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ABSTRACT 

This work presents an analysis for the creep buckling problem of geometrically 
imperfect rectangular flat plates under biaxial compression with simple support 
boundary conditions. The analysis is based on a non-dimensional form of 
Donnell-type equations for a slightly imperfect flat plate. The elastic constitutive 
equations for a thin plate are employed. The basic elastic equilibrium equations in 
the middle surface displacement components are derived through the employment 
of the principle of virtual displacements. For creep deformations, Odqvist's 
constitutive equations for steady creep are employed. 

Based on the present analysis, a computer program has been developed for the 
creep buckling of flat plates. The plate ends are assumed to be simply supported. 
The applied loading is assumed to be biaxial compression. 

Numerical results are presented for imperfect isotropic plates under both unaxial 
and biaxial compression. For unaxially compressed plates, the present results are 
generally in good agreement with previous experimental and analytical results. 
Numerical results for biaxially loaded plates are finally presented. The present 
results suggest that each of the level of the axial compressive load, the amplitude of 
the initial imperfection, and the value of the biaxial load ratio greatly affects the 
creep buckling times of flat plates. 

INTRODUCTION 

In many engineering systems, structural components are required to carry loads 
while exposed to elevated temperatures. Missile, aircraft, space vehicle, and 
nuclear reactor structural components are typical examples. In such circumstances, 
the structural designer must take into consideration the time effects of creep, 
particularly the possibility of creep buckling of beams, plates, and shells. 

Creep buckling of structural components is a failure mode in which a structural 
element subjected to compressive stress collapses, or a large amount of 
deformation occurs after the passing of a finite time. In such cases, the designer 
needs to know how much time it takes for the element deflections to increase to a 
level which tends to infinity or at which the structural element can no longer 
perform its structural functions. Such time is called the critical creep buckling time. 
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In some other cases, however, creep may lead to states of deformation which cause 
buckling in the classical sense (instaneous collapse or snap through behavior). 

Inevstigations of the creep buckling phenomenon for plates were carried out by a 
number of investigators, for example (1-12). Excellent discussion of the phe­
nomenon of creep buckling is presented in (8) together with reviews for the early 
work in this area. 

Most of the previous analyses, however, are apporximate closed form solutions 
or computer based numercial solutions of the creep buckling problem of plates 
under unaxial compression and constant load and temperature conditions. In most 
of those analyses, an approximate sandwich plate is used to replace the original 
plate. Also, the simultaneous redistribution of the elastic stresses during the creep 
deformation process is not allowed for and the effect of the elastic deformations on 
the creep buckling times was only accounted for in an approximate manner, see for 
example (3, 6, 8, and 9). In addition, those analyses do not provide a suitable 
platform to account for other complicating effects such as time varying applied 
loads. 

Tvergaard (11) proposed an analysis which accounts for elastic, plastic, and 
secondary creep deformations. He implemented an incremental iterative method 
based on finite element approximations to obtain solutions. The consideration of 
plastic deformations considerably complicates the analysis. Tvergaard results, 
however, showed that accounting only for creep and elasticity was sufficient to 
obtain good agreement with previous experimental results. This result indicates 
that the effect of plastic deformations on the creep buckling times may be small 
enough to be neglected in most practical applications. A similar conclusion was 
reached by Hoff (8). 

In view of the preceding discussions, it seems worthwhile to develop an efficient 
more general creep buckling analysis which permits consideration of biaxial loading 
conditions, allows for the simultaneous redistribution of the elastic stresses during 
the creep process, avoids some of the simplifying assumptions incorporated in 
previous analyses, and provides a suitable platform for consideration of other 
complicating fa,ctors. Such an analysis is presented herein .for the creep buckling 
behavior of geometrically imperfect rectangular plates under biaxial loading 
conditions with simple support boundary conditions. The remainder of the paper 
describes the analysis and presents creep buckling times for a variety of illustrative 
examples. 
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ANALYSIS 

Elastic Deformations 

The analysis presented herein is based on a non-dimensional form of 
Donnell-type equations, for a slightly imperfect plate. The constitutive equations 
for a thin isotropic plate with moderate deformations (13), are employed. 

The strain energy of a typical plate element (Figure 1) is expressed in terms of the 
middle surface displacement components u, v, and win the x, y, and z directions, 
respectively. Applying the principle of virtual displacements, a set of three 
equilibrium equations in the displacement components can then be determined. 
The equations are coupled, non-linear, non-homogeneous, partial differential 
equations in u, v, and w. 

The nondimensional initial imperfection is taken in the form 

( 1) 

where x and y are the axial and transverse coordinates of the middle surface, 
respectively; e= W Jt is the non dimensional amplitude of the initial imperfection 
where tis the plate thickness; a and bare the plate length and width, respectively; a 
and ~ are arbitrary numbers of half waves in the axial and transverse directions, 
respectively. A solution for the non dimensional displacement components is 
assumed in the form 

Fig. 1: Notation and sign conventions for a typical plate element. 
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w(x,y) (2. a) 

N N 

u(x,y) U0 x + L L (2 .b) 
i=l j=l 

v(x,y) 
N N 

VoY + L L 
i=l j=l 

vij sin ( inx) . cos ( _irty) 
a b 

(2. c) 

In these equations, u and v are the axial and transverse displacement 
components, respectively; w is the total lateral displacement component (including 
the initial imperfection); U 0 , V 0 , Uii• Vii• and W are unknown generalized 
coordinates (coefficients); N is the number of series terms which can be taken as 
large as required. This selection of the displacement components satisfies simple 
support boundary conditions along the plate ends x = 0, a and y = O,b, namely, 

b b 

At x=O, a: w=Mx= 0; ~ f Nx. dy=-Nx; f Nxy. dy=O 
0 0 

a a 

At y=O, b: w=My= 0; ~ f NY. dx=-N;; f Nyx· dx=O 
0 0 

(3) 

where Nx=Px/b and Ny=Pyfa; Px and Py are the applied axial and transverse 
compressive loads, respectively, Nx, Ny, Mx, and My are stress resultants 
corresponding to u, v, 0x, and 0y; 0x and 0y are the rotations in the axial and 
transverse directions, respectively. Other selections of the displacement compo­
nents will yield different boundary conditions. 

Substitution of the assumed displacement field into the equilibrium equations of 
th~ plate and minimization of the resulting residuals according to the Galerkin 
method in which the weighting functions are simply the coordinate functions, leads 
to (2N2+ 1) algebraic equations in the coefficients W, Uii' and Vii where i,j = l,N 
(see equations 2). Here, the first 2N2 equations corresponding to the equilibrium 
equations in the axial and transverse directions are functions of W, Uii and Vii. The 
last equation corresponding to the equilibrium equation in the lateral direction, is a 
function of W, Uii' Vii and the external compressive load. For a specific value of 
the lateral displacement amplitude, W, the first 2n2 equations are linear functions 
of Uii and Vii· Thus, we can solve 2N2 equations in the coefficients Uii and Vii· 

Characterizing the external compressive loads by a parameter K, the value of K can 
be determined by substitution of W and the corresponding coefficients Uii and Vii 

into the remaining algebraic equation and solving for K. 
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At any stage in the creep buckling analysis, the elastic equilibrium state is 
determined through an iterative process. Knowing the value of the effective 
imperfection amplitude, a value for the lateral deflection amplitude W, is assumed. 
Employing the solution procedure outlined above, the corresponding applied load 
parameter, K, is determined. Depending on whether the determined applied load 
is larger or smaller than the actual applied load, the assumed value of the lateral 
deflection amplitude is modified accordingly, and the corresponding elastic 
solution is determined. This process is repeated until the difference between the 
values of the actual and the determined applied loads, is within a prespecified limit 
(for example, difference < = 0.1% ). 

Creep Deformations 

The analysis of creep deformations presented herein is based on the Odqvist's 
(generalized Norton's) law for steady creep (11, 14): 

(4) 

where K and mare material constants, J2 is the second invariant of the stress state. 
Equation (4) can be put in the form 

3 B n-1 S a e ij 

where 

creep strain rate components 

1 
a ii - 3 a kk c') ii 

a ii = stress components 

Kronecker delta 

3 = 3 J2 = 2 s ij s ij 

B,n =material constants 

For two-dimensional problems, equation (5) reduces to 

e: = B an;l (ax - a J2) 

e~" = B ane-l (a Y- a x/2) 
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e"xc, e;, €~ = creep strain rate components 

ax' a Y' • .Ky = elastic stress components 

n ~ creep exponent = material constant 

B = material constant 

rearranging equations (6), stress components rrx, rry, and Txy can be expressed in 
terms of the creep strain rates. 

For the case under consideration of thin plates with moderate deformations, it is 
reasonable to assume that initially plane sections remain plane during creep 
deformations, and that the effective stress rre is constant through the thin plate 
thickness. In addition, in the expression of rre higher order terms are neglected. 
This yields an approximate constant value for rre throughout the plate. In such a 
case, resultant moments can be expressed in terms of the middle surface lateral 
creep displacement rates, namely 

A C 1 A C 
.u.W,xx + 2 .u.W,yy 

1 C A C 2aw,xx + .u.W,yy 

..!awe 2 ,xy 

where ~ e/9B. f::. T is a time increment. f::. W' is assumed in the form 

awe= awe sin( a:x) .sin(~~Y) 

Also, using the elastic constitutive equations, we have 

where D=Et3/12(l-v2
), t 

Poisson's ratio. 
plate thickness, E Modulus of elasticity, v 

(7) 

(8) 

( 9) 

Next, the plate equilibrium equation in the lateral direction in terms of the stress 
resultants, is considered. Each of the two expressions for the moment resultants, 
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eqns (7) and (9), is substituted separately in the equilibrium equation. The two 
resulting equations are then subtracted from each other to get 

(10) 

Substitution of the assumed displacement components into eqn. (10) and 
minimization of the resulting residual function according to the Galer kin method in 
which the weighting function is simply the lateral displacement coordinate function, 
yields the following relation 

3BE (11) 

Equation (11) will be used in an incremental solution to estimate the time 
increment, L. T, corresponding to an incremental creep deformation amplitude, 
L. W'. At the beginning of each increment, the elastic deformation amplitude, 
W-W0 , will be calculated and substituted in equation (11) to estimate L. T. This 
process will be detailed later. 

Creep Buckling Analysis 

An incremental iterative procedure is implemented for the creep buckling 
analysis. In this analysis, we postulate that the creep deformations are effectively 
changing the plate imperfection amplitude. Consequently, creep deformations will 
cause simultaneous changes in the elastic equilibrium state and corresponding 
changes in the elastic stresses. Based on this postulation, the following, procedure 
for creep buckling analysis is implemented: 

1-Get the elastic solution corresponding to the intial imperfection. This solution 
is determined by implementing the iterative procedure outlined in section (2.1). 
The corresponding effective stress function, ae, is then estimated. 

2-Specifying a reasonably small incremental deflection amplitude due to creep, 
L. We, equation (11) is used to determine the corresponding time increment L. T. In 
equation (11), the constant B and creep exponent n are specified apriori from 
previous tests or data available for the particular material under consideration. 

3-The incremental creep deflection, L. W'; is added to the initial imperfection to 
determine a new effective imperfection for the flat plate. This imperfection is used 
in conjunction with the iterative procedure of section (2.1) to determine a new 
elastic equilibrium state (solution) and corresponding new lateral deflection 
amplitude, W, and effective stress, cre. 

4-Steps 2 and 3 are repeated, and the time increments are accumulated, until a 
critical condition, characterized by a limit on the lateral deformation amplitude, W, 
is reached. 
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NUMERICAL RESULTS 

CBAP Computer Program 

Based on the preceding analysis, a computer program called CBAP (Creep 
Buckling Analysis of Plates) has been developed for the creep buckling of flat 
plates. The plate ends are assumed to be simply supported. The applied loading is 
assumed to be biaxial compression. All the basic variables in CBAP were put in a 
nondimensionalized form. Consequently, the input data can be in any system of 
units. The program was written in Pascal and compiled using the TurboPascal 
compiler version 6. For a typical case, a single run on a 386-33 PC without a 
math-coprocessor takes less than 3 minutes to determine the corresponding creep 
buckling time. 

Illustrative Numerical Examples 

Numercial results are presented next to provide check cases, illustrate the scope 
of the present analysis, and to arrive to some important conclusions. The following 
notation is employed in the subsequent examples: 

* Geometric properties: t = thickness; a = length in axial direction; b = plate 
width; e = Woft = dimensionless initial imperfection amplitude. 

*Material properties: E = Young's Modulus; v = Poisson's Ratio. 

*Load parameters: <Tx = applied axial compressive stress= Pxltb; ay = applied 
transverse stress = Pylta; rrE = Classical Buckling stress for a square simply 
supported plate =4n2 D/tb2

; D = Et'/12(1-v~); X. = <Tx/rrE; w = <T/iix. 

*Other parameters: Tr = Reference Time = (rrE/E)/B i'fxn; B = material 
constant; n = material constant (creep exponent). 

In the following examples, an initial imperfection with a single half wave in the 
transverse direction and a half wave length in the axial direction equals the plate 
width, is considered. This selection leads to reasonably conservative estimates of 
the creep buckling times. In addition, the number of series terms in the elastic 
displacement field, N, is taken to be 3. This choice was found to be sufficient to 
accurately represent the elastic equilibrium state. Finally, in employing the 
previously outlined creep buckling analysis, a critical limit of the total lateral 
displacement amplitude was generally taken to be equal to double the plate 
thickness (unless otherwise stated). 

Axially compressed plates (Ex. 1). Experimental results for 33 test specimens 
manufactured of 2024-T3 aluminium alloy, were reported in (9). In those tests, 
sheets having a thickness of 0.020 in. and a length varying from 6 in. to 11 in., were 
bent into square boxes with side width of 1.5 in. The boxes were tested under axial 
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compression at 600° F. At this temperature, the modulus of elasticity of the 
material was found to be 7.2 x 106 psi. The use of thin walled square tubes insured 
the existence of ideal simple support conditions along the longitudinal boundaries 
of the various plate elements (y = 0 andy= b). Hoff (9) used the results of those 
experiments in conjunction with previously derived theoretical formulas to 
estimate the material constants B and n. B was found to equal 3.4x 10--7 h-- 1 (ksi)_, 
and n was found to equal 6. Figure 2 shows good agreement between creep 
buckling times predicted by the present analysis and those predicted by various 
theoretical formulas derived by Hoff and his collaborators (3, 8, 9), assuming the 
same initial imperfection amplitude, e = 0.01. To obtain the present analysis 
predictions, the values for the material constants E, v, B, and n estimated in (9), 
were used. Figure 2 also indictaes that the predictions of the present analysis 
provide a reasonably conservative envelope for the various experimental results. 

Effect of the creep exponent n (Ex. 2). In this example, a comparison is 
presented of the creep buckling times predicted by the present analysis for a thin 
plate element under uniaxial compression, with those of Hoff (9) and Tvergaard 
(11). Two cases of the creep exponent n = 3 and n = 6 were considered. Tvergaard 
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Fig. 2: Creep buckling times of axially compressed plates, example 1. 
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results are based on a finite element analysis of the creep buckling problem for two 
cases of transverse boundary conditions. The first case considered constant normal 
stress along the transverse boundaries of the plate, CTx =constant (alongx = 0 and x 
= a). The second case considered constant axial displacement along the transverse 
boundaries, Bx = constant. Figure 3 shows that the predictions of the present 
analysis are in good agreement with those of Hoff and are generally more 
conservative than those of Tvergaard. 

For the case of a creep exponent n = 6, finite critical times exist at which nearly 
verticar asymptotes appear for the lateral displacement curves. For the case of a 
creep exponent n = 3, no finite critical time exists as the lateral deflections do not 
increase suddenly beyond all bounds. However, in the vicinity of the critical 
condition (W>=2t), the lateral deflection rate increases considerably and shortly 
after, large deformations develop. Consequently, the corresponding time is a 
reasonable estimation for the creep buckling time. It is to be noted that the lateral 
deformation curve predicted by the present analysis for the case of n = 3, is similar 
in shape and trend to numerical results presented by Hoff in (8) for similar plates. 
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Fig. 3: Lateral Deflection versus time curves for square plates underl Axial 
compression, example 2. 
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Effects of the initial imperfection amplitude (Ex. 3). Figure 4 shows creep 
buckling times for plates with various initial iperfection amplitudes under unaxial 
loading conditions. Figure 4 indicates that each of the amplitude of the initial 
imperfection and the level of the applied compressive load has an apparent effect 
on the creep buckling times of plates. 

Biaxially Loaded Plates (Ex. 4). Here we consider the case of simply supported 
imperfect square plates under various levels of compressive loading and various 
biaxial load ratios. Figure 5 indicates that both the level of the applied load and the 
level of the biaxial load ratio greatly affect the creep buckling times of plates. 
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Fig. 4: Effect of the initial imperfection amplitude on the creep buckling times of 
axially compressed plates, example 3. 

CONCLUSION 

An efficient incremental analysis for the creep buckling problem of geometrically 
imperfect isotropic flat plates under biaxial compression with simple support 
boundary conditions is presented. Based on the present analysis, a computer 
program (CBAP) has been developed for the creep buckling of flat plates. 
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Fig. 5: Creep buckling times of biaxially loaded plates, example 4. 

Numerical rersults are presented for imperfect isotropic plates under both 
uniaxial and biaxial compression. For uniaxially compressed plates, the present 
results are generally in reasonably good agreement with previous experimental and 
analytical results. The present results suggest that each of the level of the axial 
compressive load, the amplitude of the initial imperfection, and the value of the 
biaxial load ratio greatly affects the creep buckling times of flat plates. 

The results indicate that the present incremental analysis provides reasonably 
conservative predictions for the creep buckling times of simply supported flat 
plates. In addition, the present incremental approach presents a suitable platform 
for creep buckling analyses under such complicating factors as time varying loads. 
This will be addressed in future work. 
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