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ABSTRACT: 

A system of Sturm-Liouiville differential equations of order n with a density matrix function is considered. The 
direct problem of the considered system is studied and hence the scattering data of the prol;>lem is obtained. 

INTRODUCTION 

We consider the system of Sturm-Liouivlle differential 
equations of order n 

-y' efQ:x)y="A:x)y, (0$;x,,oo) (1) 

{

a2 
p(x)= En, 

n, 

where 

an:5;x<an 
an:5;x<oo, (4) 

and the boundary condition 

y'(O)=O, {2) 

an >O,a0 =0, an *an+ 1,n=1,m-1,am *1 and a,. are 

the diagonal elements of a matrix of order nxn such that they 
do not coincide with the identity matrix E0 • 

where Q(x) is a self adjoint matrix function of order n with real 
elements 

The condition 

00 

J ~~Q(x)lldx < oo (3) 
0 

is assumed to hold throughout in this paper. Also, the matrix 
function p(x) has the form 

Denote by W n an L2(0,oo:p(x)) the set of the matrix functions 
p(x) and the set of all vector functions 

f(x)={f1(x),f2 (x), .... fn(x)}with elements in Lz(O,oo) 

respectively. 

In L2 (O,oo;p(x)) we introduce the scalar product 

oon 
(f,g) = J Z.fj(x)gj(x)dx 

Oj=l 

and consider that (1)-(2) arise in L2(0,oo;p(x)). 



Systems with discontinuous coefficients 

The problem (1)-(2) was investigated earlier in the scalar 
form in the papers [1.8] when p(x)=En and for the case n=1 this 
problem has been discussed in the works [2,4,5,7]. So, this 
paper is aimed to extend those previous results. 

It is well known [4] that the collection of quantities 

{s(k),-t~,Mn,n=1,m} is called the scattering data of the 

system (1)-(2), where S(k) is the scattering matrix function and 
Mn are nonnegative matrices of order n whose ranks coincide 

with the multiplicity of the eigenval~es -'t~ of the problem 

(1)-(2). This article is aimed to study the direct problem and 
hence to obtain the scattering data of the problem (1 )-(2). 

NOTATIONS 

Throughout this paper we use the following notations: 

• En is the unit matrix in n-dimensional Euclidean 
space. 

• F denotes the transposed matrix o( F. 

• F* is the adjoint matrix of F. 

• F' denotes the differentiation with respect to k. 

• IIQ(x)~ is the Euclidean norm of Q. 

1. SOLUTION OF SYSTEM (1) AND ITS SCATTERING 
FUNCTION 

We shall mainly use the basic solutions that have been in 
[8,9]. 

Every n vector solution Y(x,A.) of (1) can be written in the 
form of a quadratic matrix of order n which satisfies the 
equation 

-Y"+Q(x)Y=A.p(x)Y, o::;;x<oo (5) 

It is evident that the columns of any matrix solution of 
equation (5) are solutions of equation (1). Thus, we consider 
the matrix differential equation (5) with the boundary condition 

Y'(O) = 0 

instead of (1)-(2). 

Denote by 

k = A.112 = Jl + i't and 0 ::;; arg k < 1t 

00 00 

and a(x) = JIIQ(t)lldt; a 1 (x) = J tiiQCt)lldt. 
X X 

(6) 

Let us denote by q>n(x,k) the matrix solutions of the canonical 
equation (5) as x E [an-I, an) 

These solutions satisfy the following conditions 

{ 

q>nan -1, k =En, 'l' n (an -1, k) = 0 

q>,n(an-l,k =O, 'l'n(an-l,k)=En. 
(7) 

2 

As already known [1,4], these solutions can be represented 
in the form 

X 

'Pn(x,k)=cos ka0 (x-an_ 1)+ f An(x,t)coskan (t-an-l)dt 
(8) 

an-I 

where 

1 2x-an-l a 
An(x,x)=- J q(t)dt ,-An(x,t)lt=an 1 =0, . 2 ~ -

an-I 

and 

Lemma 1: If the condition (3) is satisfied, then for x;::;an and 
't;::;O equation (1) has a solution F(x,k) that can be represented 
in the form 

00 

F(x,k) = exp(ikx) En + JK(x,t)exp(ikt)dt, 
X 

where the kernel K(x,t) satisfies the inequality 

and the condition K(x, x) = _!_ j q(t)dt. 
. 2 X 

Moreover, if q(x) is differentiable, then K(x,t)is 
differentiable and satisfies both the equation 

a 
2

K(x,t) _ ( )K( ) '------
2

- - q X X, t 
at 

and the condition lim aK(x, t) = lim aK(x, t) = 0. 
X+t-7oo ax X+t-7oo at 

(9) 

twice 

The solution F(x,k) is an analytic function of k in the upper 
half plane 't > 0 and is continuous on the real line. This solution 
has the following asymptotic behaviour 

F(x,k) = exp(ikx)[En +o(l)], F'x (x,k) = (ik) exp (ixk) [En +o(l)] 

as x ~ oo for all 't ;::; 0, k :;t: 0. 

Also, 

F(x,k) = exp(ikx)[En +0(_!_)], F'x (x,k) = (ik) exp (ixk) [En +0(_!_)] 
k k 

asikl---t oo and for all 't 2:: 0. 

Next, if we continue the solution F(x~k) of the equation (1) to 
the interval [an-l,an) thus we find the following asymptotic form 
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) 

First we introduce the concept of the Wronskian of a pair of 

solutions of system (1). Denote by W[<j>m'l'nl the Wronskian of 
two matrix solutions <i>n(x,k) and 'l'n(x,k) such that 

The following property can be easily shown: 

Lemma 2: The Wronskian of two matrix solutions of (1) does 
depend on x. 

Next, since the matrix solutions F(x,k) and F(x;-k) are 
linearly independent as t=O, thus, we have 

<i>n (x, k) = F(x, k) CI (k) + F(x,-k)C 2 (k), 

where C1(k) and C2(k) are matrices of order n, which we have 
to find. For this purpose, we have 

F(an-1.k) CI(k)+F(an-1>-k)C2(k)=E... 

and 

F'(an-I,k) CI(k)+F'(an·J.-k)C2(k)=O. 

-
Multiplying the first equality from the left by F'(an-I, -k) and 

-
the second equality by F(an-I, -k) we obtain 

I - 1 -
CI(k)=--F'(an-I -k). and Cz(k)=-F'(an-Ik). 

2ik ' 2ik ' 

Thus 

Since 

F'(an-I ,-k) F' (an-I, k) = F' (an-I, k) F' (an-I ,-k). 

Let det F'(an.J.k) = 0 as t = 0 , k :t:. 0 

~ 

Thus, we find a vector v ::/:. 0 such that 

~ * * 
F'(an-I•k) v >'0 and vF' (an-I•k) =0 

Evidently, 

F* (x, k)F (x, k)- F*' (x, k)F(x, k) = 2ik En. 

~* 

Multiplying this equality from the left by v and from the right 

by v , we have 
I 

3 

*[* * ]~ ~· ~ v F(x,k)P(x,k)-F'(x,k)F(x,k) v = v 2ikEn v. 

Setting x=an-I, we get 

~~ ~ ~ 

v * v = 0. Then, ifF '(an-I•k) v = 0 we find v = 0 

which leads to a contradiction. 

Thus for all x ~ an-I and t = 0, k ::/:. 0 the matrix function 

F'(x,k) is non singular. 

Hence 

I -
cn0 (x,k) = -[F(x,-k)- F(x,k)S(k)]F'(a

0
_1 k), 

"!' 2ik . 
where (11) 

S(k) = F(an-1,- k)[F(an-1,k)r1 

is called the scattering matrix of equation (5) with the initial 
conditions (7). 

Hence: 

Theorem 1: The identity 

2ik<pn (x, k) = F(x,-k) -S(k)F(x, k), 

F'(an-I ,k) 

where 

S(k) = F (an-1 ,-k)[F' (an-I ,-k]-1. 

is valid for all real k ::/:. 0. 

(I2) 

(13) 

The scattering matrix S(k) satisfies the following properties: 

* * (i) S(k) S(k) = S(k)S(k) =En, 

* 
(ii) S(-k) = S(k). 

Here, taking into account formulas (8), (9) (IO) and (II) we 
can prove that: 

Theorem 2: For large real k, I k I~ oo the following asymptotic 
form holds 

1 
S(k) = S0 (k) + 0(-), 

k 

where 

S 0 (k) = exp ( -2ik an )[sin k <Xn (an- an-I) 

(14) 

+ia~ 1 cos kan(an-an-l)][sin kan(an-an-J)(15) 

1 
-ia~1 cos kan(an -an-J)]+O(k) 
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2. THE DISCRETE SPECTRUM AND PARSEVALS 
EQUATION 

We consider the signal boundary value problem arising 
from the canonical equation (5) with the conditions (3), (4) and 
(6). 

Theorem 3: The necessary and sufficient conditions that 4 0 
be an eigenvalue of the problem (5)-(6) are 

A=k2
,'t > 0, det F'(a0.J,k)= 0. 

They are countable in number and its limit points can be on the 
real axis. 

This theorem can be proved via [1,5]. 

Theorem 4: All the singular points of the matrix [F' (0 • 1,k)r1 are 
all simple. 

Proof" By differentiating the equation 

-F"(x,k)+q(x)F(x,k)=k' p(x)F(x,k) (16) 

with respect to k, and taking the Hermitian conjugates of the 
matrices, we have 

* * - * 2 -[F (x,k)]"+q(x)F (x,k)=2kp(x)F (x,k)+k F(x,k) (17) 

Multiplying (16) from the left by F*(x,k) and (17) from the 
right by F(x,k) and subtracting, we obtain 

F'* (x, k)F" (x, k)- [F'* (x, k) r F(x, k) = -2k p* (x, k)F(x, k). 

Since the elements of F'(x,k) and F(x,k) lie in L2(0, oo,p(x)) 
thus it yields 

* [ * ]' 00 * F (x,k)F(x,k)- F (x,k) F(x,k)=2kJ F (t,k)p(t)F(t,k)dt 
X 

(18) 

Suppose that the point ko = it0 , to > 0 be a zero of 

~ 

det F (a n-l , k 0 ). Then there exists a non zero vector v such 
~ 

that F'(a0.J,k) v = 0. (19) 

~ 

Multiplying (18) on the right by v *and letting x goes to an-b 
we get 

= ---> ---> 
(20) 

=2k Jv*F*(t,k)p*(t)F(t,k) v dt. 

From the behaviour of F(x,k); F*(x,k) and using the mean value 
theorem, we have 

~ [ * ] ~ v* F' (a 0 _ 1,k)' IF'(a
0

_1,k) v 

00 ~ ~ 

= -2k J F*(t, k) v *Ip * (t)F (t, k) v dt :;t: 0 
(21) 

~ 

Suppose that v not only satisfies ( 19) but also the relation 

4 

~ ~ 

F(a 0 _ 1,ko)w+F(an-l•ko) v =0. (22) 

Here, along the Hermitian conjugate and multiplying on the 
~ 

right by IF (a0 _J, k0 ) v, we have 

~ ~ ~ [ * ]' ~ w*[F'*(a0 -J.k)]IF(a0 _ 1,k) v+ v* F" (a0 _ 1,k) IF(a0 _ 1,k) v = 0 

(23) 

In view of [1] and the Wronskian ofF(x,k);F*(x,k) we have 

[F* (a0 _J,k)]IFCan-l•k) = [F"*(an-l•k)]'IF'Can-J>k) = 0 

Then by (19), we have 

Therefore (23) takes the form 

which contradicts (21). Hence it follows from equations (19) 
~ 

and (22) that v = 0 and this completes the proof of the 
theorem. 

Lemma 3: When 't >0, the matrix function 

t ~X 
(24) 

t :2: X 

is the kernel resolvent of the problem (5)-(6). 

Proof" We can find Greens function of the problem (5)-(6) by 
using the method of variation of parameters and thus the 
resolvent is in the form (24). 

Lemma 4: Suppose that the vestor function f(t) is finite and has 
a continuous derivative in L2(0,oo;p(x)) and satisfies the 
boundary condition (6). Then 

oo -f(x) 1 oo 

J R k (x, t)p(t)f(t)dt = - 2-+2 J R k (x, t)g(t)dt, 
0 k k 0 

where g(t) = -f' (t) + Q(t)f(t). 

Moreover, if 't > 0 and lkl ~ oo, then 

oo -f(x) ( 1 ) JRk(x,t)p(t)f(t)dt=-2-+0 -.-
o k k 2 

(25) 

', 

Proof" Using formula (24) we get 
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00 

J R k (x, t)p(t)f(t)dt =p-I (an-I, k){F(x, k) 

[

X 1- 1 - l J [ -2<p"(t, k) +2Q(t) <p(t, k)]f(t)dt 
an-I k k 

00

{ 1 - 1 - } } +<p(x.~)! -kZF"(x,k)+kZQ(t)F(t,k) f(t)dt. 

Integrating this identity by parts, and taking into account 
Riemman-Lebsegue theorem, it yields that 

J R k (x, t)g(t)dt = o(1). Hence (25) follows directly. 
an-I 

The following lemma is well-known: 

Lemma 5: Rk2 = Rp. 

With the help of these lemmas we can prove the following 
theorem: 

Theorem 5: The following Parsevals equation is valid: 

1 oo m 
- J u(x,k)u*(t,k)dk+ L u(x.i'tn)u *(t,i 'tn) 
21t a n=l n-1 (26) 

= 8(x- t)p -I (x)En, 

where 

u(x, k) = F(x,-k)- S(k)F(x, k) 

and 

such that Mt. M2, ••••• , Mn:Yare non negative matrices. 

Proof" Suppose that f(x) satisfies the conditions of lemma 4. 
Thus (25) holds. Integrating both sides of (25) with respect to k 

over the semi-circle {k:l~ = r,r > 0} in the upper-half plane 

k>O. It is evident that the integral J Rk (x, t)p(t)f(t)dt is an 

analytical function except the zeros of det F' (an-I, k). 

Hence, upon using [3], we find that 

1 00 00 

f(x) =--:- Jk J[Rk+io(x,k)-Rk-io(x,k))p(t)f(t)dtdk 
ltl an-I an-I 

+ .¥1Re{ 2k '~~ t(x, t)p(I)f(t)dl:; '• 

(27) 

5 

Next, let us compute the first quantity in the right-hand side of 

equation (27). By lemma 5 it follows that Rk-iO = Rk+iO· 

Then, we can compute Rk+iO and thus Rk-iO at once. Therefore, 
using (24) we obtain 

R ( ) R ( )
_<pn(x,k)2ik<p:(t,-k) 

k+iO X, t - k-iO X, t - * , 
W(k)W (-k) 

where W(k) = det F(an _1, k) 

Thus, taking into account (12) we have 

* 
R ( ) R ( ) 

_ u(x,k)u (t,-k), 
k+iO x,t - k-iO x,t - . 

-2Ik 
2ik<pn (X, k) 

where u(x, k) * = F(x,-k)- S(k)F(x, k). 
w (-k) 

Hence 

1 00 00 

--:- Jk J[Rk+iO(x,k)-Rk-iO(x,k))p(t)f(t)dtdk 
1tl an-I an-I 

1 00 00 

=- Jdk Ju(x,k)u*(t.-k)p(t)f(t)dt. 
21t an-I an-I 

(28) 

Now we compute the second quantity on the right-hand side 
side of (27). From (24) we have 

R~s [k jRk(x, t)p(t)f(t)dtl = 
k=l"tn an-I 

= 2i 't0 [F(x,i 't0 )P0 1 j;(t,i 't0 )p(t)f(t)dt 
an-I 

(29) 

+ <p(x,i 't0 ) II Pn F(t,i 't0 )p(t)f(t)dt] 

where P0 is the residue of F-1 (an-I, k) at k = i 'tn. 

Since F'(ao-hk) is an analytical function for 't > 0 and 

F 1 (an-I, k) has a simple poles at i 't0 , then the following 

relation is valid 

and 

p-1 (an-I' k) 

From (30) and the relation 

F(a0 _ 1,k)F-1(a0 _ 1,k) = F-1(a
0

_ 1,k)F(a
0
_.,k) = E

0 

it yields that 

(30) 

F'(an-l•k)Pn (0) 
En= . +F(an-l•k)Pn +F(an-l•k)Pn + .... 

k-1 'tn 

Hence 
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P(an-1•k) Pn =PnP.(an-1•k) =0 and 

P(an-1•k) Pn +P(an-1•k) p(O) = PnP(an-1•k) 
n 

(31) 

Let Hn be the operator of orthogonal projection onto Pn. It is 
easy to show that [3] the ranks of Hn and Pn are the same and 
that HnPIFP n. From ( 18}, we have 

F* (x, i 'tn)P (x,i 'tn) -[F* (x,i 'tn) r.F(x, i 'tn) 

co 
= -2kJF*(t,i 'tn)P(t)F(t,i 'tn)dt 

X 

Thus, we have for x = an-1 that 

= -2i'tn J F*(t, i 't 0 }p(t)F(t, i'tn) dt = -2i 't nAn. 
(32) 

an-I 

Clearly, An is a positive definite matrix. Multiplying 

equation (32) on the left by P: and on the right by Hn and 

taking into account that F' (a n-1 , i 't n ) H n = 0 to have 

(33) 

Since the matrix function F(x, i 't n) Hn and q> (x,i t 11) are the 

solutions of the same equation, thus we have 

F(x,i 'tn)Hn =q>(x,i 'tn)F(an-1 ,i 'tn)Hn. (34) 

It follows from (31) and (33) that 

* *' PnF (an-1 ,i't 0 ) IF(an-1•i 'tn)Hn 

= [En - p:(O)F*' (an-1 'i't n) ]F(an-1' i't n )H n. 

- F( . )H p*(O)F*'( . F . - an-1• 1'tn n- n an-1•l'tn) (an-1•l'tn)Hn 

= F(an-1 ,i 'tn)Hn. 

Therefore, equation (33) takes the form 

F(an_1 ,i 'tn }Hn = 2i 't 0 P:A 0 H 0 . 

Now, from (34) we have 

F(x, i 'tn)H 0 = q>(x, i 'tn)F(an-1, i 'tn)Hn 

= 2i 'tn q>(x,i 't 0 )P:AnHn 

= 2i 't 0 q>(x,i 't 0 )IP:[HnAnHn +En- Hn] 

= 2i 't 0 q>(x, i 't n )IP:Dn, 

where 

(35) 

Clearly, D0 Hn = H 0 Dn and D0 are positive definite matrices. 

Thus, there exists a matrix M~ = HnD~1 = HnD~1 which is 

6 

nonnegative and its rank is the same rank as Hn i.e. the 
multiplicity of the zeros of det F'(a,....,k). 

Multiplying both sides of (35) on the left by D;1 to have 

F(x,i 'tn)M~ =2i 'tnq>(x,i 't 0 )P;. We multiply both sides of 

this formula on the right by F( t, i 't n) to give 

2i 'tn q>(x,i 'tn)I Pn F(t,i 't0 ) = F(x,i 'tn)M~F*(t,i 'tn)· 

Thus it follows from (29) that 

.~ :.[ 2k .!~ .c x, t )p( t)f( t)dt l 
= F(x, i 'tn )M~ j F* (t, i 'tn )p(t)f(t)dt. 

an-I 

Hence, by (28) and (36) we conclude that 

1 coJ coJ u(x, k)u *(t,-k)p(t)f(t)dt 
f(x)=- dk 

21t an-I an-I 

+F(x,i'tn)M~ jF* (t,i 'tn)P(t)f{t)dt. 
an-I 

(36) 

Then multiplying both sides of the last formula by f(x)p(x) and 
integrating from an-t to oo to obtain Parsevals equation (26) and 
the theorem is proved. 

The collection of quantities {S(k), i -r n, Mn, n = 1, m} is 

called the scattering data of the problem (1)-(2). 
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