
Qatar Univ. Sci. J. (1993), 13(1): I- 4 

CONDITIONALLY EXPONENTIAL CONVEX 
FUNCTIONS ON LOCALLY COMPACT GROUPS 

By 

A. S. OKB EL-BAB 
Mathematics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt 

u l.;-0) I ~ Ab .J.,-!11 ~w I ~~I J I.J..U I 
~~· ~::tl; .~ 

~o.o~UI~~i . . . 

.:,i ~J 4.b~l ~.W.I ~~I JIJ-lll ~ill (..,.,I_,.,~~!~~ 11.\ ~-'+.! 

lo.A ~L....i ~ ~ ~~ 11.\ ~ ~(j ':"~ .1.~ ~ ~~ olA 
~ .1.- . .: II I·· .I .1. . • L....i . '-<-= • <- . ~ ' ~ ""'t"' ~ '-"" (.);!..,..... ~ -

~ .1.~1 1-41 u~l .. 1~~~ ~ L. " 

Key Words: Conditionally Exponential Convex Functions 

ABSTRACT 

The main objectives of this study are: 

I) The construction of a compact base for the convex cone of all conditionally exponential convex functions. 

2) The detem1ination of the extreme parts of this cone. 

INTRODUCTION 

Conditionally exponential convex functions have been 
introduced and studied in references [2,8]. Berg [2] named it 
"negative-definite". The set of these functions, denoted Eo 
(G), is a convex cone, hence is amenable to an analysis by 
Choquet theory. For the real line, such a study was done by 
Johansen[?]. We follow an idea of Johansen to construct a 
compact base for Eo (G). This leaves us with the task of 
finding the extreme points of the base. To do so, we first 
study a weight, called the Levy weight, in its abstract form. 

Now, let C* (G) be the enveloping C* -algebra of Ll (G) 
equipped with # involution defined by: f# (x) = D. (x-1) f+ (x), 
where D. is a modular function and f+ (x) = f (x-1 ). The dual 
Banach space of C* (G) is B (G) [4]. The set of positive 
linear functionals in B [G] is P [G] and it is identified with 
the set of exponentially convex functions on G; i.e., the set of 
functions satisfying 

n 

I \jf (gi gj) Ci Cj ~ 0, 
i, j =1 

where g 1 , ... , gn E G and q, ... , en E R. The set of elements 
form P] (G) with norm equals I is PI (G); this is a convex set 
whose set of extreme points is denoted by ext PI (G)[7]. 
Also, we write Eo (G) for the set pf all conditionally 
exponential convex functions defined on G and vanishing at 
the group identity; i.e., functions satisfying 

n 
I [\jf (gi) + \jf (gj) - \jf (gi gj) Ci Cj ~ 0, 

i, j =I 

where g 1 , ... , gn E G and CJ, ... , en E R[2,8]. 

Now, if a E C* (G) and p E P (G) , define the translation 
of a by p to be the unique element Tp a of C* (G) such that 

for all b E B (G), (bp, a)= (b, Tp a). The translation operator 
T p is a completely positive linear map on C* (G) and is norm 

decreasing if p E PI (G). If p, q E P (G) and 'A~ o, then Tpq 

= Tp Tq and Tp + 'Aq = Tp + 'ATq , so that T(.) is a 
homomorphism from P (G) into the set of completely positive 
linear maps on C* (G)[3]. 

Given the notion of translation, we can define 
differentiation as a limit of difference quotients. In this way, 
we obtain a tangent space at each point of PI (G). 

A semitangent vector to PI (G) at the identity is any 

continuous real valued function \jf on G satisfying 

\jf = lim Ak (1-pk). 
k 

where {'Ak }k> 1 is a diverging increasing sequence of 
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nonnegative numbers and {Pk }k> 1 is a unformly convergent 
sequence belongs to P1 (G). It can be seen that the collection 
of such semitangent vectors is identified with the set Eo (G), 

then \jf is called a tangent vector to P1 (G) at the identity [1 ]. 

LEVY WEIGHTS 

Let \jf E Eo (G) and let a : C* (G) --+ be C* (G) be a linear 

functional such that a (a#a) 2 ca a#) a+ a# (8 a) if a#a belong 
to D (d), the domain of a. Define a linear functional on C* 

(G), denoted by \jf, by 

\jf (a)= (l, d\jf a), a E D (d). 

Clearly, \jf is densely defined and \jf I (ker 1)+ 2 o; i.e., \jf is a 
weight for the elements of Eo (G) and it is called a Levy 
weight. · 

Let W* (G) be the double dual of C* (G). We may 
consider G and C * (G) to be contained in W* (G); when it is 
necessary to emphasize that a measure J.!, say, belongs to W* 

(G)., we will write w (J.L), where w is the universal 
representation [6]. 

Lemma2.1 

Let MOe (G) be the set of compactly supported Borel 

measures on G of total mass zero. For J.L E MOe (G) and a E 

C* (G) we have 

\jf(W(J.!#) aw (J.L)) = (-\jfJ.!, a), where \jfli = J.L * \jf * J.L+. 

Proof: 

First we suppose that a takes ·the form w (f), f belongs to 
the set Cc (G) of compactly supported continuous functions 
on G. then 

\jf(W(J.!# * f * J.L)) = (1, d~ (J.L# * f * J.L)) =- f \jf(X) J.!# * f * 

J.L(x) dx = -f 'ljfJ.L(x) f (x) dx . 

Now, we prove the lemma in the general case. Let a E 

C* (G) be the strong limit of the sequence an= w (fn), fn E 

Cc (G). Then 

\jf(W(J.L#) aw (J.L)) = \jf (W(J.L#) an w (J.L)) + \jf (W(J.L#) (a- an) 

(J) (J.L)). 

Applying Cauchy-Schwarz inequality to the second term 
of the right side and then taking the limit we get 

\jf(W(J.L#) aw (J.L)) =lim \jf (W(J.L#) an w (J.L)) 
n 

= lim ( -\jfJ.!, an)= ( -1j!J.!, a). 
n 

Now let Z 1 be the central support of the weak closure of 

2 

ker 1 in W* (G) and let (ker 1)1 be the unit ball ofker 1. The 
proof of the following theorem, which is similar to that of 
proposition 1.11 of[3] is omitted. 

Theorem2.2 

The necessary and sufficient condition for the function to 
\jf E Eo (G) to be lower semi-continuous is that there exist 

positive linear functional {fk}k>l on ker 1 such that \jf (a)= 

00 

L (fk, a) for a E (ker 1)+. 
k=l 

Now we reformulate this theorem in a more concrete form. 

choose a E (ker 1 )+ to be of the form J.!# * h# * h * J.L where 

h E Cc (G), and let Pk E P (G) be the extension of fk with 

the same norm. Finally, put J.L = 8e- 8y-where 8. denotes the 
point mass at. Then 

\jf (a)= ( -\jfJ.!, h# * h) = oo 

L (J.! * Pk * J.!+* h# * h), 
k=l 

and we get that -'ljfJ.! is the monotonic limit of the 

exponentially convex functions oo 

L J.L * Pk * J.L+. 
k=l . 

A COMPACT BASE FOR Eo (G) 

In this section we construct a base for Eo (G). First we 
begin with the following definition. 

Definition 3.1 [3] 

If \jf, <p E Eo (G), we say that \jf dominates <p if \jf - <p E 

Eo (G). If \jf and <pdominate each other, they they are said to 
be equivalent. They are weakly equivalent if one is equivalent 
to a positive multiplier of the other. 

Now we construct a base for Eo (G) which is compact in 
some suitable topology. This can be done by the selection of 
an element on each weak equivalence class in Eo (G). Let G 
be compactly generated, N be a compact symmetric 
neighbourhood of the identity in G which generates the group 

and K = {\jf E Eo (G) I f N3 \jf (x) dx = 1 }. If \jf E Eo (G) 

satisfies JN3 \jf (x) dx = 0, then \jf I N3 = 0,. Since N is a 

generating set, we have \jf = 0 everywhere. So, for \jf E Eo 

(G) we can devide it by f N3 \jf (x) dx to obtain an element of 

K, which implies that K is a base for Eo (G). 

Lemma3.2 

Suppose that XAn is the indicator function of the set An, 

where At = N, An= Nn- Nn-1 for n 2 2 and c = u-1 sup {1 

+ 11 (y) I y E N} where a is the left Haar measure of N. Then 

for \jf E K we have \jf (x) ~ f (x) where 
00 

f =c. L n2 XAn· 
n = 1 
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Proof: 

Let y E G and).!= Oe + oy. then for each K we have 

'\jfJ.! (x) - '\jfJ.! (e) = '\jf (x) + '\jf (yxy) + '\jf (yx) + '\jf (xy) -

2'\jf (y) E Eo (G) and by integration we get 

2'\jf (y) :s; a-1 Ju ('\jf (x) + '\jf (yxy) + '\jf (yx) + '\jf (xy) dx. 

Ify EN, then 

2'\jf (y) :s; a-1 { fN '\jf (x) dx + JYNY '\jf (x) /';. (y) dx + 

fyNy.'\jf (x) dx + fNy '\jf (x) /';. (y) dx} 

:s; 2a-1 (1+/';. (y)) fN3 '\jf (x) dx = 2a-1 (1+/';. (y)), 

by symmetry of Nand sup, {'\jf (y) I y E N, '\jfE K} :s; C. 

Now, if x E G, then x E An for fixed n and hence it 

belongs to Nn. So, there exist Y 1, ... , Y n E N such that x = 
Y1Y2 ... Yn. Then 

n 
'\jfl/2(x) ='\jf1/2(YJ ... , Yn):s;I; 

k=l 
and we get 

00 

'\jf(x) :s; f (x) = c I: n2 XAn (x). 
n=l 

'\)!1/2 (yk) :s; nc, 

Let S be a separable compact convex set. A subset F of S is 
called a face if each line segment in S whose interior 
intersects F is contained in F. The complementary set F' ofF 
is the union of all faces of S disjoint from F. IfF' is a face and 
F is a closed face, then F is called a closed split face. In the 
latter case, S is the direct convex sum of F and F' which 

means that every element x E S can be written uniquely in the 
form 

x = Ay + (I - A)z, 0 :s; A :s; 1, y E F, z E F' 

Now we notice that K is compact only if G is discrete, but 

we can compactify K by adding a point at =. Let '\)!00 (x) = 

I N3l-l. It is clear that fN3 r (x) dx = 1' and '\jf= belongs 

to Eo (G). Let K be the convex hull of K and '\)!00
• 

Theorem 3.3 

Suppose that L= (G)] is the unit ball of L00 (G) equipped 

with the a (L00
, Ll) topology and suppose also that p:K ---+ 

L= (G)] is given by p ('\jf) = '\jf/f, where f is defined as in 
Lemma 3.2 and K is compact in the topology induced by p. 

Then the set{'\)!=} is a closed split face of K. 

Proof 

It is clear that L = (G)] is compact in the a (L =, L 1) 
topology, and we only need to prove that p (K) is closed. 

Suppose {'\)fn}=n=l E K and such that p ('\)fn) ---+ '\jf E L= 

3 

(G)I and suppose also that '\jf = <pf. For g E L1 (G) and h E 

CeO (G), where g = (h# * h) f, we have 

J '\jf (x) h# * h (x) dx = J <p (x) g (x) dx =lim J p (<pn) 
n 

g (x) dx 

= lim J <i>n (x) h# * h (x) dx :s; o. 
n 

Let V be any measurable subset of G with finite measure. 
Then 

J <p (x) dx =lim Jvp (<pn) (x) dx =lim Jv<pn (x) /f(x) v n n 

dx ~o 

and hence <p (x) ~ o a.e. and the same is true for '\jf. Hence '\jf 
is a.e. equals to a unique element of E (G) and it remains to 

prove only that for '\jf E Eo (G) such that JN3'\jf(x) dx = 1, '\jf 

E K. In fact, since '\jf (e) :s; I N3l-1 = '\jf= we put A= '\jf (e) 

f'\jf=. If A= 0 then '\jf E Eo (G) and hence '\jf E K c K. If A= 

1. then JN3 '\jf (e) dx = 1, from which we get '\jf (x) = '\jf (e)= 

'\)!00 and '\jf E KcK. Finally, we suppose that 0 <A< 1 and we 

put '\jf (x) in the form '\jf (x) = A'\jf= + (1- A) <p (x), where '\jf (x) 

= ('\jf (x)- '\jf (o))/(1-A) E Eo (G). Then 

fN3 <p (x) dx = (1 - A)-1 fN3 ('\jf (x)- '\jf (e)) dx = 1, 

-so that '\jf E K c K The decomposition of '\jf into a convex 

sum of '\jf= and an element of K is easily seen to be unique. 

EXTREME RAYS OF Eo (G) 

Since Eo (G) is a convex cone, one way to understand its 
structure is to characterize its extreme rays. 

Definition 4.1 

We say that '\jf E Eo (G) generates an extreme ray in 
Eo (G) if each of its dominated elements is either a tangent 

vector or weakly equivalent to '\jf. 

Theorem 4.2 

Suppose that '\jf E Eo (G) has a lower semi-continuous 

Levy Weight. The necessary and sufficient condition for '\jf to 
generate an extreme ray is that it takes the form 

A (1 - p) + h with A> 0, p E ext P] (G)- {1} and h E hom 
(G, R). 

Proof· 

First we suppose that '\jf is weakly equivalent to 1 - p for p 

E P] (G) - {1 }. If <p E Eo (G) is dominated by (1 - p)J then 
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<p is bounded. Hence, there exists P1 E {I }' A ?: 0 and h E 

Hom (G, R) such that <p =A (I -PI)+ h. So I - p dominates 

A (1 -PI) in Eo (G). Now supposing that A?: I and since (1 -

p) - A (I - PI} E Eo (G) then we can find a constant K?: 0 
such that 

K+A(l-pi)-(1-p)=K+ A-I-Api+PE PI(G); 

I -A?: 0. 

This implies that K + p - API E PI (G). Since p E ext PI (G), 
PI is a convex combination of the orthogonal exponentially 

convex functions I, p. But PI E {I}' then PI= p and we have 

'\jf is extreme. 

Conversely, let '\jf be lower semi-continuous. Using 

Theorem 2.2 in its reformulated form, we can see that '\jf is 

bounded if it generates an extreme ray in Eo (G), Hence, '\jf is 
weakly equivalent to an element of Eo (G) in the form I - p, p 

E PI (G). Noting that {I} is a closed split face in PI (G), we 

have to prove that p E {I}' In fact, if p = A+ (1 - A) PI is the 

representation of pin {I} and {I}' then I - p = (1 -A) (I -PI) 

and we get I - PI is weakly equivalent to '\jf. 

Now suppose that p e: ext PI (G) - {I}. Then p can be 

written in the form p =(PI + P2)/2 with PI ::f::. P2 from PI (G). 
Hence I - p = (1-p I )/2 + (1 - P2)/2 contradicting the 

extremity of'\jf and we have p E ext PI (G)- {I}. 

4 
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