THE ONE DIMENSIONAL INVERSE SPECTRAL PROBLEM OF A
GENERALIZED STATIONARY SCHRÖDINGER EQUATION

F. A. MEGAHED and A.A. DARWISH
Department of Mathematics, Faculty of Science, University of Qatar, Doha, Qatar.

ABSTRACT

In this paper we study the inverse problem on the half line for a generalized stationary one dimensional Schrödinger equation. We consider the solutions of the differential equation and study its properties. Given the spectral distribution function, we solve the inverse problem.

Key Words: Inverse problem, stationary Schrödinger equation, spectral function, Parseval's equality, discontinuous coefficient.

INTRODUCTION

Consider, in the space $L_2 (0, \infty; \rho(x))$, the generalized stationary Schrödinger equation

\[
\frac{d^2}{dx^2} u(x) - q(x) + \lambda \rho(x) u(x) = 0
\]

and

\[
\rho(x) = \begin{cases} \sum a_n x^{\alpha_n-1} & \text{if } x < 0, \\ a_n x^{\alpha_n-1} & \text{if } 0 \leq x < 1, \\ \sum a_n x^{\alpha_n-1} & \text{if } x \geq 0, \end{cases}
\]

where $a_n > 0$, $a_0 \neq 0$, $\alpha_n \neq \alpha_{n+1}$, $\alpha_n \neq 1$ and λ is a constant. Let W_n be the set of functions $\rho(x)$. Also denote with $L_{1,1}$ the class of potentials.
The inverse problem can be stated as follows: knowing the spectral distribution function of (1)-(2), can we reconstruct equation (1), i.e., can we determine the potential \(q(x) \) and the density function \(p(x) \)? The boundary value problem (1), (2) was discussed in [1, 2, 5, 8] for the case \(p=1 \) and \(u(0) = 0 \), and the coefficients was investigated in [4, 9, 11]. In [12] the inverse problem of (1), (2) was investigated using the scattering data by employing the technique of the spectral distribution function.

Preliminaries

In this section, we give some results for the case \(p(x) \in W_n \) which will be used in the subsequent sections. Denote with \(\phi(x,\lambda), x \in [0, a_1] \) the solution of equation (1) which satisfy

\[
\phi(0,\lambda) = 1, \quad \phi'(0,\lambda) = 0
\]

and with \(\psi(x,\lambda) \) the solution of (1) which satisfy

\[
\psi(0,\lambda) = 0, \quad \psi'(0,\lambda) = 1
\]

To obtain these solutions, we shall use the results of [7, 8]. Let \(p(x) \in W_1; \, a_1 = \alpha, a_0 = 0, \) and \(q \in L_{\alpha,1} \) then we have

\[
\phi(x,\lambda) = \cos(\sqrt{\lambda} x) + \int_0^x A(x, t) \cos(\sqrt{\lambda} t) dt; 0 \leq x \leq a_1,
\]

(7)

where the kernel \(A(x, t) \) has summable derivatives \(A_n, A_n \), and

\[
\frac{dA(x, t)}{dx} = \frac{1}{2} q(x) \text{ and } \frac{\partial A(x, t)}{\partial x} \bigg|_{x=0} = 0
\]

This solution \(\phi(x,\lambda) \) is an entire function of \(\sqrt{\lambda} \) for any fixed \(\alpha \). Moreover

\[
\phi(x,\lambda) = \cos(\sqrt{\lambda} x) \left[1 + O\left(\frac{1}{\sqrt{\lambda}} \right) \right] \text{ as } \text{Im} \sqrt{\lambda} \geq 0, \sqrt{\lambda} \to \infty
\]

Uniformly with respect to \(\sqrt{\lambda} \) on \([0, a_1]\)

The second solution \(\psi(x,\lambda) \) of equation (1) is given by

\[
\psi(x,\lambda) = \frac{\sin(\sqrt{\lambda} x)}{\sqrt{\lambda}} \left[1 + O\left(\frac{1}{\sqrt{\lambda}} \right) \right] + \int_0^x B(x, t) \frac{\sin(\sqrt{\lambda} t)}{\sqrt{\lambda}} dt; 0 \leq x \leq a_1,
\]

(8)

where the kernel \(B(x, t) \) has summable derivatives \(B_n, B_n \), and

\[
\frac{dB(x, t)}{dx} = \frac{1}{2} q(x) \text{ and } B(x,0) = 0
\]

This solution \(\psi(x,\lambda) \) has also the property that it is an entire function of \(\sqrt{\lambda} \) for \(\text{Im} \sqrt{\lambda} \geq 0, \sqrt{\lambda} \to \infty, \)

Moreover

\[
\psi(x,\lambda) = \frac{\sin(\sqrt{\lambda} x)}{\sqrt{\lambda}} \left[1 + O\left(\frac{1}{\sqrt{\lambda}} \right) \right]
\]

uniformly with respect to \(\sqrt{\lambda} \) on \([0, a_1]\).

The proof of the following lemma has been done in [7].

Lemma 1

If condition (4) is satisfied for any \(\lambda \) from the upper half plane then equation (1) has a solution \(F(x,\lambda) \) which can be written in the form

\[
F(x,\lambda) = \exp(i\sqrt{\lambda} x) + \int_0^x K(x, t) \exp(i\sqrt{\lambda} t) dt; a_1 < x < \infty,
\]

(9)

The kernel \(K(x, t) \) is twice differentiable and satisfies the equation

\[
\frac{\partial^2 K(x, t)}{\partial x^2} - \frac{\partial^2 K(x, t)}{\partial t^2} = q(x) K(x, t),
\]

(10)

and the conditions

\[
\frac{dK(x, t)}{dx} = -\frac{1}{2} q(x), \quad \lim_{x \to \infty} \frac{K(x, t)}{t} = 0
\]

(11)

The solutions \(F(x,\lambda) \) is analytic in the upper half plane \(\text{Im} \sqrt{\lambda} > 0 \) and continuous on the real line. The asymptotic behaviour of the solution is

\[
F(x,\lambda) = \exp(i\sqrt{\lambda} x) \left[1 + O(1) \right];
\]

\[
F_x(x,\lambda) = i\sqrt{\lambda} \exp(i\sqrt{\lambda} x) \left[\sqrt{\lambda} + o(1) \right],
\]

as \(x \to \infty \) for all \(\text{Im} \sqrt{\lambda} \geq 0, \sqrt{\lambda} \neq 0. \)

The proof of the following lemma could be obtained from [12].
Lemma 2

The boundary value problem (1)-(2) has a finite number of negative eigenvalues and they are all simple.

The main results

Lemma 3

Let \(f(x) \) be a finite function which has a continuous derivative in \((0, \infty, \rho(x)) \) and satisfies the boundary condition (2). Then

\[
\int_0^\infty f^2(x) \rho(x) dx = \frac{1}{\pi} \int_0^\infty \frac{|F(\sqrt{\lambda})|^2 \sqrt{\lambda}}{W(\sqrt{\lambda}) W(-\sqrt{\lambda})} d\lambda + \sum_{n=1}^\infty c_n F^2(\sqrt{\lambda} n),
\]

where

\[
F(\sqrt{\lambda}) = \int_0^\infty f(x) \phi(x, \sqrt{\lambda}) \rho(x) dx, \quad c_n = -\frac{2\sqrt{\lambda}}{\int_0^\infty f(x) \phi(x, \sqrt{\lambda}) dx}.
\]

and \(w(\sqrt{\lambda}) = f'(0, \sqrt{\lambda}) \).

Proof:

The resolvent \(R_\lambda \) of (1)-(2) can be written in the form

\[
R_\lambda (t) = \frac{-1}{F'(0, \sqrt{\lambda})} \begin{cases} \int_0^\infty \phi(t, \sqrt{\lambda}) F(\sqrt{\lambda}) \phi(x, \sqrt{\lambda}) \rho(x) dx, & t < x \\ \int_0^\infty \phi(t, \sqrt{\lambda}) F(-\sqrt{\lambda}) \phi(x, -\sqrt{\lambda}) \rho(x) dx, & t > x \end{cases}
\]

(12)

Thus we have

\[
R_{\lambda,+0} - R_{\lambda,-0} = w(\sqrt{\lambda}) w(-\sqrt{\lambda}) u(t, \sqrt{\lambda})
\]

and

\[
w(\sqrt{\lambda}) = f'(0, \sqrt{\lambda}).
\]

Upon implementing the method of Titchmarsh [10], hence we obtain

\[
f(x) = \frac{1}{2\pi i} \int_0^\infty d\lambda \left\{ R_{\lambda,+0} (x, t) - R_{\lambda,-0} (x, t) \right\} \rho(t) f(t) dt + \sum_{n=1}^\infty \text{Res} \left(\frac{2\sqrt{\lambda}}{\pi} \frac{R(x, t, \lambda) \rho(t) f(t) dt}{w(\sqrt{\lambda}) w(-\sqrt{\lambda})} \right) \]

\[
= \frac{1}{\pi} \int_0^\infty \frac{u(x, \sqrt{\lambda}) F(-\sqrt{\lambda}) \sqrt{\lambda}}{w(\sqrt{\lambda}) w(-\sqrt{\lambda})} d\lambda + \sum_{n=1}^\infty c_n F(\sqrt{\lambda} n) \phi(x, \lambda_n) F(\lambda_n)
\]

Multiplying both sides by \(f(x) \rho(x) \) and then integrating from 0 to \(\infty \) with respect to \(x \), we obtain

\[
\int_0^\infty f^2(x) \rho(x) dx = \frac{1}{\pi} \int_0^\infty \frac{F(\sqrt{\lambda}) F(-\sqrt{\lambda}) \sqrt{\lambda}}{w(\sqrt{\lambda}) w(-\sqrt{\lambda})} d\lambda + \sum_{n=1}^\infty c_n F(\sqrt{\lambda} n) \phi(x, \lambda_n) F(\lambda_n)
\]

\[
= \frac{1}{\pi} \int_0^\infty \frac{F(\sqrt{\lambda}) \sqrt{\lambda}}{w(\sqrt{\lambda}) w(-\sqrt{\lambda})} d\lambda + \sum_{n=1}^\infty c_n F^2(\sqrt{\lambda} n),
\]

which completes the proof of the lemma.

The following lemma could be proved using the previous one.

Lemma 4

The following Parseval's equation holds

\[
\frac{1}{\pi} \int_0^\infty u(x, \sqrt{\lambda}) \sqrt{\lambda} u(t, \sqrt{\lambda}) d\lambda + \sum_{n=1}^\infty c_n u(x, \sqrt{\lambda_n}) u(t, \sqrt{\lambda_n})
\]

\[
= \int_{-\infty}^\infty u(x, \sqrt{\lambda}) u(t, \sqrt{\lambda}) d\sigma(\lambda)
\]

where

\[
\sigma(\lambda) = \begin{cases} \frac{1}{\pi} \int_0^\lambda \frac{d\lambda}{w(\sqrt{\lambda}) w(-\sqrt{\lambda})}, & \lambda \geq 0 \\ -\sum_{n=0}^\infty c_n \frac{4\lambda}{w(\sqrt{\lambda_n})^2}, & \lambda < 0 \end{cases}
\]

and

\[
c_n = \frac{4\lambda_n}{w(\sqrt{\lambda_n})^2}
\]

Corollary 1:

As \(q(x) = 0 \), and using formula (12), we get

\[
\sigma_0(\lambda) =
\]

203
Inverse Scattering Problem

\[\rho\left(\sqrt{a_i^2 - \sqrt{a_i a_1}}\right) + \cos^2\left(\sqrt{a_i a_1}\right) = 1, \lambda \geq 0 \]
\[0, \quad \lambda < 0. \]

Lemma 5

(i) In formula (7), the kernel \(A(x,t) \) satisfies the fundamental equation

\[F(x,t) + A(x,t) + \int_0^x \text{d} F(x,s) F(s,t) \text{d} s = 0, 0 \leq t \leq x < a_1, \]

\[\text{(13)} \]

where

\[F(x,t) = \frac{\partial^2}{\partial x \partial t} \int_{-\infty}^\infty \frac{\sin(\alpha t \sqrt{\lambda}) \sin(\alpha t \sqrt{\lambda})}{\lambda} d\tau(\lambda), \]

\[\tau(\lambda) = \begin{cases} \sigma(\lambda) - \sigma_0(\lambda), & \lambda \geq 0 \\ \sigma(\lambda), & \lambda < 0 \end{cases} \]

and

\[\sigma_0(\lambda) = \begin{cases} \frac{1}{\pi} \int_0^\infty [\alpha^2 \sin^2(\alpha t \sqrt{\lambda}) + \cos^2(\alpha t \sqrt{\lambda})]^{-1} d\lambda, & \lambda \geq 0 \\ 0, & \lambda < 0. \end{cases} \]

(ii) The integral equation (13) has one and only one solution \(A(x,t) \) defined on \(0 \leq t \leq x < a_1 \).

Lemma 6

(i) The kernel \(B(x,t) \) of formula (8) satisfies Gelfand-Levitan equation.

\[H(x,t) + B(x,t) + \int_a^x B(x,s) H(s,t) \text{d}s = 0, a_1 \leq t \leq x < \infty, \]

\[\text{(14)} \]

where

\[H(x,t) = \frac{\partial^2}{\partial x \partial t} \int_{-\infty}^\infty \frac{\sin(\sqrt{\lambda} x a_1) \sin(\sqrt{\lambda} t a_1)}{\lambda} d\tau_\lambda(\lambda), \]

and

\[\tau_\lambda(\lambda) = \begin{cases} \sigma_\lambda(\lambda) - \frac{2\sqrt{\lambda}}{\pi}, & \lambda \geq 0 \\ \sigma_\lambda(\lambda), & \lambda < 0. \end{cases} \]

Equation (14) has a unique solution \(B(x,t) \) as \(a_1 < t < x < \infty \)

Proof

Since \(\phi(x,\lambda) \) and \(\psi(x,\lambda) \) are solutions of equation (1) together with the initial conditions (2), hence we take \(\phi_\alpha(x,\lambda) \) and \(\psi_\alpha(x,\lambda) \) as the solutions at \(x = a_1 \). Also, denote by \(m_\alpha \) the Weyl’s function [5,7,8] of (1)-(2) and \(m_\alpha \) the Weyl’s function of (1) together with the initial condition \(y'(a_1) = 0 \). Thus, we have

\[F(x,\lambda) = \phi(x,\lambda) + \psi(x,\lambda) m_\lambda(\lambda) \]

\[f_\alpha(x,\lambda) = \phi_\alpha(x,\lambda) + \psi_\alpha(x,\lambda) m_\alpha(\lambda) \]

Since \(f(x,\lambda) \) and \(f_\alpha(x,\lambda) \) are independent solutions as \(x > a_1 \), hence we have \(f_\alpha(x,\lambda) = f(x,\lambda) \gamma(\lambda) \). Thus

\[m_\alpha(\lambda) = \left[\phi'(a_1,\lambda) + \psi'(a_1,\lambda)m_\lambda(\lambda) \right] \gamma(\lambda) \]

and

\[1 = \left[\phi(a_1,\lambda) + \psi(a_1,\lambda)m_\lambda(\lambda) \right] \gamma(\lambda). \]

Hence

\[m_\alpha(\lambda) = \left[\phi'(a_1,\lambda) + \psi'(a_1,\lambda)m_\lambda(\lambda) \right]^{-1}. \]

This function is to be used to find the spectral function of equation (1) through the relation

\[\sigma_\lambda(\lambda) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \text{Im}(m_\lambda(s + i\epsilon)) \text{d}s \]

Thus equation (14) can be obtained as in [5, 6, 7]. One can also prove the uniqueness of \(B(x,t) \) using [8].

Theorem 1: (Uniqueness Theorem)

If the condition (3) is satisfied and \(\rho(x) \in W_n \), then by using the spectral function \(\sigma(\lambda) \) of (1)-(2), the potential function \(q(x) \) and \(\rho(x) \) can be defined uniquely.
Proof

It is evident that if $a_1 \neq a_2$ and $\alpha_1 \neq \alpha_2$ then the function

$$\sigma_{0}(\lambda, a_1, \alpha_1) \sigma_{0}^{-1}(\lambda, a_2, \alpha_2)$$

has no limit as $\lambda \to \infty$.

Therefore the asymptotic behaviour of $\sigma_{0}(\lambda, a_1, \alpha_1)$ as $\lambda \to \infty$ determines a and α uniquely. Hence the function $p(x)$ can be reconstructed uniquely. Here it should be mentioned that this case is true for $p(x) \leq w_n$. From lemma (3) we have already deduced the fundamental equation (13), $0 \leq x < a_1$, by using the spectral function $\sigma_{0}(\lambda)$. Moreover, and in view of lemma (3), equation (13) has the unique solution $A(x, t)$ as $0 \leq x \leq a_1$ on the form

$$q(x) = 2 \frac{dA(x, x)}{dx}$$

Thus, the function $q(x)$ is defined uniquely as $0 \leq x \leq a_1$. From lemma (4) we have

$$q(x) = 2 \frac{dB(x, x)}{dx} \text{ as } a_1 < x < \infty.$$

Hence, we conclude that the equation (1) can be reconstructed on the interval $(0, \infty)$ and the theorem is now completely proved.

REFERENCES

