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ABSTRACT 

The exact equilibrium distribution of the number of molecules of C in the reversible chemical reaction A+ B ~ C is shown to 

converge to the binomial distribution when N is finite, "· 

M->x, K->0 in such a way that KM is finite, where M, Nand K are respectively, the total number of molecules of A, the total 

number of molecules Band the ratio of the forward to the backward reaction rates, K 1/K2 • The practical implication of this limiting 
condition have been investigated by numerically computing the two distributions for a wide range of values of the parameters. 

Under the same conditions, the transient distribution of C(t), the number of C molecules at timet, is shown to be approximately a 

convolution of two binomial distributions. 

INTRODUCTION 

The reversible chemical reaction 

A+B~C 
"' 

(1.1) 

has received much attention (cf. eg. Darvey et al. (1966), Staff 
(1967), Oppenheim et al. (1969), Thakur et al. (1978), Formo­
sinho and Miguel (1979). It is one of four basic reactions 
described by McQuarrie (1967) in his survey paper on the 
stochastic approach to chemical reactions. In this approach the 
quantities of the reactants present at any time are treated as 
random variables and the course of the reaction is determined by 
finding the distributions of these random variables. The equilib­
rium distributions are easy to obtain but are computationally 
demanding. On the other hand an exact solution of the 
differential difference equation governing the reaction seems to 
be out of reach. 

3 

Various approximations of the equilibrium solution have been 
considered. A normal approximation derived by Dunstan and 
Reynolds (1981) is reported to give accurate results in a range of 
values of interest when compared with the exact solution. Hall 
(1983) derived explicit conditions on the parameters under which 
the normal approximation is valid. Hall also considered a 
number of limiting situations that lead to the Bessel and Poisson 
distributions. Reference is made there to other efforts towards 
approximations. The approximations of Dunstan and Reynolds 
and Hall cover all the four basic reactions: 

A+B~C; A+B~C+D; 2A ~C; 2A~C+D. 

Here we derive a binomial approximation of the exact 
equilibrium distribution confining ourselves only to the reaction 
(1.1). The exact equilibrium distribution and its binomial 
approximation are compared for a wide range of parameter 
values using a FORTRAN program written for that purpose. 
The program works out the complete distribution for the two 
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cases. To facilitate comparison the output consists only of the 
means, variances and selected standardized tail quantiles. A 
summary of the results of the numerical comparison is pre­
sented. We also consider the transient distribution under the 
same limiting conditions and show that it can be approximately 
by a sum of two independent binomial variables. 

ASSUMPTIONS AND BASIC RESULTS 

Let 

A(t) = number of molecules of type A at time t, 
B(t) = number of molecules of type B at time t, (2.1) 
C(t) = number of molecules of type C at time t, 

Then we have the following relations 
A(t)+C(t) = M, 
B(t)+C(t) = N, 

(2.2) 

where M and N are the total number of molecules of type A and 
type B respectively. Thus, we have three random variables 
satisfying two relations. To describe the reaction we need to find 
the distribution of only one of them. We choose C(t). It is worth 
metioning here that the parametrization of the problem adopted 
here is different from the one usually followed but is suitable for 
our purpose. For the ususal parametrization see Dunstan and 
Reynolds (1981) or Hall (1983). 

The usual assumptions for modelling the reaction as a 
stochastic process are as follows: 

In any small interval of time (t, t+h) 

(i) the probability of an AB association Is 
K 1A(t)B(t)h+o(h), 

(ii) the probability of a dissociation of a molecule of C is 
K2C(t)h+o(h), and 

(iii) the probability of the occurrence of more than one event 
is o(h) 

where 

I. ~-0 lffi h - . 

h .... o 

If we let 

P(C(t) = r), (2.3) 

then using the standard procedure of representing Pr(t+h) as a 
difference equation in Pr(t), it is easy to show that Pr(t) satisfies 
the following differential difference equation 

where r can take any integer value provided Pr(t) is defined as 0 
for r<O and r> min. (N,M). 

The equilibrium solution is obtained by putting the derivative 
equal to zero in (2.4) and solving for Pr=Pr( oo ). It is easy to see 
that it satisfies 

K(M- r)(N- r)Pr = (r + 1)Pr+1 , (2.:i) 

where 
(2.6) 
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This leads to 

KrM! N! 
Pr= r!(M- r)!(N- r)! Po ·(2.7) 

P 0 can be obtained since :E Pr = 1 

The probability generating function of Pr(t), defined by 

G(x,t) = :E lr r(t), (2.8) 

can be obtained by multiplying both sides of (2.4) by x', summing 
over all r and simplifying the resulting expression. We get 

il2G 
~ ~ 2 a;-= I)MN(x-l)G-(x-l)[(i)M + I)N ·I))X+ 'Sl ilx + l)(x-l}x i)x2 (2.9) 

Attempts at solving this second order partial differential 
equation have not met with success. We note that if C(O) = r0 , 

the equation has to be solved under the initial condition 

G(x,O) = xr0 (2.10) 

It is useful to have approximation formulae for the mean 1..1 and 
the variance, a', of the equilibrium distribution (2.7). In what 
follows we denote the third central moment of the equilibrium 
distribution by m3. Summing both sides of (2.5) over r and 
putting C( oo) = C, we get: 

KE [(M- C)(N- C)]= E(C); (2.11) 

where E denotes the expected value. Simplifying we get: 

(2.12) 

Multiplying both sides of (2.5) by rand summing over all r, 
gives: 

KE [C(M - C)(N- C)] = E [C(C- 1)] . (2.13) 

This leads to: 

Now 

(2.15) 

Substituting in (2.14) gives 

Using (2.12) we get 

2- I!+ Km3 
a - K(M - !!) + K(N - !!) + I (2.17) 

Under the assumption that the equilibrium distribution is 
symmetric we get the following approximate formula for a' 

2 
a = K(M - !!) + K(N - !!) + I (2.18) 

The contribution of Ka2
, with a 2 as given above, to equation 

(2.12) is bound to be negligible for small K. This is confirmed by 
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numercial computations. We can thus approximate 1.1 by the 
following equation derived from (2.12) by putting Ku2 = O; 

K(M - I.I.)(N - 1.1.) - 1.1. = 0 • (2.19) 

Note that from (2.18) 

I -;;. = [K(M - 1.1.) + K(N -1.1.) + 1]/1.1. 

K(M - Jl){N - fL) I 1 I 
1.1. [M - 1.1. + N - 1.1. + K(M - 1.1.HN - 1.1.) 1 ; 

and using (2.19) we get: 

(2.20) 

This is the approximate formula for the variance given by 
Dunstan and Reynolds (1981), where 1.1 in their case is the mode 
rather than the mean. 

THE BINOMIAL APPROXIMATION 

In this section we derive a limiting condition under which the 
equilibrium distribution (2.7) converges to the binomial distribu­
tion. We begin by a heuristic argument. Assume without loss of 
generality that M ;;on. Each molecule of B can be in one of two 
states, either free or bound to a molecule of A. C is then the 
number of bound molecules of B. One way in which the binomial 
distribution can arise is to set the conditions for the molecules of 
B to act independently in an identical manner. C will then have 
the distribution of the number of successes out of N independent 
trails, i.e. will be binomially distributed. We should note that the 
molecules of B are physically indistinguishable. So it seems that 
this solves the problem of identicality. One reason for the 
molecules not to act independently is their competition over the 
molecules of A. If we supply an abundance of the latter, each 
molecule of B should be free or bound independently of the 
other molecules. But there is another situation in which the 
competition will heat, namely when association rate constant K1 

is large. Hence to achieve independence we should make M 
large and K1 small. 

More formally, we now show that when M ~ oo, K ~ 0 such 
that KM ~A, a finite value, then the distribution of C converge 
to the binomial distribution provided N is kept finite. Refering to 
(2. 7) we note that when M :P N, then 

M! r 
(M-r)! -M (3.1) 

since r is at most equal toN. Thus, under the limiting condition 
considered, (2. 7) becomes 

i.e 

Thus 
N 

I= IP,={l +A)N~ 
r=O 

(3.2) 

r"' 0, I. ... , N (3.3) 

(3.4) 
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Therefore p = (-1-)N 
0 I +A 

It follows that 

i.e. 

i.e. 

p = (~ (_L)r(_1_)N-r 
r r J I + A I + A ' r = 0, I, .. ,N 

A C-B(N --) 
'A+ 1 

where C = C(oo) and A = KM. 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

We observe that relation (3.1) holds irrespective of the value 
of K. Thus, it seems that the condition for the convergence to the 
binomial distribution is simply M ~oo. We should note, 
however, that if the condition K ~ 0 is not imposed, the limiting 
distribution will be a degenerate binomial concentrated at N. 

THE NUMERICAL COMPARISON 

Having shown that the exact equilibrium distribution (2. 7) 
converges to the binomial distribution under the condition N 
finite, ~oo, K ~o such that KM=A is finite, we now investigate 
the practical implications of this condition by numerically 
computing the two distributions for a range of values of the 
parameters. 

The computer program written to compare the two distribu­
tions uses the recurrence relation (2.5) valid for the exact 
distribution and the corresponding relation for the binomial 
distribution obtained by replacing M - r by M in (2.5). The 
recurrence relation for the exact distribution is started at m, 
rather than zero, where m is the nearest integer to the 
approximate mean given and especially (2.19). This is in 
anticipation that probabilities for values far away from the mean 
and especially at r=O will be practically zero when dealing with a 
large number of molecules. The probabilities are then computed 
(in terms of P m) for values up to seven standard deviations away 
from the mean, the standard deviation being approximated by 
relation (2.18). Use is then made of the fact that the sum of 
probabilities should be 1. As expceted, truncation beyond seven 
standard deviations was found not to result in any improvement 
of accuracy. The same procedure is carried out to compute the 
binomial probabilities. 

The range of parameter values considered, with R = ~ , is as 
follows: 

A.= JOk 

R= LOk 

N = 10, 102, 

for k = -4, -3, ... , 4 

for k=l,2, ... ,5 

103, 105, 106• 107 

The program output consists of the means, variances and 
selected standarized tail quantities for the two distributions for 
each combination of the parameter values. The agreement is 
assessed in terms of the percentage differences for the means and 
variances and in terms of decimal places for the standardized 
quantiles. 

The results obtained can be .summerized as follows: 

For A:%.;0.001 there is agreement up to around 0.1% in the 
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means and 0.2% in the variances even for R= I. The agreement 
in tail quantiles is up to two decimal places and improves as N 
increases. The two distributions are highly skewed to the right 
for small N (e.g. N = 100 and 1000), but the skewness tends to 
decrease as N increases. However, some slight ~keweness still 
remains even at N = 10". Increasing R to !0 results in 10 fold 
accuracy of the binomial as an approximation to the exact 
distribution. 

In summary as long as R~ 10, there is close agreement 
between the two distributions in location, scale and shape at the 
tails for all N. For A.~O.Ol and R = I, the difference may reach 
around I% for the means and 2% for the variances. The 
quantiles agree to at least one decimal place. Thus there is fairly 
good agreement in this case even when R = I. Increasing N for 
fixed A. improves the agreement in shape but not is scale and 
location. When A.~O.I and R = I, The percentage difference in 
means may exceed II% and that in variances may exceed 16%. 
For example when A.=O.l, R=l and N=10', the mean of the 
exact distribution is 11392.03 while the mean of the binomial 
distribution is 9090.91. Here we have a difference of 8.33% 
between the means. For A.~ I and R= I or 10 there are large 
differences between the two distributions in location and scale. 
However, when R = 100, the maximum percentage difference 
between the mean is around 0.25%, while the maximum 
percentage difference between variances is less than I%. See for 
example Table I. The percentage difference for R = 1000 are 
one tenth of those for R = 100. 

Table I 
Characteristics of the Equilibrium Distribution and its Binomial 

Approximation 

A.= I, R=IOO, N=lOOO 

Exact Binomial 

Mean 498.75 500.00 

Variance 249.37 250.00 

z,xl5 -2.607 -2.607 

Zo1 -2.358 -2.358 

Zoz5 -1.992 -1.992 

Zo, -1.677 -1,677 

z, -1.313 -1.313 

Z9o 1.134 1.324 

z9, 1.677 1.677 

z975 1.992 1.992 

Z99 2.357 2.358 

Z995 2.607 2.607 

It may be said then that irrespective of the values Of A. and N, 
there will be very good agreement between the two distributions 
in location and scale when R = 100. When R = 1000 there is 
hardly any difference between the two distributions in all 
respects. The agreement in shape is found to be invariably good 
and improves as N increases even though the two distributions 
may be quite different regarding location and scale. Since the 
binomial distribution is well approximated by the normal 
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distribution for large N, the same claim may be made for the 
equilibrium distribution. However, the normal approximation of 
the binomial gets worse the smaller the value of its mean. Hence, 
when the mean is small we would expect the binomial 
distribution to provide an approximation of to the exact 
distribution that is not shared by the normal distribution. For 
example, when A.= 0.0001, M =lOON and N=lO', the mean and 
variance of the binomial distribution are both 10, a fairly small 
value and as we see from Table 2, the two distributions have the 
same shape which is quite different from the shape of the normal 
distribution. 

Table 2 
Characteristics of the Exact Equilibrium Distribution and its 

Binomial Approximation 
A.=0.0001, M=lOON, N=lO' 

Exact Binomial 

Mean 10.00 10.00 

Variance 10.00 10.00 

ZIKlS -2.437 -2.437 

Zo1 -2.228 -2.228 

Zozs -1.969 -1.969 

Zos -1.724 -1,724 

z.l -1.416 -1.416 

Z9o 1.481 1.481 

Zgs 1.886 1.886 

z97s 2.264 2.264 

Z99 2.721 2.721 

Z99s 3.031 3.031 

APPROXIMATING THE TRANSIENT SOLUTION 

Assume as before that N is finite M~oo and K1~0 in such a 
way that K1M~K2A. a finite value. Invoking these limiting 
conditions on the infinitesimal assumptions it can be easily 
shown that the partial differential equation defining the prob­
ability generating function of C(t) takes the limiting form 

ao ao at= ~ f..N(x- I)G- ~(x- l)(l..x +I) ax ; (5.1) 

with initial condition 

G(x,O) = xC<Ol . 

Since we have the binomial distribution in mind, we try a 
solution for (5.1) of the form: 

G(x,t) = [I - p(t) + xp(t)]N . 

substituting this m (5.1) we obtain; 
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which gives 

p(t) = A/(1 +A)+ a exp(-K2(1 + A)t) (5.2) 

The initial condition is then equivalent to 

[1- p(O) + xp(O)]N = xC(O) 

This restrict the value of C(O) to either 0 or N. In the first case 
(C(O)=O and p(O)=O, from which (5.2) becomes 

p(t) =[A/ (1 + A)][1 - exp(-K2(1 + A)t)J, 

and C(t) - B(N,p(t)). (5.3) 

This means that each molecule of B will be bound to a 
molecule of A at time t probability p(t) given by (5.3) 
in<lependently of other molecules. 

In the second case C(O)=N, p(0)=1 and C(t)-B(N,q(t)) 
where 

(5.4) 

Thus if a molecule of B was initially bound to a molecule of A, 
it will be bound at timet with probability q(t) independently of 
other molecules. 

Under the general initial condition G(x,O)=xq•>, equation 
(5.1) can be solved by the method of characteristics (Zauderer 
1989). The characteristic equations are 

dx ~ 
ds = Kz(x- 1)(11.X + 1) ; 

dt as= 1; 

with initial values: s = 0; x = 't; t = O; G = .f<0>. 

These equations give t = s and 

(x- 1)/{A.x + 1) = [('t- 1)/{A.'t + 1)]exp(K2(1 + A)t). 

A few steps of simple algebra starting from (5.5) give 

't = [1 - q(t) + xq(t)]/ [1- p(t) + xp(t)); 

where p(t) and q(t) are given by (5.3) and (5.4), and 

x = 1 + [ ~-Ull..:._!2 exp(K (1 + A)t)]/ 
A't + 1 2 

(5.4a) 

(5.4b) 

(5.4c) 

(5.5) 

(5.6) 

Substituting (5.7) in (5.4c) and integrating the resulting 
equation with initial value G(O)=Tqo) we get 

G(x,t) = [1 - p(t) + xp(t)]N'tC(O} 

= [1- p(t) + xp(t)]N[(l - q(t) + xq(t))/(1 - p(t) + xp(t))f(O) 

(by 5.6) and thus G(x,t) = [1-q(t)+xq(t)]q•> [1 - p(t) + 
xp(t)]N-c<•>,;which is the probability generating function of the 
convolution of two binomial distributions. i.e. C(t) has t.he same 
distribution as the sum of two independent binomial random 
variables, one with parameters(C(O),q(t) and the other with 
parameters (N -C(O),p(t)). 
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The interpretation of this is that the molecules of B will act 
independently. Each of the C(O) molecules that were initially 
bound, will be bound at timet with probability q(t) independent­
ly of all other molecules. Hence, the number out of these that 
will be bound at time t will follow the binomial distribution with 
parameters C(O) and q(t). Similarly, the number bound at timet 
out of the N-C(O) initially free molecules will follow the binomial 
distribution with parameters N-C(O) and p(t). The number of 
molecules of C at time t is tile sum of these two random variables 
and tqerefore has the probability generating function shown 
above. 

If independence of molecules is assumed, the reaction can be 
studied by considering the behaviour of a single molecule of B, 
for example, which can be in any of two states: free (state 0) and 
bound (state 1). If we let X( t) denote the state of the molecule at 
timet, X(t) is then a two-state Markove process with matrix of 
transition rates given by 

0 

0 [·K2 A. K2J Q= 
K -K 

2 2 

From this simple Markov pr,ocess it is easy to obtain p(t) and 
q(t) as given by (5.3) and (5.4) and this completely solves the 
problem for the whole reaction. 
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