ON A RELATION BETWEEN TWO ABSOLUTE SUMMABILITY METHODS

W. T. Sulaiman
Dept. of Math., College of Science, University of Qatar

وعــد الله توثيقي ســـــيمـان
قسـم الرياضيات - كلية العلوم
جامعــــة قطـــــر

فـي هــذا البـحــت نبرهـــن نظـرية تـدور حـول العـلاقـة بين طريقـتـين للتـجمــيع المطلق هي اR, للمتسلسلة اللانهائية والتي تعمم نظرية سـابقة لــ Bor [2]

Key Words : Summability, Series, Sequences

Abstract

In this paper we prove a theorem concerning a relation between the summability methods $\left|\mathrm{R}, \mathrm{p}_{n}, \mathrm{q}_{n}\right|_{k}$ and $\left|\mathrm{R}, \mathrm{u}_{n}\right|_{k}, \mathrm{k} \geq 1$, which generalizes a result of Bor [2].

1. INTRODUCTION

Let $\sum_{1}^{\infty} a_{n}$ be an infinite series with partial sums s_{n}. Let $\sigma_{n} \delta_{n}$ and η_{n}^{δ} denote the nth Cesaro mean of order $\delta(\delta>-1)$ of the sequences $\left\{\mathrm{s}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{na}_{\mathrm{n}}\right\}$ respectively. The series $\sum_{1}^{\infty} a_{n}$ is said to be summable IC, $\delta l_{k}, k \geq 1$ if

$$
\sum_{n=1}^{\infty} n^{k-1}\left|\sigma_{n}^{\delta}-\sigma_{n-1}^{\delta}\right|^{k}<\infty
$$

or equivalently $\quad \sum_{n=1}^{\infty} n^{-1}\left|n_{n}^{\delta}\right|^{k}<\infty$.
Let $\left\{p_{n}\right\}$ be a sequence of real or complex numbers with $P_{n}=\mathrm{p}_{0}+p_{1}+\ldots+p_{n}, \quad P_{-1}=p_{-1}=0$.

The series $\sum_{1}^{\infty} a_{n}$ is said to be summable $\left|\mathrm{N}, \mathrm{p}_{\mathrm{n}}\right|$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|t_{n}-t_{n-1}\right|<\infty \tag{1}
\end{equation*}
$$

where

$$
t_{n}=P_{n}^{-1} \sum_{n=1}^{\infty} p_{n-v} s_{v} \quad\left(t_{-1}=0\right)
$$

We write $p=\left\{p_{n}\right\}$ and
$M=\left\{p: p_{n}>0 \& \frac{p_{n+1}}{p_{n}} \leq \frac{p_{n+2}}{p_{n+1}} \leq 1, n=0,1, \ldots\right\}$
It is known that for $p \in M$,(1) holds if and only if (Pas [3])

$$
\sum_{n=1}^{\infty} \frac{1}{n P_{n}}\left|\sum_{v=1}^{n} p_{n-v} v a_{v}\right|<\infty
$$

Definition 1 (Sulaiman [4]). For $p \in M$, we say that $\sum \mathrm{a}_{\mathrm{n}}$ is summable $\left|N, p_{n}\right|_{k}, k \geq 1$, if

$$
\sum_{n=1}^{\infty} \frac{1}{n P_{n}^{k}}\left|\sum_{v=1}^{n} p_{n-v} v a_{v}\right|^{k}<\infty
$$

In the special case in which $\mathrm{p}_{\mathrm{n}}=A_{n}^{\mathrm{r}-1}, r>-1$, where $\mathrm{A}_{\mathrm{n}}{ }^{\mathrm{r}}$ is the coefficient of x^{n} in the power series expansion of $(1-x)^{-r-1}$ for $|x|<1,\left|N, p_{n}\right|_{k}$ summability reduces to $|\mathrm{C}, r|_{\mathrm{k}}$ summability see [3].

The series $\sum \mathrm{a}_{\mathrm{n}}$ is said to be summable $\left|\mathrm{R}, \mathrm{p}_{n}\right|_{k}$ respectively $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, (Bor [2] \& [1]) if.

$$
\sum_{n=1}^{\infty} n^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty \text { respectively } \sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty
$$

where

$$
T_{n}=P_{n}^{-1} \sum_{v=0}^{\infty} p_{v} s_{v}
$$

In the special case when $p_{n}=1$ for all values of n (resp. $k=1$), then $\left|\mathrm{R}, \mathrm{p}_{n}\right|_{k}$ summability is the same as $|\mathrm{C}, r|_{\mathrm{k}}$ (resp.
$\left.\left|R, p_{n}\right|\right)$ summability.

Let $\left\{\mathrm{q}_{n}\right\},\left\{\mathrm{u}_{n}\right\}$ be sequences of numbers and denote with
$Q_{n}=q_{0}+q_{1}+\ldots+q_{n}, q_{-I}=Q_{-1}=0$
$U_{n}=u_{0}+u_{l}+\ldots+u_{n}, u_{-l}=U_{-1}=0$
$R_{n}=p_{0} q_{n}+p_{1} q_{n-I}+. .+p_{n} q_{0}$
$\Delta f_{n}=f_{n}-f_{n+1}$, for any sequence $\left\{\int_{n}\right\}$.
Here we give the following new definition.
Definition 2. Let $\left\{p_{n}\right\},\left\{q_{n}\right\}$ be sequences of positive real constants such that $q \in M$. We say theis $\sum_{1}^{\infty} a_{n}$ is summable $\left|\mathrm{R}, \mathrm{p}_{m}, \mathrm{q}_{n}\right|_{k}, k \geq 1$, if.

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left|\frac{n p_{n}}{P_{n} R_{n-1}} \sum_{v=1}^{n} P_{v-1} q_{n-v} a_{v}\right|^{k}<\infty
$$

Clearly, $\left|\mathrm{R}, \mathrm{p}_{n} 1\right|_{k}$ and $\left|\mathrm{R}, 1, \mathrm{p}_{n}\right|_{k}$ are equivalent to $\left|\mathrm{R}, \mathrm{p}_{n}\right|_{k}$ and $\left|\mathrm{N}, \mathrm{q}_{n}\right|_{k}$ respectively. This follows as $\sum \mathrm{a}_{\mathrm{n}}$ summable $\left|\mathrm{R}, \mathrm{p}_{n} 1\right|_{k}$, iff.

$$
\sum_{n=1}^{\infty} n^{k-1}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v}\right|^{k}<\infty
$$

Iff $\sum_{1}^{\infty} a_{n}$ summable $\left|\mathrm{R}, \mathrm{p}_{n}\right|_{k} \cdot$ Since $0 \leq \mathrm{Q}_{n} \leq \mathrm{Q}_{n+1}$ then $\mathrm{Q}_{n}=\mathrm{O}\left(\mathrm{Q}_{n+1}\right) . \mathrm{As}$
$Q_{n+1}=Q_{n}+q_{n+1} \leq Q_{n}+q_{n} \leq 2 Q_{n}$
then $Q_{n+1}=O\left(Q_{n}\right)$
Therefor $\sum_{1}^{\infty} a_{n}$ summable $\left|\mathrm{R}, 1, \mathrm{q}_{n}\right|_{\dot{k}}$, iff
$\sum_{n=1}^{\infty} \frac{1}{n}\left|\frac{1}{Q_{n-1}} \sum_{v=1}^{n}(v-1) q_{n-v} a_{v}\right|^{k}<\infty$
iff $\sum_{n=1}^{\infty} \frac{1}{n}\left|\frac{1}{Q_{n}} \sum_{v=1}^{n} v q_{n-v} a_{v}\right|^{k}<\infty$
iff $\sum a_{n}$ summable $\left|N, P_{n}\right|_{k}$

2. MAIN RESULT

We prove the following :

THEORM 1. :

Let $\left\{P_{n}\right\},\left\{q_{n}\right\}$ and $\left\{\mathrm{u}_{n}\right\}$ be sequences of positive real numbers such that $q=\left\{q_{n}\right\}$, and assume $q \in M$, $\left\{\mathrm{n}^{1-1 / k} \mathrm{P}_{\mathrm{n}} / \mathrm{p}_{\mathrm{n}} \mathrm{R}_{\mathrm{n}-1}\right\}$ nonincreasing for $q_{n} \neq \mathrm{c}$. Let T_{n} denote the $\left(N, u_{n}\right)$ - mean of the series $\sum \mathrm{a}_{\mathrm{n}}$. Let $\left\{\underline{\epsilon}_{n}\right\}$ be a sequence of constants. If :

$$
\begin{aligned}
& \sum_{n=v+1}^{m+1} \frac{n^{k-1} p_{n}}{P_{n}^{k} R_{n-1}} q_{n-v-1}=\left\{\frac{n^{k-1} p_{n}^{k-1}}{P_{n}^{k}}\right\} \\
& \sum_{n=1}^{\infty} n^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left(\frac{P_{n-1}}{R_{n-1}}\right)^{k}\left(\frac{U_{n}}{u_{n}}\right)^{k}\left|\epsilon_{n}\right|^{k}\left|\Delta T_{n-1}\right|^{k}<\infty \\
& \sum_{n=1}^{\infty} n^{k-1}\left|\epsilon_{n}\right|^{k}\left|\Delta T_{n-1}\right|^{k}<\infty \\
& \sum_{n=1}^{\infty} n^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left(\frac{U_{n}}{u_{n}}\right)^{k}\left|\epsilon_{n}\right|^{k}\left|\Delta T_{n-1}\right|^{k}<\infty
\end{aligned}
$$

and

$$
\sum_{n=1}^{\infty} n^{k-1}\left(\frac{U_{n}}{u_{n}}\right)^{k}\left|\Delta \epsilon_{n}\right|^{k}\left|\Delta T_{n-1}\right|^{k}<\infty,
$$

then the series $\sum \mathrm{a}_{\mathrm{n}}$ is summable $\left|\mathrm{R}, \mathrm{p}_{n}, \mathrm{q}_{n}\right|_{k}, K \geq 1$. In [5], we proved that if $q \in M$, then for $0<r \leq 1$,

$$
\sum_{n=v+1}^{\infty} \frac{q_{n-v-1}}{n^{r} Q_{n-1}}=O\left(v^{-r}\right)
$$

Proof of the Theorem :
Denote :

Since

$$
\begin{aligned}
& \mathbf{T}_{\mathrm{n}}=U_{n}^{-1} \sum_{v=0}^{n} u_{v} \sum_{r=0}^{v} a_{r}=U_{n}^{-1} \sum_{v=0}^{n}\left(U_{n}-U_{v-1}\right) a_{v} \\
& -\Delta T_{n-1}=\frac{u_{n}}{U_{n} U_{n-1}} \sum_{v=1}^{n} U_{v-1} a_{v} .
\end{aligned}
$$

By means of the Abel's transformation, one gets :

$$
\begin{aligned}
& \phi_{n}=\sum_{v=1}^{n} U_{v-1} a_{v}\left(P_{v-1} q_{n-v} U_{v-1}^{-1} \epsilon_{v}\right) \\
&= \sum_{v=1}^{n-1}\left(\sum_{r=1}^{v} U_{r-1} a_{r}\right) \Delta_{v}\left(P_{v-1} q_{n-v} U_{v-1}^{-1} \epsilon_{v}\right)+ \\
&+\left(\sum_{r=1}^{n} U_{r-1} a_{r}\right) P_{n-1} q_{0} U_{n-1}^{-1} \epsilon_{n}=\sum_{v=1}^{n-1}\left\{-\frac{U_{v-1} U_{v}}{u_{v}} \Delta T_{v-1}\right\}\{ \\
&\left\{P_{v-1} \Delta_{v} q_{n-v} U_{v-1}^{-1} \epsilon_{v}\right\}+P_{v-1} q_{n-v-1} \frac{u_{v}}{U_{v-1} U_{v}} \epsilon_{v} \\
&\left.-p_{v} q_{n-v-1} U_{v}^{-1} \epsilon_{v}+P_{v} q_{n-v-1} U_{v}^{-1} \Delta \epsilon_{v}\right\}- \\
&-P_{n-1} q_{0} U_{n} u_{n}^{-1} \epsilon_{n} \Delta T_{n-1} \\
&=\sum_{v=1}^{n-1}\left\{-P_{v-1} \Delta q_{n-v} \frac{U_{v}}{u_{v}} \epsilon_{v} \Delta T_{v-1}\right. \\
&-P_{v-1} q_{n-v-1} \epsilon_{v} \Delta T_{v-1}-p_{v} q_{n-v-1} \frac{U_{v-1}}{u_{v}} \\
&\left.\times \epsilon_{v} \Delta T_{v-1}+P_{v} q_{n-v-1} \frac{U_{v-1}}{u_{v}} \Delta \epsilon_{v} \Delta T_{v-1}\right\}- \\
&-P_{n-1} q_{0} \frac{U_{n}}{u_{n}} \epsilon_{n} \Delta T_{n-1} \\
&=\phi_{n, 1}+\phi_{n, 2}+\phi_{n, 3}+\phi_{n, 4}+\phi_{n, 5}, \quad \omega h e r e \\
& \phi_{n, 1}=\sum_{v=1}^{n-1}-P_{v-1} \Delta{ }_{v} q_{n-v} \frac{U_{v}}{u_{v}} \epsilon_{v} \Delta T_{v-1} \\
& \phi_{n, 2}=\sum_{v=1}^{n-1}-P_{v-1} q_{n-v-1} \epsilon_{v} \Delta T_{v-1} \\
& \phi_{n, 3}=\sum_{v=1}^{n-1}-p_{v} q_{n-v-1} \frac{U_{v-1}}{u_{v}} \epsilon_{v} \Delta T_{v-1} \\
& \phi_{n, 4}=\sum_{v=1}^{n-1} P_{v} q_{n-v-1} \frac{U_{v-1}}{u_{v}} \Delta \epsilon_{v} \Delta T_{v-1} \\
& \phi_{n, 5}=-P_{n-1} q_{0} \frac{U_{n}}{u_{n}} \epsilon_{n} \Delta T_{n-1}
\end{aligned}
$$

In order to prove the theorem, it is sufficient, by Minkowski's inequality, to show that.

$$
\sum_{n=1}^{\infty} n^{-1}\left|\frac{n p_{n}}{P_{n} R_{n-1}} \phi_{n, r}\right|^{k}<\infty, r=1,2,3,4,5
$$

Applying Holder's inequality,

$$
\begin{aligned}
& \sum_{n=2}^{m+1} n^{-1}\left|\frac{n p_{n}}{P_{n} R_{n-1}} \phi_{n, 1}\right|^{k}= \\
& =\sum_{n=2}^{m+1} n^{-1}\left|\frac{n p_{n}}{P_{n} R_{n-1}} \sum_{v=1}^{n-1} P_{v-1} \Delta_{v} q_{n-v} \frac{U_{v}}{u_{v}} \epsilon_{v} \Delta T_{v-1}\right|^{k} \\
& \left.\leq \sum_{n=2}^{m+1} n^{-1}\left(\frac{n p_{n}}{P_{n} R_{n-1}}\right)^{k} \sum_{v=1}^{n-1} P_{v-1}^{k} \right\rvert\, \Delta_{v} q_{n-v}\left(\frac{U_{v}}{u_{v}}\right)^{k} \\
& \times\left|\epsilon_{v}\right|^{k}\left|\Delta T_{v-1}\right|^{k} \times\left\{\sum_{v=1}^{n-1}\left|\Delta_{v} q_{n-v}\right|\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m} P_{v-1}^{k}\left(\frac{U_{v}}{u_{v}}\right)^{k}\left|\epsilon_{v}\right|^{k}\left|\Delta T_{v-1}\right|^{k=1} \sum_{n=1}^{m+1} \frac{n^{k-1} p_{n}^{k}}{P_{n}^{k}} R_{n-1}^{k}\left|\Delta_{v} q_{n-v}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m} v^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left(\frac{P_{v-1}}{R_{v-1}}\right)^{k}\left(\frac{U_{v}}{u_{v}}\right)^{k}\left|\epsilon_{v}\right|^{k}\left|\Delta T_{v-1}\right|^{k} \\
& \sum_{n=2}^{m+1} n^{-1}\left|\frac{n p_{n}}{P_{n} R_{n-1}} \phi_{n, 2}\right|^{k}= \\
& =\sum_{n=2}^{m+1} n^{-1}\left|\frac{n p_{n}}{P_{n} R_{n-1}} \sum_{v=1}^{n-1} \frac{P_{v-1}}{p_{v}} p_{v} q_{n-v-1} \epsilon_{v} \Delta T_{v-1}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{n^{k-1} p_{n}^{k}}{P_{n}^{k} R_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v-1}}{p_{v}}\right)^{k} p_{v} q_{n-v-1}\left|\epsilon_{v}\right|^{k}\left|\Delta T_{v-1}\right|^{k} \times \\
& \times\left\{\sum_{v=1}^{n-1} \frac{p_{v} q_{n-v-1}}{R_{n-1}}\right\}^{k-1} \leq O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left|\epsilon_{v}\right|^{k}\left|\Delta T_{v-1}\right|^{k} \\
& \times \sum_{n=v+1}^{m+1} \frac{n^{k-1} p_{n}^{k}}{P_{n}^{k} R_{n-1}} q_{n-v-1}=O(1) \sum_{v=1}^{m} v^{k-1}\left|\epsilon_{v}\right|^{k}\left|\Delta T_{v-1}\right|^{k} \\
& \sum_{n=2}^{m+1} n^{-1}\left|\frac{n p_{n}}{P_{n} R_{n-1}} \phi_{n, 3}\right|^{k}= \\
& =\sum_{n=2}^{m+1} n^{-1}\left|\frac{n p_{n}}{P_{n} R_{n-1}} \sum_{v=1}^{n-1} p_{v} q_{n-v-1} \frac{U_{v-1}}{u_{v}} \epsilon_{v} \Delta T_{v-1}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{n^{k-1} p_{n}^{k}}{P_{n}^{k} R_{n-1}} \sum_{v=1}^{n-1} p_{v} q_{n-v-1}\left(\frac{U_{v-1}}{u_{v}}\right)^{k} \\
& \times\left|\epsilon_{v}\right|^{k}\left|\Delta T_{v-1}\right|^{k} \times\left\{\sum_{v=1}^{n-1} \frac{p_{v} q_{n-v-1}}{R_{n-1}}\right\}^{k-1} \\
& \leq O(1) \sum_{v=1}^{m} p_{v}\left(\frac{U_{v}}{u_{v}}\right)^{k}\left|\epsilon_{v}\right|^{k}\left|\Delta T_{v-1}\right|^{k} \sum_{n=v+1}^{m+1} \frac{n^{k-1} p_{n}^{k}}{P_{n}^{k} R_{n-1}} q_{n-v-1} \\
& =O(1) \sum_{v=1}^{m} v^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left(\frac{U_{v}}{u_{v}}\right)^{k}\left|\epsilon_{v}\right|^{k}\left|\Delta T_{v-1}\right|^{k} \\
& \times \sum_{n=2}^{m+1} n^{-1}\left|\frac{n p_{n}}{P_{n} R_{n-1}} \phi_{n, 4}\right|^{k}= \\
& =\sum_{n=2}^{m+1} n^{-1}\left|\frac{n p_{n}}{P_{n} R_{n-1}} \sum_{v=1}^{n-1} P_{v} q_{n-v-1} \frac{U_{v-1}}{u_{v}} \Delta \epsilon_{v} \Delta T_{v-1}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{n^{k-1} p_{n}^{k}}{P_{n}^{k} R_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v} q_{n-v-1}\left(\frac{U_{v-1}}{u_{v}}\right)^{k} \\
& \times\left|\epsilon_{v}\right|^{k}\left|\Delta T_{v-1}\right|^{k} \times\left\{\sum_{v=1}^{n-1} \frac{p_{v} q_{n-v-1}}{R_{n-1}}\right\}^{k-1} \\
& \leq O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left(\frac{U_{v}}{u_{v}}\right)^{k}\left|\Delta \epsilon_{v}\right|^{k}\left|\Delta T_{v-1}\right|^{k} \\
& \times \sum_{n=v+1}^{m+1} \frac{n^{k-1} p_{n}^{k}}{P_{n}^{k} R_{n-1}} q_{n-v-1}=O(1) \sum_{v=1}^{m} v^{k-1}\left(\frac{U_{v}}{u_{v}}\right)^{k}\left|\Delta \epsilon_{v}\right|^{k}\left|\Delta T_{v-1}\right|^{k} \\
& \sum_{n=2}^{m+1} n^{-1}\left|\frac{n p_{n}}{P_{n} R_{n-1}} \phi_{n, 5}\right|^{k}=\sum_{n=2}^{m+1} n^{-1}\left|\frac{n p_{n}}{P_{n} R_{n-1}} P_{n-1} q_{0} \frac{U_{n}}{u_{n}} \epsilon_{n} \Delta T_{n-1}\right|^{k} \\
& =O(1) \sum_{\mathrm{v}=1}^{m} n^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left(\frac{P_{n-1}}{R_{n-1}}\right)^{k}\left(\frac{U_{n}}{u_{n}}\right)^{k}\left|\epsilon_{n}\right|^{k}\left|\Delta T_{n-1}\right|^{k}
\end{aligned}
$$

3. APPLICATIONS

Throughout the rest of the paper, we may assume that $\left\{p_{n}\right\}$, $\left\{q_{n}\right\}$, and $\left\{u_{n}\right\}$ are sequences of positive real constants such that P_{n}, Q_{n}, and U_{n} are all tends to ∞.

THEOREM 2 (Bor [2]) : A necessary condition that $\sum \alpha_{\mathrm{n}}$ is summable $\left|R, p_{n}\right|_{k}$, whenever it is summable $\left|R, u_{n}\right|_{k}, k \geq 1$ is :

$$
\begin{equation*}
p_{n} U_{n}=O\left(p_{n} u_{n}\right) \tag{2}
\end{equation*}
$$

If

$$
\begin{equation*}
\sum_{n=v}^{\infty} \frac{n^{k-1} p_{n}^{k}}{P_{n}^{k} P_{n-1}}=O\left\{\frac{n^{k-1} p_{n}^{k-1}}{P_{n}^{k}}\right\}, \tag{3}
\end{equation*}
$$

then (2) is also sufficient.
Proof : Necessity. This follows on the lines of [2] as for $\epsilon_{n}=1$ and $q_{n}=1$,

$$
\frac{n p_{n}}{P_{n} R_{n-1}} \phi_{n, 5}=\frac{p_{n} U_{n}}{P_{n} u_{n}} \Delta T_{n-1}
$$

Sufficiency. Follows from theorem 1 by putting $\epsilon_{n}=1 \& q_{n}=1$,

THEOREM 3 : Sufficient conditions that $\sum a_{\mathrm{n}}$ is summable $\left|\mathrm{R}, \mathrm{p}_{n}\right|_{k}$, whenever it is summable $\left|\bar{N}, u_{n}\right|_{k}, k \geq 1$, are (2), (3) $\& \mathrm{nu}_{n}=O\left(U_{n}\right)$.

Proof : Follows from theorem 1 by putting $\epsilon_{n}=1 \& q_{n}=1$.
THEOREM 4 : Sufficient conditions that $\sum a_{\mathrm{n}}$ is summable $\left|N, p_{n}\right|_{k}$, whenever it is summable $\left|\bar{N}, u_{n}\right|_{k}, k \geq 1$, are.

$$
n=O\left(Q_{n}\right), n u_{n}=O\left(U_{n}\right) \& U_{n}=O\left(n u_{n}\right)
$$

Proof : Follows from theorem 1 by putting $\epsilon_{n}=1 \& q_{n}=1$, and making use of lemma 1 .

COROLLARY 1 : Sufficient conditions that $\sum \mathrm{a}_{\mathrm{n}}$ is summable $\left|\mathrm{R}, \mathrm{p}_{n}\right|_{k}$, whenever it is summable $\mid C, 1_{k}, k \geq 1$, are (3) \& $n p_{n}=O\left(P_{n}\right)$.

Proof : Follows from theorem 3 by putting $u_{n}=1$.
REMARK : If $P_{n}=O\left(n p_{n}\right)$, then $\left|R, p_{n}\right|_{k} \Rightarrow\left|\bar{N}, p_{n}\right|_{k}$.
COROLLARY 2 : Sufficient conditions that $\sum \mathrm{a}_{\mathrm{n}}$ is summable $\left|\bar{N}, p_{n}\right|_{k}$, whenever it is summable $|C, 1|_{k}, k \geq 1$, is.

$$
\begin{equation*}
n p_{n}=O\left(P_{n}\right) \& P_{n}=O\left(n p_{n}\right) \tag{4}
\end{equation*}
$$

Proof :

$$
\begin{aligned}
& \sum_{n=v}^{\infty} \frac{n^{k-1} p_{n}}{P_{n}^{k} P_{n-1}}=O(1) \sum_{n=v}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}=O\left(\frac{1}{P_{v}}\right)= \\
& \quad=O\left\{\frac{P_{v}^{k-1}}{P_{v}^{k}}\right\}=O\left\{\frac{v^{k-1} P_{v}^{k-1}}{P_{v}^{k}}\right\}
\end{aligned}
$$

The proof follows from corollary 2 and the remark.
THEOREM 5 (Bor [1]) : If (4) is satisfied, then the series $\sum \mathrm{a}_{\mathrm{n}}$ is $\left|\overline{\mathrm{N}}, \mathrm{p}_{\mathrm{n}}\right|_{k}$, if and only if it is $|C, 1|_{k}, k \geq 1$.

Proof : Follows from theorem 4 with $\mathrm{q}_{n}=1$, and corollary 2.

REFERENCES

[1] H. Bor, On $\left|\bar{N}, p_{n}\right|_{k}$ summability factors, Proc. Amer. Math. Soc., 94 (1985), 419-422 .
[2] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc., 113 (1991), 1009-1012.
[3] G. Das, Tauberian theorems for absolute Norlund summability, Proc. Lond. Math. Soc., 19 (1969), 357-384.
[4] W. T. Sulaiman, Nots on two summability methods, Pure and Applied Mathematika Sciences, 31 (1990), 59-68.
[5] W. T. Sulaiman, Relations on some summability methods, Proc. Amer. Math. Soc., 118 (1993), 1139-1145.

