
Engineering Journal of University of Qatar, Vol. 8, 1995, p. 83-100

ON IMPROVING COMMUNICATION SOFTWARE
DEVELOPMENT PROCESS

Magdi M. Said EI-Soudani
Electrical Engineering Department, Faculty of Engineering,

University of Qatar, Doha, Qatar.

ABSTRACT

This paper aims to standardize the software development process by
making use of the well-established hardware development process. The
procedure can be applied to any engineering software development
process, but we consider the case of communication systems. We
propose a model for software development process that has a
hierarchical structure. We examine this hierarchical structure together
with the development process at each level. Each process has
several stages, and we use the same definitions at all levels. The
development process consists of the following stages: requirements and
specification, flow detailed structure, source coding, and testing stages.
Integration of the whole system is performed in steps through different
testing levels. During the development process we measure the
performance or the quality of each stage. We consider the factors that
have great impact on software quality and that may be the cause of
defects. These includes complexity, supporting tools and methods, and
system ability, and from these factors we define some quality attributes
to measure the system quality.

INTRODUCTION

Software is a major component of any large or complex communication
system. The software development process for communication systems differs
from other application software development processes. A small fault in the
software may lead to a complete failure of the communication system. For
example, in January 1990, AT&T experienced a software fault that impaired the
ability of users to complete calls across the AT&T network. Also in June 1991, a
software fault caused in signaling system No.7 (SS7) led to major outages in
several regions in the United States [1]. Apart from the large number of users in
communication systems who would be affected, the hardware has to be reset after

83

M. El-Soudani

such a failure and a part of the information may be lost. That is why the
communication software should be solid and robust.

The software development of communication systems normally takes long
time compared with other systems. Moreover, we sometimes need to develop both
software and hardware in parallel. In most of the cases, the hardware is located
behind the software and the software interfaces with the user's needs. Therefore
the external specifications of the service are clear for the user, but for the developer
or designer the specifications of the required hardware should be clear and
feasible. This puts a great burden on the software developer who should also be
knowledgeable in hardware in order to consider the interactions between software
and hardware. Also, in some communication systems, rapid prototyping is need.
This means modeling some functional capability of the actual system in order to
reduce uncertainty regarding requirements. This method helps the system developer
as well as the user to know the exact output for the given requirement. This also
gives them the chance to modify the system at early stages. Also in communication
software there is a strong push to reuse software developed for one service, for
example, within another one. In this case we have to assure that the reliability of
reused software will be sufficient to satisfy the needs of the new service. On the
other hand, careful inspection and revision before putting software into operation
or service does not prevent some operational faults. Some of these faults or 11 bugs 11

may lead to severe failure of the conununication system. Communication systems
software should be able to identify and isolate any fault that may lead to such a
failure. Even if this failure occurs, the system should be able to recover from it.
Therefore communication software should be designed and built with these types
of system failures in mind [2],[3].

The following sections are all related to software development processes and
quality measurement. Whenever software is mentioned it means software for
conmmnication systems. A software hierarchical structure is described in the next
section together with the proposed development process model. Then, we explain
the integration process and define several testing stages. To evaluate the developed
software we define a set of quality attributes and show how they are used to
measure the software quality. We conclude the paper with comments on
tradeoffs among cost and quality in the proposed software development process.

SOFTWARE DEVELOPMENT PROCESS

In this paper, we make use of similarities between hardware and software to
develop a model for software development. From this model we can determine the
factors that will improve the development process. Improving the working process

84

Improving Communication Software Development Process

is possible if we standardize the software development process. Therefore, it is
necessary to put the software itself in a tree or hierarchical structure. By
definition, software is a kind of transformation process of a discrete set of inputs
into a set of outputs taking into consideration the system resources. In switching
systems a set of input parameters from the hardware circuitry indicating the
subscribers states will make the software generate different output signals to the
hardware circuitry such as connect tone, disconnect ringing signal, or release a
connection. The software has to consider the availability of free paths between the
calling and called subscribers. Therefore, this flow of information has a
hierarchical structure by nature. We can decompose the software into levels as
shown in Fig. I. These levels from the top are the system, module, function, and
unit levels. It is well understood that the decomposition is a posteriori to a
complete study of the system requirements and functionality. On the other hand, the
software development process is a chain of design processes. As the design goes
on, the work expands. In order to simplify the design and to standardize the
development process, we decompose the process into levels to follow the same
software hierarchical structure. As the development progresses, the work is divided

••••

Fig.l: Software hierarchy

into steps that are smaller, clearer, and more solid. Finally the work reaches
elementary operations. For example, dialing process can be divided into units with

85

M. El-Soudani

simple functions such as read the dialed digit and send the proper output to the tone
encoder. A higher level function will repeat this read/write procedure for all the
dialed digits. The development processes at the different levels are nearly identical.

Figure 2 shows the elements of a software development process. We have
three main elements~ input, process, and output. The input sets the concepts and
defmitions of the system. Process means design, coding, and compilation. It also
means verification and testing of different.developing stages. Figure 3 shows
the main stages in the process itself that must be considered at each developing
level. These stages form the so-called software life cycle. More stages can be
added to the life cycle if more detailed structure is required such as installation,
and maintenance stages [4]. Other elements are included in Fig. 2 such as
resources that mean the necessary tools, and equipment. The schedule means
the time planning for the process. Personnel are simply the people necessary to
develop, analyze, and test the software. Methodology here means the developing
methods and engineering techniques. The process is surrounded by environmental
factors that influence the development process.

Input
Concepts &
Definitions

Process

Output

Software
Product

Fig.2 Elements of software development process

86

Improving Communication Software Development Process

Requirements & Source
Specifications Code

~

Design ,, Coding .. Compilation

Detailed Testing
Structure

Fig. 3: Stages of software development process

Usually, software specifications must come from the analysis of user's
concepts and definitions. In communication systems, software specifications are
given exactly or in the form of a finite state machine (such as the call handling
procedure, dialing process and switching procedure) and the user has little say in
the specifications in this case. In the design stage, the requirements and
specifications are translated into description of software system that can be coded.
From communication network perspectives, it is important to design software
that is robust. Even when hardware or software is encountered in any sort of
troubles such as overloading of a switch, repeated fault messages, or non­
acknowledgment of messages, the software should be able to identify and isolate
the fault and the system should be able to recover. In the design of development
process we take into considerations the hardware design process. Therefore software
and hardware design processes will have some similarities. The hardware design
process will be the same as that for software. For example the detailed flow chart
will be replaced by detailed logic diagram, the coding stage will be replaced by
detailed circuit diagram, and the compilation in software process is equivalent to
the implementation of printed circuit board (PCB) in the hardware process.

SYSTEM INTEGRATION AND TESTING

At the testing stage the development process converges again according to
the system hierarchical structure and finally results in the complete software
program. There are several testing stages in the software developing process. These
are unit, function and module integration, and system testing stages as shown in
Fig.4. Other testing stages may be added such as product, customer, system
verification, and regression testing [5]. Unit testing occurs when programmer tests

87

M. El-Soudani

the run programs of each unit separately, while integration testing is the testing of
previously separate units of the software when they are put together. The
integration test is performed at the function level and at the module level when
several software parts are grouped together to perform a specific function. System
testing is the testing of the functional part of the software to determine that it
performs its expected function. Product testing aims to test the functionality of the
final system while customer testing is often a product testing performed by the
intended user of the system. If the new software is a revised version of already
existing software, regression testing is needed to assure that the new version of
the software faithfully reproduces the desirable behavior of the previous one .

• • • • •

Fig.4 Testing stages

System

To make sure that those jobs controlling the hardware are operating \
properly we conduct system verification tests. In this case, the previously tested
portions of the software that passed the several testing levels, from the software
point of view, are tested with their related hardware circuitry. For example, system
verification test is needed to check if the proper addressing is used to select a cross
point switch in an array of switching matrices. Sometimes another testing stage is
needed to identifY those parts of the software that have not been exercised during

88

Improving Communication Software Development Process

testing. This type of testing is called coverage test. All these testing stages aim to
assure that program's specifications are met by exercising the features described in
the specifications. This depends on the specifications of the program and is
independent of its coding.

The number of faults during testing decreases with time assuming that the
source of fault is detected and recovered. Poisson distribution is the most adequate
method to predict the number of fault. Let x be the number of faults in timet, the
probability to get x faults will be given by

Pr{x}
[AY -A---e

x!
(1)

where A is the expected fault rate in time t. Since the number of faults varies with
the testing time, the fault rate will be a function of testing time, and the system will
follow the nonhomogeneous Poisson process (NHPP). This case is called the Goel­
Okumoto (GO) model [6]. The fault rate itself can be expressed as a function of
cumulative number of faults during time t. From the observation of faults in
different software development processes, we can describe the cumulative number
of faults m 1 (t) by the exponential relation

(2)

where a is the expected number of faults to be observed initially and b is the fault
detection rate. The corresponding fault rate A 1 (t) will be given by:

A.1(t) = m 1'(t) =abe -bt (3)

This fault prediction process cannot distinguish between hardware and software
faults because symptoms of hardware faults are often similar. Other forms of the
function m(t) can be used depending on the observations [6]. Sometimes when the
system is tested in normal working conditions the fault rate increases then decreases.
The cumulative number of faults in this case may take the form:

-btc
m 2(t) = a (1 - e) (4)

where c is a constant selected upon the type of testing and required quality. This a
generalization of the GO model. The corresponding error rate will be given by:

89

M. El-Soudani

(5)

Figure 5 shows the cumulative number of faults using equation (2) and (4) assuming
that the expected number of faults is 100 and the fault detection rate is 0.075. The
constant cis chosen to be 1.25. The corresponding fault rates are shown in Fig.6.

120 -,------------,
2
~ 100-

-- m
1
(t)

...... mit)
u. -0
.....
Q)
.0
E
::l
z
Q)

.~
-ro
:s
E
::l
u

80-

60- . /
/

...,­_.....,

40 - :/
:/

20- ./

1/ 0 -f-----,-1---r---~--..---1---l

0 5 10 15 20

Testing Time

Fig. 5: Cumulative number of faults, m J(t) and m2(t)

8 -,--------------------~

2 -:

7 -f\:··.. -- m/(t)

6 - ; " . ·. m
2
'(t) 5-; ,· ...

"''· ' ·;-.....,.
............._

·.. -....

Q)

-ro
~ 4-:
:s
~ 3 -:

1 -

0 ~--,~----,-1---r-1--~

0 5 10 15 20

Testing Time

Fig.6: Fault rate .l J(t)= m 1 '(t) and l2(t)= m2'(t)

90

hnproving Communication Software Development Process

On the other hand, without knowing the value of testing it is hard to decide when to
stop testing, or how to trade testing time against code inspection time, or to assess
the effect of testing on quality, or even to decide whether testing is worthwhile.
Testing cost may be used as a guide to determine when to stop. Testing cost is
proportional to the number of detected faults and the effort necessary to fix the
faults. The total testing cost C(t) till timet will be given by:

(6)

and D = [A+B(l- fJ)]

where nd(t) is the number of faults detected in timet, {;is the portion of unfixed
faults. A and Bare constants that represent the average effort done to detect and
fix the fault and E represents other expenses in the testing procedure. If we consider
the NHPP model, nd(t) = m 1 (t). It remains to determine the quality of the
developed system. Software quality measurement will help us to answer this
question.

FACTORS AFFECTING SOFTWARE QUALITY

Classically, the term quality means "bug-free". In software development,
various defects are caused by imperfections in the process leading to differences
between what should be and what actually is. As software development moves
towards its final target and completion, the cost to repair a fault in the application
soars. Development economists thus argue strongly for testing and tuning software
as early as possible in its life cycle, preferable before the integration phase. The
cost of correcting a code fault during the coding stage is a matter of changing the
code, recompiling, and testing. On the other hand, the cost of fixing a design fault
found in the system integration test for example will include the cost of correcting
the design, changing the code, passing through all testing stages. The cost of
fixing faults in operation phase, i.e., after the release of the software, may be
several times the cost required to fix a fault in coding phase. So it is cost­
effective to avoid, if possible, faults and errors in the final stages of the software
life cycle. It is always said that where quality cannot be defined, it cannot be
measured; where it cannot be measured it cannot be controlled. It is much better

91

M. El-Soudani

to find what people think about factors that have great influence or impact on
quality, and from these factors we can define the quality measurement methods.
Among these factors are complexity, methodology, and system ability. Complexity
considers, in general, the size of the program, the required memory, the control flow,
the link between different modules, and the number of input/output operations
between software and hardware. Methodology is concerned with the engineering
techniques and supporting tools as well as the language adopted for the
development. System ability is the capability of the developed system to satisfy
all the requirements as well as its ability to be modified or expanded. The
capability of personnel to achieve the final objectives within the constraints of the
time schedule is also considered as part of system ability.

From the hierarchical structure we measure the software complexity as
function of the number of variables in each module and each subprogram. We also
consider the common variables among the subprograms. Let a(i) denote the
number of variables in subprogram i, and p(i) be the number of common variables
used by the subprogram i. The structural complexity ;t(j) of module j with n
subprograms will be given by:

(7)

where <50) is a constant depends on the amount of comments in jth module and 0
::; <5(;) ::; 1. The overall program structural complexity z will be given by:

k
z= Ix(J)

}=1
(8)

where k is the number of modules in the program. Another measure of software
complexity is the operational complexity. We define the operational complexity z
PO) of module j as:

(9)

where .Uj is the utilization factor that reflects the access frequency of module j
during program operation. N a denotes the total number of access of module j
during testing and c_;· is the backtracking degree of module j during testing. This

92

Improving Communication Software Development Process

means that if the main program scans all modules to initiate the required service
routines we can find the utilization factor of the jth module by counting the
number of calls or accesses during one cycle. The utilization /Jj is defined as the
average number of accesses of module j divided by the minimum number of
accesses. In the same way we can find the operational complexity of each unit or
routine in any module. The total program operational complexity will be the sum
of the modules complexity. Other parameters can be used to measure the system
complexity such as the average size of module's procedures. Also the size of
modules and the density of branching and transfer of control commands.

Programming language and techniques are among the factors that affect the
software quality. There is no direct way to evaluate the language or the technique.
We can say that the program size and the execution time are among the factors
used to evaluate the system methodology. The program size is usually measured in
terms of the number oflines of code (LOC) or in thousands ofLOC, i.e., KLOC.
There is no unique definition of LOC since it is a language dependent. Therefore it
is not possible to compare systems developed using different language. We prefer to
use the volume of the executable file rather than that of the source file. The
execution time can either be measured in terms of the number of processing cycles
or in CPU- time if possible. The execution time per line of code will be a measure
of the efficiency of the adopted methodology, and it will be given by:

M= 'E
v

(10)

where 1E is the execution time (or CPU- time) and vis the size of the executable
file. Other methods are suggested in [7].

QUALITY MEASUREMENT

Today's quality concept has been widened to include many factors such as
usability, functionality, understandability, etc. Software quality could be evaluated
using various quality attributes [8]. However, no single set of quality attributes has
been adopted for use as a standard set. The attributes selected mainly depend
on the software project's objectives, developing environment, and on the evaluator.
The fact that individuals disagree about what is quality is an argument in itself.
From the factors that affect the software development process, we define a set of
quality attributes to measure the software quality. Each quality attribute in itself
can be divided into subattributes. For example, the quality attributes used to

93

M. El-Soudani

measure the effects of system complexity are understandability, masterability, and
usability. We refer to this group of attributes as the clarity group. The
operability, modifiability, and expandability attributes measure the adopted
programming language and developing tools. These attributes form what we call
capability group. The impact of methodology and supporting tools on the developed
software is evaluated using the functionality, the suitability, and the
performability attributes. We refer to these set of attributes as the technicality
group. Each group measures a set of quality factors, and from these measurements
we can conclude the quality of the developed software. Some of the above
mentioned attributes can be measured . quantitatively while others are difficult.
Special metrics have to be used with the latter type of attributes. Sometimes,
different attributes are used to measure the same factor but from different point of
views. Some of these attributes are used to evaluate the developing tools
themselves such as suitability and operability [8]. In what follows, we describe
briefly the functions of the attributes in the above mentioned groups.

Clarity Group
• Understandability determines how well the software is structured so that the

flow diagram can be easily followed. Also it shows whether the language is
easy to understand or not.

• Masterability measures how much one can master the software development
tools and the language used.

• Usability measures the ease of use of the software, sometimes called
"friendliness".

Capability Group
• Operability measures the ease of using and mastering the system operating

rules and functions.
• Modifiability determines the simplicity of system modifications in case of

changing requirements or specifications.
• Expandability measures to what limit the system can be expanded to include

any new functions.

Technicality Group
• Functionality determines how the functions developed or used are easy to

realize. It also measures the completeness.

• Suitability determines the degree of ease for implementation ofthe software
requirements using the adopted technique.

• Performability measures the system efficiency. It also measures the system
communicativeness and interoperability between the software and hardware.

94

Improving Communication Software Development Process

Table-1 summarizes the functions ofthe different quality attributes and shows the
level at which these attributes can be measured as well as the methods used to
measure them.

Table 1: Quality Attributes

GROUP ATTRIBUTE MEASURED MEASURED
FACTORS MENT USING

LEVEL

Clarity Understandability S/w structure. Overall Training hours.
system Document size.

Masterability Number of
Language and tools. modules. Test

Usability User's effort. parameters.

Capability Operability S/w rules and Overall Man-hours and
fw1ctions. system. development

Modifiability Ease of changing volume
parameters. (KLOC).

Expandability Ease of adding new Module,
modules. function and

unit levels.

Technicality Functionality Realization Overall Number of
system variables.

Suitability Methodology Development
volume.

Perfonnability Efficiency Number of
detected bugs.

Each quality attribute can be divided into subattributes if there many parameters
to be considered in the evaluation process. Also it is not necessary to select all the
defined attributes in the evaluation process. We assign a weighting factor W; to
each attribute depending on its impact on the overall system quality. An
evaluating rate r; will be assigned to each subattribute. The maximum rate is R;.
The total rate for a particular attribute a1 will be given by:

n

L'ii
a.= __t:L__

J n
(11)

Ll\i
i=]

95

M. El-Soudani

where n is the number of subattributes in the jth attribute. The overall quality rate
for a k selected attributes will be given by:

k
Q=IaJWJ

j=l
(12)

On the other hand; reliability measures the system non-deficiency, error
tolerance, and availability. We can consider software reliability as a probabilistic
measure of software quality. It is defined as the probability that software faults
do not cause a fault during a specific period in a specified environment. However,
the use of fault rate is sometimes misleading [8]. Some faults do not occur if
small portions of the software are tested separately. Therefore covering test is
necessary to exercise those portions of the software that have not been tested. A
number of analytical models exist to find the reliability. All these models depend on
the fault history of the software and differ only in the nature of the fault process
they consider. In communication systems another quality factor has to be
considered. This is the software service-quality that used to quantify customer
perceptions and expectations of delivered services during the trial state ofthe
developed software. Another important factor to determine the system quality is the
development cost or what is called quality cost. The cost includes all the costs that
have been spent to ensure that the software satisfies its requirements and
specifications. It is not easy to list all types of cost in the development process.
Accurate measurements of development costs are needed through the whole
development process. However, it is important to have a cost estimation before
hands at the beginning of the development process as we have done to estimate the
cost of testing. This is an important factor to improve the development process and
this requires a good understanding of the details of the process. This means that
a cost estimation model that is closely related to the development process model
should be developed. This cost model must follow the same life cycle as the
development process (requirements, design, test, etc.). It is not our concern in this
work to develop such a model, and different models are given in the literature [9].
What is important is to show that the development process model is the milestone in
any software development project.

We summarize the evaluation procedure of the developed software in the
following steps:
I- Requirements and Specifications
• Determine if the requirements and specifications can really be implemented with

the available resources.
• Identify the redundancy, if any, in the requirements to avoid overdoing the job.

96

Improving Communication Software Development Process

• Determine the final objectives for each possible requirement.
• Provide an assessment of the suitability of the development tools (design,

methodology, programming language, .. etc.).

II- Code Inspection
• Inspect the program code for each developed unit.
• Determine the number of functions per module and the number of units per

function.

III-Software Analysis
• Determine the number of variable per function as well as per module.
• Calculate the structural complexity for each module using equation (7) and then

the overall system complexity using equation (8).
• From the transfer of control commands find the utilization factor fJ for each

module.
• Find the operational complexity using equation (9).
• Estimate the average CPU-time (or number of execution cycles) per LOC using

equation (10).
• List all these in table-11 for each module.

Table 2: Code Inspection and Software Analysis

Number ofLOC.
Number of Comment lines
Number of variables
Number of common variables
Structural Complexity x
Utilization facto f-1

Number of access N a of Module j

Operational complexity Xp

IV-Fault Observations
• Find the time between faults and the cumulative number of errors during the

test period.
• Estimate the expected number of faults a and the detection rate b and use these

parameters to predict the expected fault rate during the testing period using
equations (2) or (4). For equation (4) select c according to the required quality
rate (large values of c for low fault rates).

97

M. El-Soudani

V-Quality Measurements
• Choose a suitable rating scheme (for example; 3-point system for discard, fair,

and good) to measure each quality attribute.
• Assign a weighting factor to each attribute depending on its importance in the

developed system using a table similar to Table-III.
• Determine the pass criteria (for example, small structural complexity with

moderate quality rate).
• Find the percentage of the achieved score for the overall system using equations

(11) and (12).
• If the quality rate is beyond requirement and cost of testing is less than

permissible limits, readjust the system parameters (measured factors from
table-III with low rating), otherwise discard the process.

Table 3: Quality Measurements

GROUP ATTRIBUTE MEASURED RATING MAX. WEIGHT

FACTOR RATING

Clarity Understandability
Masterability
Usability

Capability Operability
Modifiability
Expandability

Technicality Functionality
Suitability
Performability

CONCLUSION

In this work we have made use of the analogy between hardware and
software to develop a software development process model. We have also made
use of the hierarchical structure of the software to decompose the development
process into small units or jobs that are easy to design, code, and test. This
decomposition process of the software requires very restricted testing rules. Small
units in the lower level of the hierarchical structure are first tested separately to
detect code errors. When these units are integrated together to perform the required
function they are tested again at the function level. The process continues till the
whole software is tested. This complicated testing procedure is the major drawback
in the hierarchical structure, but in this way most of the bugs or faults will be
detected and filtered at early developing stages. This will considerably reduce the

98

hnproving Communication Software Development Process

development cost. The hierarchical structure does improve the system performance
and reduce the development cost. Of course the different testing stages add to the
development cost, but it is better to spend some money to detect faults at early
developing stages rather than spending much more in order to find the cause of
fault. There is always a trade-off between cost and quality. Another advantage
of hierarchical structure is that the development can be run in parallel, and this is
important in case of tight time schedule projects. In fact, there are few costs to
reduce in software development process. The only savings lie in reducing the cost
of finding defects and fixing them. In communication systems, software faults are
sometimes simple and easy to detect and find either by testing or inspection, but
the hardware interactions are not usually easy to analyze. Without a careful
inspection and testing of every portion of the software at the various testing levels,
even the detection of the software fault and supported hardware deficiency may be
insufficient to predict the magnitude or the severity of the fault.

The quality attributes defined here are mainly based on the factors affecting
software performance. Since most of these factors are common among software,
these attributes can be applied to any software. It is not necessary to consider all
these attributes. Subset of these attributes will give at least a good estimate of the
software quality. The quality measure method can be further improved if statistical
analyses of fault occurrence at each developing level in the hierarchical structure
are considered. Finally, we have to consider that a software product is a man­
made product, and people constitute an essential part of the development process.
Therefore, relation between the people and their work is a key factor.

REFERENCES

1. Bates, R.J., 1992. "Disaster Recovery Planning, Networks,
Telecommunications, and Data Communications", McGraw Hill.

2. Chung, F., 1994. "Software and Communication I: An Overview", IEEE
JSAC, Vol-12, No.1, pp. 23-32.

3. S. Dallas, J. Horgan, and J. Kettenring, 1994. "Reliable Software and
Communication II: Controlling The Development Process", IEEE
JSAC, Vol-12, No. I, pp.33-39.

99

M. El-Soudani

4. Smith, C. and L. Williams, 1993. "Software Performance Engineering: A
case Study Including Performance Comparison With Design
Alternatives", IEEE Trans. Software Eng., Vol-19, No.7, pp.720-
741.

5. Chaar, J., et al, 1993. "In Process Evaluation for Software Inspection and
Test", IEEE Trans. Software Eng., Vol- 19, No. 11, pp. 1055-
1070.

6. Goel, A., 1985. "Software Reliability Models: Assumptions, Limitations, and
Applicability ", IEEE Trans. Software Eng., Vol.-11, No.12,
pp.1411-1424.

7. Song, X. and L. Osterweil, 1994. "Experience with an Approach to
Comparing Software Design Methodologies", IEEE Trans. Software
Eng., Vol-20, No. 5, pp 364-384.

8. Miyoshi, T. and M. Azuma, 1993. "An Empirical Study ofEvaluating
Software Development Environment", IEEE Trans. Software Eng.,
Vol-19, No.5, pp.424-435.

9. Matson, J., J. Barrett, and J. Mellichamp, 1994. "Software development
Cost Estimation Using Function Points", IEEE Trans. Software
Eng., Vol-20, No.4, pp. 275-285.

100

