A Remark On Proper Left H* — Algebras

Show simple item record

Author Talabani, M. M [مريوان مصطفى الطلباني] en_US
Available date 2009-11-25T15:20:20Z en_US
Publication Date 1984 en_US
Citation Qatar University Science Bulletin, 1984, Vol. 4, Pages 33-36. en_US
URI http://hdl.handle.net/10576/9879 en_US
Abstract W. Ambrose gave the theory of proper H* -algebras and M. Smiley in (2) gave an example of a left H* -algebra which is not a two-sided H* -algebra. Then he modified some of the arguments of Ambrose which yield the structure of proper right H*-algebras. In fact he proved that a proper right H*-algebra is merely a proper H*-algebra in which the norm has been changed to a certain equivalent norm in each of the simple components. In this short paper, we define proper left H*-algebras and give two lemmas for these classes. Then we prove the main result that every proper left H*-algebra is a proper H*-algebra. Thus, in this paper, we prove that the following are equivalent: (i) Proper left H*-algebras. (ii) Proper right H*-algebras. (iii) Proper H*-algebras. en_US
Abstract في هذا إلبحث القصير ، سنبرهن على أن الحالات الثلاثة التالية متكافئ!ة . ا -جبر -+لما اليسار التاس . 2 -جبر -ه لمه اليهين التاسا . 3 -جبر -+لما التام . ar
Language en en_US
Publisher Qatar University en_US
Subject Mathematics en_US
Subject الرياضيات ar
Title A Remark On Proper Left H* — Algebras en_US
Alternative Title ملاخظة على جبر *أكتش اليسار سالم ar
Type Article en_US
Pagination 33-36 en_US
Volume Number 4 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record