0.939 0.910 0.926
Canada Wildfires 0.853 0.733 0.865 0.771
Italy Earthquake 0.906 0.890 0.881 0.881
Kaikoura Earthquake 0.879 0.909 0.875 0.899
Hurricane Matthew 0.901 0.919 0.899 0.952
Sri Lanka Floods 0.910 0.925 0.897 0.912
Hurricane Harvey 0.906 0.909 0.914 0.895
Hurricane Irma 0.906 0.833 0.893 0.823
Hurricane Maria 0.882 0.924 0.890 0.897
Mexico Earthquake 0.838 0.913 0.880 0.911
Maryland Floods 0.751 0.892 0.873 0.805
Greece Wildfires 0.896 0.925 0.886 0.887
Kerala Floods 0.880 0.880 0.857 0.919
Hurricane Florence 0.879 0.772 0.889 0.778
California Wildfires 0.907 0.909 0.902 0.902
Cyclone Idai 0.877 0.900 0.852 0.895
Midwestern U.S. Floods 0.917 0.936 0.920 0.944
Hurricane Dorian 0.875 0.858 0.865 0.852
Pakistan Earthquake 0.820 0.894 0.780 0.828

Average 0.880 0.883 0.880 0.878

Fig. 3. The 𝐹1 results for the domain transfer experiments within IDRISI-RE. HRC, EQK, FLD, and FIR refer to Hurricanes, Earthquakes, Floods, and Wildfires,
respectively.

development sets (same events as the training/source sets). IDRISI-RE covers four disaster types, namely, hurricane, earthquake,
flood, and wildfire. A transfer data setup is composed of source-target pair, resulting in 16 setups.

Experimental Results: Fig. 3 illustrates the 𝐹1 scores of the model over the test sets. Below, we elaborate on the results per domain
etup:

• In-Domain: As expected, the best results appear on the diagonal, which represents the in-domain setup, for both type-less and
type-based LMR. The high performance shows the advantage of using IDRISI-RE for training LMR models at the onset of disaster
events of the same types as the ones offered by IDRISI-RE.

• Cross-Domain: Interestingly, the model achieved a minimum of 80% and 75% of 𝐹1 score for the type-less and type-based LMR
task setups, respectively. This reasonably good performance shows the promising advantage of using IDRISI-RE for training
LMR models at the onset of disaster events of different types than the ones offered by IDRISI-RE.

To this end, we confirm that training on IDRISI-RE dataset could generate reasonably performing models in the range of 80%
nd 75% of 𝐹1 score for the type-less and type-based LMR, respectively.

. Generalizability

Generalization allows learning algorithms to identify features and patterns that are universal and not specific to one situation,
vent, or geographical area. The basic building block that is required to obtain a model’s generalizability is its training dataset.
owever, most existing datasets lack characteristics that are essential to achieve better generalizability. To overcome these
12
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issues, IDRISI-RE dataset is designed to cover data events that span broader geographical locations and cover multiple disaster
types/domains, including floods, earthquakes, hurricanes, etc. To this end, we compare the performance of models trained on
IDRISI-RE with models trained on seven public datasets, namely, OLM, MID, GeoCorpora (GEO), KHAN, HU1, HU3, and FGLOCTweet
(refer to Section 2). We did not use the ALTA dataset because the tweets are not mapped to their corresponding disaster events. This
missing mapping prevented us from grouping the tweets by disaster domain and geographical area which is required for running
the generalizability experiments.

For all generalizability experiments, we use our BERT𝐿𝑀𝑅 model, as it exhibits the best performance in the benchmarking
experiments for the type-less task setup (refer to Section 7); from hereafter, we refer to it as ‘‘the model’’. We define the source
ataset as the dataset (or the combination of datasets) used to train the model, and the target dataset as the dataset used to test it.

All the experiments are designed using fairness practices that we list below:

• We use the standard training and test splits of the respective data setups for training and testing the model, unless indicated.
• We use the default values of hyperparameters of the model from Hugging Face Transformers,15 to avoid biasing the model

towards any of the datasets.
• We mitigate the influence of training data size on the model performance when comparing different datasets by normalizing

the size across all sets. Specifically, we divide the training set, after combining events, into n tweet subsets of the same size
as the smallest training set. We apply the size normalization to the training sets of size 70% larger than the smallest training
set. We then run n experiments, one for each subset, and report the average performance. We also report the results without
size normalization and mark the respective runs with ‘‘ ∗ ’’.

• We limit our experiments to only the random data setup and the type-less task setup; only KHAN and HU1 datasets are labeled
for location types. KHAN is labeled for location categories that are higher in granularity compared to IDRISI-RE, which requires
manual mapping of annotations. HU1 contains more branched types which requires mapping to common types with IDRISI-RE.
It is also limited in size and confined in both domain and geographical aspects, hence it is inadequate for drawing conclusions
for generalizability.

.1. Domain generalizability

We use ‘‘domain’’ to refer to the domain of the target dataset, which is always a specific disaster type, e.g., flood. To this end,
e define the domain generalizability as the ability of the model trained on disaster events of a specific domain (source) to generalize
nd perform well when tested on unseen disaster events (target) of the same domain (denoted as ‘‘in-domain’’ setup) or a different domain
denoted as ‘‘cross-domain’’ setup).

.1.1. Experimental setups
When a dataset contains multiple events of the same type, we randomly choose one of the events as target (test set), and the

emaining events (combined) as source (training set). This is considered a zero-shot learning setup in terms of the specific events.
e note that all of our reported experiments are under zero-shot learning (experiments, where the training and test sets include the

ame event, are hidden/greyed in the figures). Hence, we use the test splits of Hurricane Dorian 2019, Midwestern US Floods 2019,
uebla Mexico Earthquake 2017, Greece Wildfires 2018, and Louisiana Floods 2016, as the IDRISI.HRC, IDRISI.FLD, IDRISI.EQK,
DRISI.FIR, and OLM.FLD target/test sets, respectively. All remaining events are used for training (only their standard training splits).
able 11 in Appendix C shows the detailed setups for all source and target sets. We follow the same data partitioning method for
he event-centric datasets including OLM, MID, HU1, and HU3. We note that the event context is discarded in the released KHAN
ataset, hence we manually categorized tweets into their respective events using the tracking hashtags that are made public by the
uthors. We ended up using only Hurricane Michael 2018 event, since the other events have very few tweets in the order of tens,
hich is inadequate for training the model (Suwaileh et al., 2022). For the keyword-based datasets, GEO and FGLOCTweet, we split

he tweets based on the domains that overlap with IDRISI-RE (earthquake, fire, and flood). For that, we used the tracking keywords
sed in crawling the dataset to extract matching tweets for each domain Fernández-Martínez (2022), Wallgrün et al. (2018). We
xcluded the hurricane tweets from FGLOCTweet dataset due to the small size of relevant tweets (only 13 tweets). We then partition
ach domain’s tweets into 70% training, 10% development, and 20% test. We split the GEO dataset because there are no standard
plits released for the community. We also split FGLOCTweet dataset since its standard splits become unbalanced after categorizing
he tweets by their disaster domain. Furthermore, we also train the model using IDRISI.ALL and GEO.ALL training sets to show the
erformance of models trained on all source/training domains for each respective dataset.

.1.2. Results and discussion
In this section, we discuss the observations we made on the model’s performance, analyze the results, and answer the related

omain generalizability research questions: can an LMR model that is trained on IDRISI-RE generalize to:

• Unseen events of the same disaster type? (RQ1)
• Unseen events of different disaster types? (RQ2)

15 https://github.com/huggingface/transformers/blob/a7d73cfdd497d7bf6c9336452decacf540c46e20/src/transformers/training_args.py#L124
13

https://github.com/huggingface/transformers/blob/a7d73cfdd497d7bf6c9336452decacf540c46e20/src/transformers/training_args.py#L124


Information Processing and Management 60 (2023) 103340R. Suwaileh et al.
Fig. 4. The 𝐹1 results of the domain generalizability experiments of IDRISI-RE against existing datasets. The best results per column are boldfaced column-wise,
per disaster domain. EQK, FIR, FLD, and HRC refer to Earthquake, Wildfire, Flood, and Hurricane, respectively.

In-domain: To address RQ1, we study the domain generalizability of IDRISI-RE within the same disaster type for source and target
sets. The sub-matrices marked in ‘‘orange’’ borders in Fig. 4 presents the 𝐹1 results for the in-domain experiments. The ‘‘AVG’’ and
‘‘In-domain AVG’’ columns show the average over all and in-domain test sets, respectively. We make the following observations:

• Inconsistent yet reasonable average performance of IDRISI.<domain> source sets: The models trained on IDRISI.EQK consistently
outperform MID.EQK per target set and on in-domain average. Unexpectedly, augmenting the size of source data by merging
GEO.EQK and MID.EQK source sets (Geo+MID.EQK) does not improve the performance on majority of the target sets (12 out
of 15 sets). The GEO.EQK source set alone and FGLOCTweet.EQK show better average performance, but both are comparable
with IDRISI.EQK when looking at the in-domain average performance. Training on IDRISI.FIR source set is the worst compared
to the other datasets. Further failure analysis is required to understand the reason behind this low performance. The models
14
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trained on IDRISI.FLD outperform the ones trained on GEO.FLD, OLM.FLD, and GEO+OLM.FLD as per the in-domain average and
the total average. The models trained on IDRISI.HRC are significantly better than the ones trained on MID.HRC, KHAN.HRC,
HU1.HRC, and HU3.HRC.

• Superior performance of IDRISI.<domain>∗ source sets: Generally, using IDRISI-RE dataset without size normalization generates
the top performing LMR models per target set for all domains and on in-domain average. In particular, over all domains, the
IDRISI.<domain>∗ sources sets consistently generate better models compared to IDRISI.<domain> sources sets. These results
emphasize the need for large training data to build superior models.

• Geographical vicinity affects the model performance: We found that the geographical vicinity of the source and target sets is a
potential factor on improving performance. For instance, we found that 40% of the LMs in GEO.EQK source set are in the
United States, while the events in IDRISI.EQK training set happened in Ecuador, Italy, New Zealand, and Pakistan. Having
the IDRISI.EQK test set containing tweets about an event that happened in Mexico, it is apparent that training on GEO.EQK
generates a superior model than training on IDRISI.EQK.

To answer RQ1, we show that IDRISI-RE dataset generates the best domain generalizable models per domain, compared to the
ther LMR datasets. The only exception is GEO.EQK that shows comparable performance to IDRISI.EQK∗.

ross-domain: To address RQ2, we study the domain generalizability of IDRISI-RE within different disaster types for source and
arget sets. Fig. 4 presents the 𝐹1 results for the different setups. The ‘‘AVG’’ and ‘‘Cross-domain AVG’’ columns indicate the average
ver all and cross-domain (cells outside the orange boxes) test sets, respectively. We make the following observations:

• Inferior performance of MID, KHAN, HU1, and HU3 source sets: Training on these source sets leads to the lowest average
performance across all test sets. Upon investigation, we found that the location distribution in Christchurch Earthquake
(MID.EQK), for example, is highly skewed; the location mention ‘‘Christchurch’’ constitutes approximately 49.7% and 53.8%
of the total number of LMs in the training and test sets, respectively. Moreover, around 68% of the tweets in the dataset have
no LMs. In KHAN.HRC, ‘‘Florida’’ appears in around 20% and 19% in the training and test sets respectively, and the 10 most
frequent LMs constitute 42% and 40% of the training and test sets respectively. For this reason, we believe that these two
datasets are inadequate for training generalizable LMR models.

• Competitive performance of FGLOCTweet.<domain> source sets: In general, these source sets exhibit better performance compared
to IDRISI.<domain>, in FIR and FLD domains. Upon investigation, we found that, unlike the FGLOCTweet.EQK source set that
US dominates its top 20 LMs (constituting 46% of the LMs in the dataset), both FGLOCTweet.FIR and FGLOCTweet.FLD source
sets are more geographically diverse. For example, the 20 most frequent LMs in the FGLOCTweet.FIR source set constitute
20%–22% for each of the US, UK, and China. The FGLOCTweet.FLD source set is more geographically diverse, containing the
top 3 LMs: Jakarta (7%), Indonesia (4%), and Venice (4%).

• Superior performance of IDRISI.<domain>∗ source sets: For those models, we do not apply size normalization. They show better
performance compared to their antonymic source sets (IDRISI.<domain>). They generate the best LMR models on average
(both ‘‘AVG’’ and ‘‘Cross-domain’’ columns) for EQK and HRC domains. They also generate comparable performing models
on average for FIR and FLD domains, compared to the best source sets, FGLOCTweet.FIR and FGLOCTweet.FLD (exhibits slight
lower performance by approximately 2.5%).

To answer RQ2, training on IDRISI-RE can produce domain-generalizable LMR models with 𝐹1 of 80%, 77%, 75%, and 88%,
for EQK, FIR, FLD, and HRC domains, respectively, on cross-domain average. Other datasets show inferior cross-domain average
performance on EQK and HRC domains. However, FGLOCTweet.FIR exhibits better yet comparable performance to IDRISI.FIR∗.
Similarly, GEO+OLM.FLD* and FGLOCTweet.FLD show comparable performance to IDRISI.FLD∗.

Overall performance: We emphasize the superior performance of IDRISI-RE dataset in the domain generalizability by highlighting
a few points:

• Although GEO.<domain> and FGLOCTweet.<domain> show competitive performance to IDRISI.<domain> per disaster domain,
they exhibit lower overall performance than IDRISI-RE (GEO.ALL and FGLOCTweet.ALL versus IDRISI.ALL).

• We note that part of the geographical coverage of IDRISI-RE is held out for the IDRISI.<domain> target/test set, hence it does
not appear in the source/training sets of IDRISI.ALL. Thus, merging the held-out data into training could improve the results
further.

• As the size of IDRISI-RE is one of the advantages that distinguishes it from the existing datasets, training on IDRISI.ALL∗ indeed
generates LMR models that surpass the ones trained on GEO.ALL, FGLOCTweet.ALL, and IDRISI.ALL, on average.

8.2. Geographical generalizability

We use ‘‘geographical area’’ to refer to the country where the disaster of the target dataset happened, e.g., the United States.
To this end, we define the geographical generalizability as the ability of the model trained on a specific geographical area (source) to

in the same or different geographical area (target).
15
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Fig. 5. The geographical inter-generalizability 𝐹1 results for IDRISI-RE for the geographical few-shot learning. The blue color scale is global for the entire matrix.
he best results per column are boldfaced. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)

.2.1. Experimental setups
To study whether IDRISI-RE can generalize to unseen events that happened in the same or different geographical areas, we train

he model using the data of the common countries between IDRISI-RE and the existing datasets (OLM, MID, GEO, and KHAN),
amely, India (IN), New Zealand (NZ), and the United States (US). We note that all of our reported experiments are under zero-shot
earning (experiments where the training and test sets include the same event are hidden/greyed in the figures).

.2.2. Results and discussion
In this section, we address two research questions: can an LMR model that is trained on IDRISI-RE generalize to:

• Unseen events that happen in the same geographical areas? (RQ3)
• Unseen events that happen in different geographical areas? (RQ4)

eographical Generalizability within the same country : Fig. 5 presents the 𝐹1 scores for the geographical generalizability
xperiments for the events that occurred in the United States. We limit our experiments to events that happened in the United States
ecause it is the only country covered by all the public datasets. We found that training on IDRISI.US generates higher performing
MR models compared to KHAN.US, MID.US, MID.US∗, OLM.US, and HU1.US, on average. While HU3.US outperforms IDRISI.US,
DRISI.US∗ outperforms it significantly by approximately 5.3%. This improvement confirms the important role of the size of source
ata that IDRISI-RE offers to the community. Additionally, IDRISI.US∗ beats GEO.US over 4 out of 7 target sets, but GEO.US beats
DRISI.US∗ over only 2 target sets. Nevertheless, both are comparable on average.

To answer RQ3, we conclude that the models trained on IDRISI-RE exhibit an acceptable 𝐹1 average score of 0.75. They achieve
he best performance on 4 out of 7 target sets, compared to the models trained on the other source sets.

eographical Generalizability across countries: Fig. 6 shows the 𝐹1 results of the models trained under the geographical zero-shot
earning, where the source and target data are sampled from events that happened in different countries. Looking at the results,
e find that training on IDRISI-RE is significantly better than training on MID, KHAN, and OLM datasets for all geographical areas

IDRISI.<country> vs. MID.<country>, KHAN.<country>, and OLM.<country>), on average. Additionally, IDRISI-RE outperforms GEO
ata over most of the test sets. The poor performance of GEO.US requires further investigation. HU1.US and HU3.US exhibit a way
ower scores compared to IDRISI.US and IDRISI.US∗∗. However, HU3 is more comparable to IDRISI for IN and NZ geographical
reas. The high performance of HU3.IN on HU3.NZ and HU3.US leads to best average score, yet comparable to IDRISI.IN. Similarly,
he high performance of HU3.NZ on HU3.IN and HU3.US leads to comparable average against IDRISI.NZ.

To answer RQ4, it is quite evident that training on IDRISI-RE generates the best performing LMR models that can reasonably
eneralize to events that happened in different geographical areas. The performance of models generated by other datasets is rather
oor in most cases.

. Implications

Compared to the public datasets, IDRISI-RE is the largest in size, domain diverse, geographically representative, temporally
epresentative, and informative. It also contains annotations for different coarse- (e.g., country, city) and fine-grained (e.g., street,
16
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Fig. 6. The geographical inter-generalizability 𝐹1 results for IDRISI-RE for the geographical zero-shot learning. IN, NZ, and the US refer to India, New Zealand,
and the United States, respectively. The blue color scale is global for the entire matrix. The best results per geographical area per column are boldfaced.. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

generalizable LMR dataset. All these advantages of IDRISI-RE cultivate the basis for empowering research on LMR in the domain
of disaster response and management, specifically, and other domains. In this section, we describe the theoretical (Section 9.1),
practical (Section 9.2), and research (Section 9.3) implications of releasing IDRISI-RE.

9.1. Theoretical implications

While responders need to obtain all useful information that supports managing emergencies effectively and efficiently, the
geographical context enables better understanding of the development of disaster events and the behavior of the affected people
at the events’ onset. For example, the geographical information is very useful in creating diverse crisis maps (refer to Section 9.3).
Making IDRISI-RE public enables developing and evaluating generalizable LMR models that better tackle domain shifts and are less
susceptible to changes in geographical areas. Such models should be ready for deployment for any future disaster events. To ensure
generalizability, IDRISI-RE is designed to meet six objectives that we elaborate on their value in the following:

1. Geographical coverage: Deploying geographically generalizable LMR models at the onset of disaster events happening
anywhere on earth requires data that covers broad geographical areas. While IDRISI-RE covers 22 English-speaking countries,
it supports response authorities from anywhere in the world to incorporate the geographical context while drawing
situational-awareness, assessing impact, managing resources, and deploying relief plans. Hence, the responders gain a better
understanding of the disaster events and the behavior of the impacted people, at different location granularity.

2. Domain coverage: Similarly, building a domain generalizable LMR model that is ready for deployment at the onset of the
disaster events of any type (e.g., flood, earthquake) requires training it on data that is collected during diverse disaster events.
The domain diversity of IDRISI-RE enables the geographical-aware management of disaster events of any type.

3. Location type annotations: Effective geographical-aware management of disaster events is deemed attainable when the needs
of different response authorities, in terms of location granularity, are met. While IDRISI-RE offers not only LM annotations
but also location type annotations, it enables the development and evaluation of robust LMR models that aid drawing
situational-awareness, assessing the disaster impact, managing resources, and deploying relief plans, at different location
granularity.

4. Large-scale: The trainable LMR models, especially the deep learning-based models, require large training datasets to perform
accurately. Thus, IDRISI-RE, being the largest and most generalizable LMR dataset, it supports the responders to better
17
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5. Temporal coverage: As IDRISI-RE covers the critical periods of the disaster events, it helps different response authorities to
better understand the disaster events and the behavior of affected people during different disaster phases (pre-disaster, during
disaster, and post-disaster).

6. Relevance and informativeness: Providing the geographical context to only informative content, after discarding noise, is
of a high priority to aid the response authorities in understanding the updates of the disaster events on the ground. As
IDRISI-RE solely contains informative tweets, it provides more realistic data for training the LMR models that are ready for
direct integrating in real-world information processing systems for disaster management.

Moreover, while all these design factors are important, the conclusions we drew when answering the RQ1-4 emphasize the
nfluence of the geographical coverage and data size for creating generalizable LMR datasets. To elaborate, the geographical vicinity
f the source and target sets is a potential factor on improving the LMR performance even when disaster domains are segregated
refer to Sections 8.1.2 and 8.2 for details). Additionally, the large size is a key advantage of the training datasets which allows
enerating more robust LMR models (refer to IDRISI.ALL and IDRISI.ALL∗ results in Section 8.1.2 for details).

9.2. Practical implications

Using IDRISI-RE enables the deployment of different surveillance and decision-support systems during disaster events that are
used by different response authorities. These systems employ the underlying applications discussed in Section 9.1 and generate
reports at different location granularity for different phases of the disaster. These reports could be in a form of real-time crisis maps
that we briefly elaborate on a few types of them, below.

Situational awareness maps: These maps support the response authorities in understanding the development of the disaster,
identifying the critical incidents, and detecting the hotspots of damages and vulnerable people.

Impact assessment maps: Mapping and identifying the most impactful incidents such as infrastructure damage, power outage,
facilities closure, among other, helps response authorities manage relief activities and plan for recovery.

Eyewitnesses maps: Locating eyewitnesses and first responders is needed to connect people in need with the first responders
(e.g., first aid treatment performers). Furthermore, getting authentic situational information is a critical task that can be achieved
by communicating with eyewitnesses who are nearby the locations of incidents.

Resources maps: Resources include facilities (e.g., shelters), funding (e.g., donations), and supplies (e.g., food and water), to list a
few. Locating such resources is important to identify places of shortage, adequacy, or abundance of resources and redistribute them
based the need.

Population mobility maps: Evacuating the vulnerable people away from the affected areas requires monitoring their movement to
consequently study the resource allocation and recovery plans. When exploiting Twitter for disaster relief activities, the essential
step to constructing all these maps is to extract toponyms from the text. IDRISI-RE can be utilized to build automatic domain and
geographical generalizable LMR models that perform at acceptable accuracy levels.

9.3. Research implications

IDRISI-RE enables research in different computational tasks, such as event/incident detection, relevance filtering, and geolocation
tasks, to name a few. In addition to that, as IDRISI-RE dataset covers different types of disaster events, we anticipate it to essentially
support transfer learning and domain adaption research. Below we briefly elaborate on a few tasks.

Event/incident detection: Detecting disaster events/incidents facilitates timely prevention and mitigation activities (Pettet et al.,
2022). Fortunately, people tend to mention where events/incidents take place when they report them (Hu & Wang, 2020). Harnessing
the relation between the occurrence (e.g., peaks) of LMs in tweets and the likelihood of events and incidents happening can aid
early prediction and detection. For example, Sankaranarayanan, Samet, Teitler, Lieberman, and Sperling (2009) and Watanabe,
Ochi, Okabe, and Onai (2011) had proposed content analysis of tweets by extracting locations for event/incident detection.

Relevance filtering : A key barrier to exploiting social media for crisis management is the noisiness of data which necessities the need
for automatic relevance filtering methods (Lorini et al., 2021). Prior studies show that the geographical references in social media
messages could indicate their relevance and informativeness (De Albuquerque, Herfort, Brenning, & Zipf, 2015; Vieweg, Hughes,
Starbird, & Palen, 2010). Kaufhold, Bayer, and Reuter (2020) achieved the best performance when they incorporated location-related
features in their rapid classification model. Thus, we anticipate IDRISI-RE to be useful for relevance filtering models.

Geolocation applications: Several geolocation applications are required, e.g., (1) detecting and disambiguating LMs in tweets, (2)
predicting tweet location (Ozdikis, Ramampiaro, & Nørvåg, 2019), (3) inferring user location (Luo, Qiao, Li, Ma, & Liu, 2020), and
(4) modeling user movement (Wu et al., 2022). While all these tasks are crucial for crisis management, the LMR task, in particular,
plays an essential role in tackling all of them using text-based techniques (Zheng, Han, & Sun, 2018). For instance, combining
18
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extracted entities (e.g., LMs) from tweets and their relations inferred from a Knowledge-base leads to a noticeable improvement on
the user location prediction model (Miyazaki, Rahimi, Cohn, & Baldwin, 2018).

isplacement monitoring : A terrible consequence of crises is the internal and cross-border displacement. By early May 2019, the
umber of displaced people reached about 41.3 million due to conflicts and violence.16 Extracting the location mentions from tweets

shared by refugees would give some clues about the routes they are using or planning to use. Therefore, IDRISI-RE supports modeling
the patterns of people displacement.

Geographical retrieval: The geographical information retrieval (GIR) systems are concerned with extracting spatial information
alongside the relevant multimodal data to the user information need (Purves et al., 2018). IDRISI-RE serves the GIR retrieval
techniques that rely on detecting locations and spatial references in queries and documents (García-Cumbreras, Perea-Ortega, García-
Vega, & Ureña-López, 2009). The large size of IDRISI-RE dataset provides a promising resource for augmenting spatial information
of tweets for geographical indexing and retrieval over the Twitter streams. Additionally, as IDRISI-RE is characterized by its wide
geographical coverage, we anticipate it to be a representative resource for Geographical retrieval.

10. Conclusion

We introduced IDRISI-RE, a large-scale Location Mention Recognition Twitter dataset comprising around 20k human-labeled and
57k machine-labeled tweets from 19 disaster events, including floods, earthquakes, hurricanes, wildfires. The annotations include
spans of location mentions in tweets’ content and their geographical types such as country, state, city, street. The dataset events
cover countries across continents, including the United States, Canada, Italy, India, Pakistan, Mozambique, and Malawi, among
others. Additionally, we benchmark IDRISI-RE using both traditional and deep learning models, offering competitive baselines for
future LMR development. We further studied the domain and geographical generalizability of IDRISI-RE against LMR English datasets
under fair comparison setups and reached nuanced conclusions that IDRISI-RE is the most generalizable LMR dataset. The reliability,
consistency, coverage, diversity, and generalizability analyses show the robustness of IDRISI-RE that empowers research on LMR.
For future work, we plan to extend the annotations for the LMD task. We further plan to explore different transfer learning, domain
adaptation, and active learning techniques to tackle the LMR task.
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Appendix A. Location mention distribution

Figs. 7–10 show the distribution of top 15 frequent location mentions in IDRISI-RE dataset per disaster event.

16 https://www.internal-displacement.org/global-report/grid2019/
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Fig. 7. The distribution of top 15 location mentions in IDRISI-RE per hurricane event.
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Fig. 8. The distribution of top 15 location mentions in IDRISI-RE per earthquake event.
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Fig. 9. The distribution of top 15 location mentions in IDRISI-RE per flood event.

Fig. 10. The distribution of top 15 location mentions in IDRISI-RE per wildfire/cyclone event.
22
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Appendix B. Detailed fine-tuning results and best hyper-parameters

Table 8 shows the best hyper-parameters and detailed results of the BERT-based LMR models for both type-less and type-based
ecognition. Tables 9 and 10 show the best hyper-parameters and detailed results of the CRF LMR models for both type-less and
ype-based recognition, respectively.

Table 8
The best hyper-parameters and results for the BERT-based model over IDRISI-RE under Type-less LMR. e, bs, lr, and sl refer to the hyper-parameters, number of
epochs, batch size, learning rate, and sequence length, respectively.

Event Random Time-based

e bs lr P R F1 e bs lr P R F1

Type-less
Ecuador Earthquake 4 32 4e−5 0.960 0.958 0.953 4 32 4e−5 0.923 0.921 0.916
Canada Wildfires 4 8 4e−5 0.733 0.749 0.732 4 8 4e−5 0.768 0.779 0.767
Italy Earthquake 3 8 3e−5 0.881 0.886 0.880 3 8 3e−5 0.840 0.849 0.842
Kaikoura Earthquake 3 8 3e−5 0.914 0.919 0.912 3 8 3e−5 0.912 0.893 0.896
Hurricane Matthew 4 8 5e−5 0.948 0.945 0.941 4 8 5e−5 0.949 0.956 0.944
Sri Lanka Floods 3 16 4e−5 0.921 0.929 0.917 3 16 4e−5 0.904 0.918 0.904
Hurricane Harvey 4 8 5e−5 0.919 0.902 0.906 4 8 5e−5 0.900 0.893 0.894
Hurricane Irma 4 8 3e−5 0.843 0.839 0.835 4 8 3e−5 0.829 0.833 0.825
Hurricane Maria 2 8 4e−5 0.932 0.926 0.925 2 8 4e−5 0.913 0.909 0.904
Mexico Earthquake 4 8 3e−5 0.932 0.932 0.929 4 8 3e−5 0.919 0.913 0.911
Maryland Floods 3 16 5e−5 0.895 0.901 0.890 3 16 5e−5 0.900 0.838 0.845
Greece Wildfires 3 8 5e−5 0.935 0.934 0.927 3 8 5e−5 0.897 0.895 0.883
Kerala Floods 4 32 5e−5 0.897 0.893 0.887 4 32 5e−5 0.927 0.934 0.923
Hurricane Florence 4 8 4e−5 0.773 0.755 0.755 4 8 4e−5 0.801 0.785 0.784
California Wildfires 3 16 3e−5 0.923 0.930 0.920 3 16 3e−5 0.914 0.906 0.906
Cyclone Idai 3 8 4e−5 0.932 0.927 0.925 3 8 4e−5 0.911 0.900 0.898
Midwestern U.S. Floods 4 8 5e−5 0.948 0.957 0.944 4 8 5e−5 0.946 0.961 0.949
Hurricane Dorian 4 8 5e−5 0.874 0.893 0.878 4 8 5e−5 0.865 0.872 0.862
Pakistan Earthquake 3 32 4e−5 0.876 0.902 0.877 3 32 4e−5 0.830 0.878 0.836

Type-based
Ecuador Earthquake 2 8 3e−5 0.951 0.940 0.939 4 32 4e−5 0.941 0.922 0.926
Canada Wildfires 3 8 4e−5 0.733 0.749 0.733 4 8 4e−5 0.772 0.780 0.771
Italy Earthquake 3 8 4e−5 0.894 0.894 0.890 3 8 3e−5 0.879 0.888 0.881
Kaikoura Earthquake 4 16 5e−5 0.914 0.916 0.909 3 8 3e−5 0.918 0.895 0.899
Hurricane Matthew 4 32 5e−5 0.931 0.923 0.919 4 8 5e−5 0.955 0.963 0.952
Sri Lanka Floods 4 8 5e−5 0.929 0.933 0.925 3 16 4e−5 0.911 0.925 0.912
Hurricane Harvey 4 16 4e−5 0.921 0.905 0.909 4 8 5e−5 0.898 0.896 0.895
Hurricane Irma 2 8 5e−5 0.847 0.831 0.833 4 8 3e−5 0.827 0.828 0.823
Hurricane Maria 2 8 5e−5 0.936 0.924 0.924 2 8 4e−5 0.910 0.895 0.897
Mexico Earthquake 2 16 4e−5 0.921 0.914 0.913 4 8 3e−5 0.918 0.914 0.911
Maryland Floods 3 8 4e−5 0.906 0.894 0.892 3 16 5e−5 0.851 0.795 0.805
Greece Wildfires 3 16 3e−5 0.927 0.940 0.925 3 8 5e−5 0.899 0.899 0.887
Kerala Floods 4 8 5e−5 0.891 0.885 0.880 4 32 5e−5 0.926 0.927 0.919
Hurricane Florence 3 16 4e−5 0.795 0.774 0.772 4 8 4e−5 0.792 0.781 0.778
California Wildfires 4 32 4e−5 0.913 0.919 0.909 3 16 3e−5 0.918 0.900 0.902
Cyclone Idai 3 32 4e−5 0.906 0.906 0.900 3 8 4e−5 0.905 0.900 0.895
Midwestern U.S. Floods 4 8 5e−5 0.944 0.948 0.936 4 8 5e−5 0.944 0.957 0.944
Hurricane Dorian 4 16 5e−5 0.857 0.871 0.858 4 8 5e−5 0.864 0.860 0.852
Pakistan Earthquake 4 8 5e−5 0.899 0.908 0.894 3 32 4e−5 0.819 0.868 0.828
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Table 9
The best hyper-parameters and results for CRF model over IDRISI-RE for Type-less LMR. The column ‘‘Algo.’’ refers to the training algorithm of CRF. The
‘‘HP1’’ and ‘‘HP2’’ refer to the tuned hyper-parameters with respect to the algorithm.
Event Algo. HP1 HP2 P R F1

Random data setup
Ecuador Earthquake lbfgs c1=0.95 c2=0.95 0.890 0.842 0.866
Canada Wildfires ap epsilon=0.001 0.635 0.864 0.732
Italy Earthquake lbfgs c1=0.1 c2=0.1 0.547 0.569 0.558
Kaikoura Earthquake lbfgs c1=0.15 c2=0.15 0.872 0.884 0.878
Hurricane Matthew lbfgs c1=0.95 c2=0.95 0.925 0.857 0.890
Sri Lanka Floods ap epsilon=0.01 0.835 0.878 0.856
Hurricane Harvey lbfgs c1=0.15 c2=0.15 0.816 0.804 0.810
Hurricane Irma lbfgs c1=0.25 c2=0.25 0.843 0.714 0.773
Hurricane Maria lbfgs c1=0.15 c2=0.15 0.858 0.869 0.864
Mexico Earthquake arow variance=0.1 gamma=0.5 0.838 0.884 0.860
Maryland Floods arow variance=0.1 gamma=0.25 0.750 0.878 0.809
Greece Wildfires lbfgs c1=0.25 c2=0.25 0.757 0.941 0.839
Kerala Floods ap epsilon=1e-5 0.705 0.745 0.725
Hurricane Florence ap epsilon=0.001 0.660 0.673 0.667
California Wildfires lbfgs c1=0.5 c2=0.5 0.885 0.855 0.870
Cyclone Idai lbfgs c1=0.65 c2=0.65 0.899 0.885 0.892
Midwestern U.S. Floods lbfgs c1=0.6 c2=0.6 0.914 0.894 0.904
Hurricane Dorian lbfgs c1=0.55 c2=0.55 0.856 0.787 0.820
Pakistan Earthquake lbfgs c1=0.35 c2=0.35 0.872 0.885 0.879

Time-based data setup
Ecuador Earthquake arow variance=0.25 gamma=0.25 0.933 0.933 0.932
Canada Wildfires ap epsilon=0.01 0.853 0.853 0.853
Italy Earthquake arow variance=1 gamma=0.125 0.906 0.906 0.906
Kaikoura Earthquake arow variance=0.5 gamma=0.25 0.880 0.880 0.879
Hurricane Matthew arow variance=1 gamma=0.1 0.902 0.905 0.901
Sri Lanka Floods arow variance=1 gamma=0.1 0.911 0.911 0.910
Hurricane Harvey arow variance=0.1 gamma=0.125 0.906 0.906 0.906
Hurricane Irma lbfgs c1=0.95 c2=0.95 0.906 0.906 0.906
Hurricane Maria arow variance=0.16 gamma=0.5 0.883 0.883 0.882
Mexico Earthquake arow variance=0.25 gamma=0.16 0.839 0.839 0.838
Maryland Floods lbfgs c1=0.85 c2=0.85 0.754 0.759 0.751
Greece Wildfires arow variance=0.5 gamma=0.1 0.895 0.901 0.896
Kerala Floods arow variance=0.125 gamma=0.5 0.880 0.881 0.880
Hurricane Florence arow variance=1 gamma=0.16 0.879 0.879 0.879
California Wildfires arow variance=1 gamma=0.125 0.908 0.908 0.907
Cyclone Idai arow variance=0.125 gamma=0.5 0.877 0.879 0.877
Midwestern U.S. Floods lbfgs c1=0.9 c2=0.9 0.920 0.923 0.917
Hurricane Dorian arow variance=0.16 gamma=0.5 0.875 0.875 0.875
Pakistan Earthquake arow variance=1 gamma=0.125 0.821 0.822 0.820
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Table 10
The best hyper-parameters and results for CRF model over IDRISI-RE for Type-based LMR. The column ‘‘Algo.’’ refers to the training algorithm of CRF.
The ‘‘HP1’’ and ‘‘HP2’’ refer to the tuned hyper-parameters with respect to the algorithm.
Event Algo. HP1 HP2 P R F1

Random data setup
Ecuador Earthquake lbfgs c1=0.8 c2=0.8 0.735 0.698 0.716
Canada Wildfires lbfgs c1=0.7 c2=0.7 0.597 0.699 0.644
Italy Earthquake ap epsilon=1e-5 0.534 0.477 0.504
Kaikoura Earthquake lbfgs c1=0.95 c2=0.95 0.856 0.675 0.755
Hurricane Matthew lbfgs c1=0.2 c2=0.2 0.774 0.808 0.790
Sri Lanka Floods lbfgs c1=0.4 c2=0.4 0.681 0.811 0.740
Hurricane Harvey lbfgs c1=0.9 c2=0.9 0.677 0.537 0.599
Hurricane Irma lbfgs c1=0.4 c2=0.4 0.586 0.497 0.538
Hurricane Maria lbfgs c1=0.25 c2=0.25 0.782 0.754 0.768
Mexico Earthquake arow variance=0.1 gamma=0.5 0.828 0.770 0.798
Maryland Floods lbfgs c1=0.55 c2=0.55 0.796 0.547 0.648
Greece Wildfires lbfgs c1=0.7 c2=0.7 0.770 0.786 0.778
Kerala Floods lbfgs c1=0.55 c2=0.55 0.633 0.642 0.638
Hurricane Florence arow variance=0.16 gamma=0.5 0.373 0.617 0.465
California Wildfires lbfgs c1=0.7 c2=0.7 0.861 0.804 0.832
Cyclone Idai lbfgs c1=0.95 c2=0.95 0.784 0.626 0.696
Midwestern U.S. Floods lbfgs c1=0.9 c2=0.9 0.794 0.791 0.792
Hurricane Dorian lbfgs c1=0.85 c2=0.85 0.621 0.378 0.470
Pakistan Earthquake lbfgs c1=0.55 c2=0.55 0.706 0.742 0.723

Time-based data setup
Ecuador Earthquake arow variance=0.1 gamma=0.16 0.910 0.912 0.910
Canada Wildfires lbfgs c1=0.05 c2=0.05 0.865 0.865 0.865
Italy Earthquake arow variance=0.5 gamma=0.16 0.881 0.881 0.881
Kaikoura Earthquake arow variance=0.16 gamma=0.125 0.875 0.874 0.875
Hurricane Matthew lbfgs c1=0.15 c2=0.15 0.901 0.903 0.899
Sri Lanka Floods arow variance=1 gamma=0.25 0.900 0.896 0.897
Hurricane Harvey ap epsilon=0.01 0.914 0.914 0.914
Hurricane Irma lbfgs c1=0.55 c2=0.55 0.893 0.893 0.893
Hurricane Maria arow variance=1 gamma=0.1 0.890 0.890 0.890
Mexico Earthquake arow variance=0.1 gamma=1 0.881 0.882 0.880
Maryland Floods arow variance=1 gamma=0.16 0.875 0.878 0.873
Greece Wildfires arow variance=0.25 gamma=0.5 0.886 0.890 0.886
Kerala Floods arow variance=1 gamma=0.1 0.857 0.859 0.857
Hurricane Florence arow variance=0.1 gamma=0.5 0.889 0.889 0.889
California Wildfires arow variance=1 gamma=0.125 0.903 0.903 0.902
Cyclone Idai arow variance=1 gamma=0.1 0.852 0.854 0.852
Midwestern U.S. Floods lbfgs c1=0.35 c2=0.35 0.924 0.925 0.920
Hurricane Dorian arow variance=0.5 gamma=0.1 0.865 0.866 0.865
Pakistan Earthquake arow variance=0.16 gamma=0.16 0.781 0.782 0.780
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Appendix C. Detailed data setups for generalizability experiments

Tables 11 and 12 show the detailed data setups for the domain and geographical generalizability experiments, respectively.

Table 11
The data setups/splits of the domain generalizability experiments. EQK, FLD, CYC, HRC, and FIR refer to Earthquake, Flood, Cyclone, Hurricane, and
Fire, respectively.
Tweet set Train Test Train Test Train Test Train Test

IDRISI.EQK MID.EQK GEO.EQK GEO+MID.EQK

Ecuador EQK 2016 ✓

Italy EQK 2016 ✓

Kaikoura EQK 2016 ✓

Pakistan EQK 2019 ✓

Puebla Mexico EQK 2017 ✓

ChristChurch EQK 2011 ✓ ✓ ✓ ✓

Geocorpora EQK ✓ ✓ ✓ ✓

IDRISI.FLD OLM.FLD GEO.FLD GEO+OLM.FLD

Sri Lanka FLD 2017 ✓

Maryland FLD 2017 ✓

Kerala FLD 2018 ✓

CYC Idai 2019 ✓

Midwest. US FLD 2019 ✓

Chennai FLD 2015 ✓ ✓

Houston FLD 2016 ✓ ✓

Louisiana FLD 2016 ✓ ✓

Geocorpora FLD ✓ ✓ ✓ ✓

IDRISI.HRC MID.HRC

HRC Matthew 2016 ✓

HRC Harvey 2017 ✓

HRC Irma 2017 ✓

HRC Maria 2017 ✓

HRC Florence 2018 ✓

HRC Dorian 2019 ✓

HRC Sandy 2012 ✓ ✓

IDRISI.FIRE GEO.FIRE

Canada FIRE 2016 ✓

California FIRE 2018 ✓

Greece FIRE 2018 ✓

Geocorpora FIRE ✓ ✓
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A

A

A

Table 12
The data setups for the geographical generalizability experiments. US, IN, NZ, IT, CA EC, MX, CR, and PK are the 2-char ISO country codes for the United
States, India, New Zealand, Italy, Canada, Ecuador, Mexico, Greece, and Pakistan, respectively. AF refers to Africa continent and the countries covered
are Mozambique, Zimbabwe, Malawi, and Madagascar.
Tweets Train Test Train Test Train Test

IDRISI.US OLM.US MID.US

HRC Matthew 2016 ✓

HRC Harvey 2017 ✓

HRC Irma 2017 ✓

HRC Maria 2017 ✓

HRC Florence 2018 ✓

HRC Dorian 2019 ✓

Maryland FLD 2018 ✓

California FIRE 2018 ✓

Midwest. US FLD 2019 ✓

Houston FLD 2016 ✓

Louisiana FLD 2016 ✓

HRC Sandy 2012 ✓ ✓

IDRISI.IN OLM.IN

Kerala FLD 2018 ✓ ✓

Chennai FLD 2015 ✓ ✓

IDRISI.NZ MID.NZ

Kaikoura EQK 2016 ✓ ✓

ChristChurch EQK 2011 ✓ ✓

IDRISI.IT

Italy EQK 2016 ✓

IDRISI.CA

Canada FIRE 2016 ✓

IDRISI.EC

Ecuador EQK 2016 ✓

IDRISI.SK

Srilanka FLD 2017 ✓

IDRISI.MX

Puebla Mexico EQK 2017 ✓

IDRISI.CR

Greece FIRE 2018 ✓

IDRISI.PK

Pakistan EQK 2019 ✓

IDRISI.AF

CYC Idai 2019 ✓
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