Oatar Univ, Sci, J. (1997), 17(1): 7-10

ON A RELATION BETWEEN TWO ABSOLUTE SUMMABILITY METHODS

W. T. Sulaiman

Dept. of Math., College of Science, University of Qatar

وعدالله توفيق سليمان قسم الرياضيات – كلية العلوم جامعــة قطـــر

في هذا البحث نبرهن نظرية تدور حول العلاقة بين طريقتين للتجميع المطلق هي R,p,,q,, و R,p,,q, ا و R,u, للمتسلسلة اللانهائية والتي تعمم نظرية سابقة ل[2] Bor.

Key Words : Summability, Series, Sequences

ABSTRACT

In this paper we prove a theorem concerning a relation between the summability methods $|\mathbf{R}, \mathbf{p}_n, \mathbf{q}_n|_k$ and $|\mathbf{R}, \mathbf{u}_n|_k$, $k \ge 1$, which generalizes a result of Bor [2].

1. INTRODUCTION

Let $\sum_{n=1}^{\infty} a_n$ be an infinite series with partial sums s_n . Let σ^{δ_n} and η_n^{δ} denote the nth Cesaro mean of order δ ($\delta > -1$) of the sequences $\{s_n\}$ and $\{na_n\}$ respectively. The series $\sum_{n=1}^{\infty} a_n$ is said to be summable $|C, \delta|_k$, $k \ge 1$ if

 $\sum_{n=1}^{\infty} n^{k-1} \left| \sigma_n^{\delta} - \sigma_{n-1}^{\delta} \right|^k < \infty$ or equivalently $\sum_{n=1}^{\infty} n^{-1} |\eta_n^{\delta}|^k < \infty$.

Let $\{p_n\}$ be a sequence of real or complex numbers with

$$P_n = p_0 + p_1 + \dots + p_n$$
, $P_{-1} = p_{-1} = 0$

The series $\sum_{n=1}^{\infty} a_n$ is said to be summable $|N, p_n|$, if $\sum_{n=1}^{\infty} |t_n - t_{n-1}| < \infty$ (1)where $t_n = P_n^{-1} \sum_{v=1}^{\infty} p_{n-v} s_v$ $(t_{-1} = 0)$.

We write
$$p = \{p_n\}$$
 and

$$M = \left\{ p: p_n > 0 \& \frac{p_{n+1}}{p_n} \le \frac{p_{n+2}}{p_{n+1}} \le 1, n = 0, 1, \dots \right\}$$

It is known that for $p \in M$, (1) holds if and only if (Das [3])

$$\sum_{n=1}^{\infty} \frac{1}{n P_n} \left| \sum_{\nu=1}^{\infty} p_{n-\nu} \nu a_{\nu} \right| < \infty$$

Definition 1 (Sulaiman [4]). For $p \in M$, we say that $\sum a_n$ is summable $|N, p_n|_k$, $k \ge 1$, if

$$\sum_{n=1}^{\infty} \frac{1}{n P_n^k} \left| \sum_{v=1}^n p_{n-v} v a_v \right|^k < \infty$$

7

In the special case in which $p_n = A_n^{r-1}$, r > -1, where A_n^r is the coefficient of x^n in the power series expansion of $(1-x)^{-r-1}$ for |x| < 1, $|N, p_n|_k$ summability reduces to $|C, r|_k$ summability see [3].

The series $\sum a_n$ is said to be summable $|\mathbf{R}, \mathbf{p}_n|_k$ respectively $|\overline{N}, \mathbf{p}_n|_k, k \ge 1$, (Bor [2] & [1]) if.

$$\sum_{n=1}^{\infty} n^{k-1} |T_n - T_{n-1}|^k < \infty \text{ respectively } \sum_{n=1}^{\infty} \left(\frac{P_n}{P_n}\right)^{k-1} |T_n - T_{n-1}|^k < \infty ,$$

here
$$T_n = P_n^{-1} \sum_{\nu=0}^{\infty} p_\nu s_\nu$$

w

In the special case when $p_n = 1$ for all values of n (resp. k = 1), then $|\mathbf{R}, \mathbf{p}_n|_k$ summability is the same as $|\mathbf{C}, \mathbf{r}|_k$ (resp. $|\mathbf{R}, \mathbf{p}_n|$) summability.

Let $\{q_n\}$, $\{u_n\}$ be sequences of numbers and denote with $Q_n = q_0 + q_1 + ... + q_n$, $q_{-1} = Q_{-1} = 0$ $U_n = u_0 + u_1 + ... + u_n$, $u_{-1} = U_{-1} = 0$ $R_n = p_0 q_n + p_1 q_{n-1} + ... + p_n q_0$ $\Delta f_n = f_n - f_{n+1}$, for any sequence $\{\int_n\}$.

Here we give the following new definition.

Definition 2. Let $\{p_n\}$, $\{q_n\}$ be sequences of positive real constants such that $q \in M$. We say theis $\sum_{1}^{\infty} a_n$ is summable $|\mathbf{R}, p_n, q_n|_k$, $k \ge 1$, if.

$$\sum_{n=1}^{\infty} \frac{1}{n} \left| \frac{np_n}{P_n R_{n-1}} \sum_{\nu=1}^n P_{\nu-1} q_{n-\nu} a_{\nu} \right|^k < \infty$$

Clearly, $|\mathbf{R}, \mathbf{p}_n \mathbf{1}|_k$ and $|\mathbf{R}, \mathbf{1}, \mathbf{p}_n|_k$ are equivalent to $|\mathbf{R}, \mathbf{p}_n|_k$ and $|\mathbf{N}, \mathbf{q}_n|_k$ respectively. This follows as $\sum a_n$ summable $|\mathbf{R}, \mathbf{p}_n \mathbf{1}|_k$, iff.

$$\sum_{n=1}^{\infty} n^{k-1} \left| \frac{P_n}{P_n P_{n-1}} \sum_{\nu=1}^n P_{\nu-1} a_{\nu} \right|^k < \infty$$

Iff $\sum_{1}^{\infty} a_n$ summable $|\mathbf{R}, \mathbf{p}_n|_k^{\bullet}$ Since $0 \le \mathbf{Q}_n \le \mathbf{Q}_{n+1}$ then $\mathbf{Q}_n = \mathbf{O}(\mathbf{Q}_{n+1})$. As

$$Q_{n+1} = Q_n + q_{n+1} \le Q_n + q_n \le 2Q_n$$
,
then $Q_{n+1} = O(Q_n)$
Therefor $\sum_{1}^{\infty} a_n$ summable $|\mathbf{R}, \mathbf{1}, \mathbf{q}_n|_k$, iff

$$\sum_{n=1}^{\infty} \frac{1}{n} \left| \frac{1}{Q_{n-1}} \sum_{\nu=1}^{n} (\nu-1) q_{n-\nu} a_{\nu} \right|^{k} < \infty$$
iff
$$\sum_{n=1}^{\infty} \frac{1}{n} \left| \frac{1}{Q_{n}} \sum_{\nu=1}^{n} \nu q_{n-\nu} a_{\nu} \right|^{k} < \infty$$
iff
$$\sum_{n=1}^{\infty} a_{n} \text{ summable } |N, P_{n}|_{k}$$

We prove the following :

THEORM 1. :

Let $\{P_n\}, \{q_n\}$ and $\{u_n\}$ be sequences of positive real numbers such that $q = \{q_n\}$, and assume $q \in M$,

 $\{n^{1-1/k} P_n / p_n R_{n-1}\}$ nonincreasing for $q_n \neq c$. Let T_n denote the (N, u_n) - mean of the series $\sum a_n$. Let $\{\in_n\}$ be a sequence of constants. If :

$$\sum_{n=\nu+1}^{m+1} \frac{n^{k-1} p_n}{P_n^k R_{n-1}} q_{n-\nu-1} = 0 \left\{ \frac{n^{k-1} p_n^{k-1}}{P_n^k} \right\},$$

$$\sum_{n=1}^{\infty} n^{k-1} \left(\frac{p_n}{P_n} \right)^k \left(\frac{P_{n-1}}{R_{n-1}} \right)^k \left(\frac{U_n}{u_n} \right)^k |\epsilon_n|^k |\Delta T_{n-1}|^k < \infty,$$

$$\sum_{n=1}^{\infty} n^{k-1} |\epsilon_n|^k |\Delta T_{n-1}|^k < \infty,$$

$$\sum_{n=1}^{\infty} n^{k-1} \left(\frac{p_n}{P_n} \right)^k \left(\frac{U_n}{u_n} \right)^k |\epsilon_n|^k |\Delta T_{n-1}|^k < \infty,$$

and

$$\sum_{n=1}^{\infty} n^{k-1} \left(\frac{U_n}{u_n} \right)^k \left| \Delta \in_n \right|^k \left| \Delta T_{n-1} \right|^k < \infty,$$

then the series $\sum a_n$ is summable $|\mathbf{R}, \mathbf{p}_n, \mathbf{q}_n|_k$, $K \ge 1$. In [5], we proved that if $q \in M$, then for $0 < r \le 1$,

$$\sum_{n=\nu+1}^{\infty} \frac{q_{n-\nu-1}}{n'Q_{n-1}} = O(\nu^{-r}).$$

Proof of the Theorem :

 $\phi_n = \sum_{\nu=1}^n P_{\nu-1} q_{n-\nu} a_{\nu} \in_{\nu}.$

т -

Since

Denote :

$$T_{n} = U_{n}^{-1} \sum_{\nu=0}^{n} u_{\nu} \sum_{r=0}^{\nu} a_{r} = U_{n}^{-1} \sum_{\nu=0}^{n} (U_{n} - U_{\nu-1}) a_{\nu}$$
$$-\Delta T_{n-1} = \frac{u_{n}}{U_{n} U_{n-1}} \sum_{\nu=1}^{n} U_{\nu-1} a_{\nu} \quad .$$

then

By means of the Abel's transformation, one gets :

$$\begin{split} \phi_{n} &= \sum_{\nu=1}^{n} U_{\nu-1} a_{\nu} (P_{\nu-1} q_{n-\nu} U_{\nu-1}^{-1} \in_{\nu}) \\ &= \sum_{\nu=1}^{n-1} (\sum_{r=1}^{\nu} U_{r-1} a_{r}) \Delta_{\nu} (P_{\nu-1} q_{n-\nu} U_{\nu-1}^{-1} \in_{\nu}) + \\ &+ (\sum_{r=1}^{n} U_{r-1} a_{r}) P_{n-1} q_{0} U_{n-1}^{-1} \in_{n} = \sum_{\nu=1}^{n-1} \left\{ -\frac{U_{\nu-1} U_{\nu}}{u_{\nu}} \Delta T_{\nu-1} \right\} \left\{ \\ \left\{ P_{\nu-1} \Delta_{\nu} q_{n-\nu} U_{\nu-1}^{-1} \in_{\nu} \right\} + P_{\nu-1} q_{n-\nu-1} \frac{u_{\nu}}{U_{\nu-1} U_{\nu}} \in_{\nu} \\ &- p_{\nu} q_{n-\nu-1} U_{\nu}^{-1} \in_{\nu} + P_{\nu} q_{n-\nu-1} U_{\nu}^{-1} \Delta \in_{\nu} \} - \\ &- P_{n-1} q_{0} U_{n} u_{n}^{-1} \in_{n} \Delta T_{n-1} \\ &= \sum_{\nu=1}^{n-1} \left\{ -P_{\nu-1} \Delta q_{n-\nu} \frac{U_{\nu}}{u_{\nu}} \in_{\nu} \Delta T_{\nu-1} \\ &- P_{\nu-1} q_{n-\nu-1} \in_{\nu} \Delta T_{\nu-1} - p_{\nu} q_{n-\nu-1} \frac{U_{\nu-1}}{u_{\nu}} \Delta \in_{\nu} \Delta T_{\nu-1} \right\} - \\ &- P_{n-1} q_{0} \frac{U_{n}}{u_{n}} \in_{n} \Delta T_{n-1} \\ &= \phi_{n,1} + \phi_{n,2} + \phi_{n,3} + \phi_{n,4} + \phi_{n,5} , \quad \text{if set e} \\ \phi_{n,1} &= \sum_{\nu=1}^{n-1} -P_{\nu-1} \Delta_{\nu} q_{n-\nu} \frac{U_{\nu}}{u_{\nu}} \in_{\nu} \Delta T_{\nu-1} \\ \phi_{n,2} &= \sum_{\nu=1}^{n-1} -P_{\nu-1} q_{n-\nu-1} \frac{U_{\nu-1}}{u_{\nu}} \Delta \in_{\nu} \Delta T_{\nu-1} \\ \phi_{n,3} &= \sum_{\nu=1}^{n-1} -P_{\nu} q_{n-\nu-1} \frac{U_{\nu-1}}{u_{\nu}} \Delta \in_{\nu} \Delta T_{\nu-1} \\ \phi_{n,4} &= \sum_{\nu=1}^{n-1} P_{\nu} q_{n-\nu-1} \frac{U_{\nu-1}}{u_{\nu}} \Delta \in_{\nu} \Delta T_{\nu-1} \\ \phi_{n,5} &= -P_{n-1} q_{0} \frac{U_{n}}{u_{n}} \in_{n} \Delta T_{n-1} \end{aligned}$$

In order to prove the theorem, it is sufficient, by Minkowski's inequality, to show that.

$$\sum_{n=1}^{\infty} n^{-1} \left| \frac{n p_n}{P_n R_{n-1}} \phi_{n,r} \right|^k < \infty, \quad r = 1, 2, 3, 4, 5 .$$

Applying Holder's inequality,

$$\begin{split} &\sum_{n=2}^{m+1} n^{-1} \left| \frac{np_n}{P_n R_{n-1}} \phi_{n,1} \right|^k = \\ &= \sum_{n=2}^{m+1} n^{-1} \left| \frac{np_n}{P_n R_{n-1}} \sum_{\nu=1}^{n-1} P_{\nu-1} \Delta_{\nu} q_{n-\nu} \frac{U_{\nu}}{u_{\nu}} \in_{\nu} \Delta T_{\nu-1} \right|^k \\ &\leq \sum_{n=2}^{m+1} n^{-1} \left(\frac{np_n}{P_n R_{n-1}} \right)^k \sum_{\nu=1}^{n-1} P_{\nu-1}^k |\Delta_{\nu} q_{n-\nu}| \left(\frac{U_{\nu}}{u_{\nu}} \right)^k \\ &\times |\epsilon_{\nu}|^k |\Delta T_{\nu-1}|^k \times \left\{ \sum_{\nu=1}^{n-1} |\Delta_{\nu} q_{n-\nu}| \right\}^{k-1} \\ &= O(1) \sum_{\nu=1}^m P_{\nu-1}^k \left(\frac{U_{\nu}}{u_{\nu}} \right)^k |\epsilon_{\nu}|^k |\Delta T_{\nu-1}|^k \sum_{n=\nu+1}^{m+1} \frac{n^{k-1} p_n^k}{P_n^k R_{n-1}^k} |\Delta_{\nu} q_{n-\nu}| \end{split}$$

$$\begin{split} &=O(1)\sum_{i=1}^{m} v^{k-1} \left(\frac{P_{v}}{P_{v}}\right)^{k} \left(\frac{P_{v-1}}{R_{v-1}}\right)^{k} \left(\frac{U_{v}}{u_{v}}\right)^{k} |\epsilon_{v}|^{k} |\Delta T_{v-1}|^{k} \\ &= \sum_{m=2}^{m+1} n^{-1} \left|\frac{mp_{n}}{P_{n}R_{n-1}} \phi_{n,2}\right|^{k} = \\ &= \sum_{m=2}^{m+1} n^{-1} \left|\frac{mp_{n}}{P_{n}R_{n-1}} \sum_{v=1}^{m-1} \frac{P_{v-1}}{P_{v}} p_{v} q_{n-v-1} \epsilon_{v} \Delta T_{v-1}\right|^{k} \\ &\leq \sum_{m=2}^{m+1} \frac{n^{k-1} P_{n}^{k}}{P_{n}R_{n-1}} \sum_{v=1}^{k-1} \left(\frac{P_{v-1}}{P_{v}}\right)^{k} p_{v} q_{n-v-1} |\epsilon_{v}|^{k} |\Delta T_{v-1}|^{k} \\ &\times \left[\sum_{v=1}^{m-1} \frac{n^{k-1} P_{n}^{k}}{R_{n-1}} \sum_{v=1}^{n-1} P_{v} q_{n-v-1} = O(1) \sum_{v=1}^{m} \left(\frac{P_{v}}{P_{v}}\right)^{k} p_{v} |\epsilon_{v}|^{k} |\Delta T_{v-1}|^{k} \\ &\times \sum_{m=1}^{m+1} \frac{n^{k-1} P_{n}^{k}}{R_{n-1}} q_{n-v-1} = O(1) \sum_{v=1}^{m} v^{k-1} |\epsilon_{v}|^{k} |\Delta T_{v-1}|^{k} \\ &\leq \sum_{m=2}^{m+1} \frac{n^{k-1} P_{n}^{k}}{P_{n} R_{n-1}} q_{n,3} \Big|_{v}^{k} = \\ &= \sum_{m=2}^{m+1} n^{-1} \left|\frac{mp_{n}}{P_{n} R_{n-1}} q_{n,3} \right|_{v}^{k} = \\ &\leq \sum_{m=2}^{m+1} \frac{n^{k-1} P_{n}^{k}}{P_{n} R_{n-1}} q_{m,0} \left(\frac{U_{v-1}}{u_{v}}\right)^{k} \\ &\times |\epsilon_{v}|^{k} |\Delta T_{v-1}|^{k} \times \left\{\sum_{m=1}^{m-1} P_{v} q_{n-v-1} \left(\frac{U_{v-1}}{u_{v}}\right)^{k} \right\} \\ &\leq O(1) \sum_{v=1}^{m} p_{v} \left(\frac{U_{v}}{u_{v}}\right)^{k} |\epsilon_{v}|^{k} |\Delta T_{v-1}|^{k} \sum_{m=v+1}^{m-1} \frac{n^{k-1} P_{n}^{k}}{P_{n} R_{n-1}} \\ &= O(1) \sum_{v=1}^{m+1} p_{n}^{k-1} \sum_{v=1}^{m-1} P_{v} q_{n-v-1} \left(\frac{U_{v-1}}{u_{v}}\right)^{k} \\ &\leq \sum_{m=2}^{m+1} \frac{n^{-1} \left|\frac{mp_{n}}{P_{n} R_{n-1}} \sum_{v=1}^{m-1} P_{v} q_{n-v-1} \left(\frac{U_{v-1}}{u_{v}}\right)^{k} |\epsilon_{v}|^{k} |\Delta T_{v-1}|^{k}} \\ &\times \sum_{m=2}^{m+1} n^{-1} \left|\frac{mp_{n}}{P_{n} R_{n-1}} \sum_{v=1}^{m-1} P_{v} q_{n-v-1} \left(\frac{U_{v-1}}{u_{v}}\right)^{k} \\ &\leq O(1) \sum_{v=1}^{m} \left(\frac{P_{v}}{P_{v}}\right)^{k} p_{v} \left(\frac{U_{v}}{u_{v}}\right)^{k} |\Delta \epsilon_{v}|^{k} |\Delta T_{v-1}|^{k} \\ &\times \sum_{m=2}^{m+1} \frac{n^{k-1} P_{n}^{k} q_{n-v-1}}{\sum_{v=1}^{m-1} \frac{P_{v} q_{n-v-1}}{R_{n-1}}} \right]^{k-1} \\ &\leq O(1) \sum_{v=1}^{m+1} q_{n-1} q_{n-1}$$

3. APPLICATIONS

Throughout the rest of the paper, we may assume that $\{p_n\}$, $\{q_n\}$, and $\{u_n\}$ are sequences of positive real constants such that P_n , Q_n , and U_n are all tends to ∞ .

THEOREM 2 (Bor [2]): A necessary condition that $\sum \alpha_n$ is summable $|R, p_n|_k$, whenever it is summable $|R, u_n|_k$, $k \ge 1$ is:

$$p_n U_n = O(p_n u_n) \quad . \tag{2}$$

If

$$\sum_{n=v}^{\infty} \frac{n^{k-1} p_n^k}{P_n^k P_{n-1}} = O\left\{\frac{n^{k-1} p_n^{k-1}}{P_n^k}\right\},$$
(3)

then (2) is also sufficient.

Proof: Necessity. This follows on the lines of [2] as for $\epsilon_n = 1$ and $q_n = 1$,

$$\frac{np_n}{P_n R_{n-1}} \phi_{n,5} = \frac{p_n U_n}{P_n u_n} \Delta T_{n-1}.$$

Sufficiency. Follows from theorem 1 by putting $\epsilon_n = 1 \& q_n = 1$,

THEOREM 3 : Sufficient conditions that $\sum a_n$ is summable $|\mathbf{R}, \mathbf{p}_n|_k$, whenever it is summable $|\overline{N}, u_n|_k, k \ge 1$, are (2), (3) & $u_n = O(U_n)$.

Proof : Follows from theorem 1 by putting $\epsilon_n = 1 \& q_n = 1$.

THEOREM 4: Sufficient conditions that $\sum a_n$ is summable $|N, p_n|_k$, whenever it is summable $|\overline{N}, u_n|_k, k \ge 1$, are.

 $n = O(Q_n)$, $nu_n = O(U_n) \& U_n = O(nu_n)$.

Proof : Follows from theorem 1 by putting $\epsilon_n = 1 \& q_n = 1$, and making use of lemma 1.

COROLLARY 1 : Sufficient conditions that $\sum a_n$ is summable $|\mathbf{R}, \mathbf{p}_n|_k$, whenever it is summable $|C, 1_k, k \ge 1$, are (3) & $n\mathbf{p}_n = O(P_n)$.

Proof : Follows from theorem 3 by putting $u_n = 1$.

REMARK : If $P_n = O(np_n)$, then $|R, p_n|_k \Rightarrow |\overline{N}, p_n|_k$

COROLLARY 2 : Sufficient conditions that $\sum a_n$ is summable $|\overline{N}, p_n|_k$, whenever it is summable $|C,1|_k$, $k \ge 1$, is.

$$np_n = O(P_n) \& P_n = O(np_n).$$
 (4)

Proof:

$$\sum_{n=\nu}^{\infty} \frac{n^{k-1} p_n}{P_n^k P_{n-1}} = O(1) \sum_{n=\nu}^{\infty} \frac{p_n}{P_n P_{n-1}} = O(\frac{1}{P_\nu}) = O\left\{\frac{P_\nu^{k-1}}{P_\nu^k}\right\} = O\left\{\frac{\nu^{k-1} P_\nu^{k-1}}{P_\nu^k}\right\}.$$

The proof follows from corollary 2 and the remark.

THEOREM 5 (Bor [1]): If (4) is satisfied, then the series $\sum a_n$ is $|\overline{N}, p_n|_k$, if and only if it is $|C,1|_k$, $k \ge 1$.

Proof : Follows from theorem 4 with $q_n = 1$, and corollary 2.

REFERENCES

- [1] H. Bor, On $|\overline{N}, p_n|_k$ summability factors, Proc. Amer. Math. Soc., 94 (1985), 419 - 422.
- H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc., 113 (1991), 1009 - 1012.
- G. Das, Tauberian theorems for absolute Norlund summability, Proc. Lond. Math. Soc., 19 (1969), 357 - 384.
- [4] W. T. Sulaiman, Nots on two summability methods, Pure and Applied Mathematika Sciences, 31 (1990), 59 - 68.
- W. T. Sulaiman, Relations on some summability methods, Proc. Amer. Math. Soc., 118 (1993), 1139 - 1145