A SPECIAL SYSTEM OF BOUNDARY VALUE PROBLEMS

By
M. I. MOHAMED
Mathematics Department, Faculty of Science
Qatar University, Doha

Key words: Boundary Value Problems.

Abstract

In this paper we introduce a special system of boundary value problems and give a method for solving it. Then we give a detailed application of this method to a system of boundary value problems of Hilbert type.

Let G_{1} and G_{2} be simply connected bounded regions with simple closed contours c_{1} and c_{2} in the $z-$ plane and let $\bar{G}_{1} \cap \bar{G}_{2}=\Phi$.

The aim is to find two sectionally holomorphic functions $\varnothing_{1}(\mathrm{z})$ and $\varnothing_{2}(\mathrm{z})$ whose boundery values $\varnothing_{1}^{ \pm}(\mathrm{t})$ and $\varnothing_{2}^{ \pm}(\mathrm{t})$ satisfy the following conditions:

On c_{1}

$$
\begin{equation*}
\mathrm{A}_{1}\left[\varnothing_{1}^{+}(\mathrm{t}), \varnothing_{1}^{-}(\mathrm{t})\right]=\mathrm{F}_{1}\left[\varnothing_{2}(\mathrm{t}), \overline{\varnothing_{2}(\mathrm{t})}\right] \tag{1}
\end{equation*}
$$

and on c_{2}

$$
\begin{equation*}
A_{2}\left[\varnothing_{2}^{+}(t), \varnothing_{2}^{-}(t)\right]=F_{2}\left[\varnothing_{1}(t), \overline{\varnothing_{1}(t)}\right] \tag{2}
\end{equation*}
$$

where A_{1} and A_{2} are linear with respect to their arguments.
First we suppose that both of right hand sides of (1) and (2) are given, then from (1) and (2) we obtain \varnothing_{1} and \varnothing_{2} respectively.

Boundary value problems

Consider that

$$
\begin{equation*}
\varnothing_{1}(z)=\frac{1}{2 \pi i} \int_{c_{1}} \frac{\varphi_{1}(\tau)}{\tau-z} . d t \tag{3}
\end{equation*}
$$

where the density function $\boldsymbol{\varphi}_{1}(\mathrm{t}) \in \mathrm{H}$ (Hölder class).
The boundary values of the function $\varnothing_{1}(z)$ take the form

$$
\left.\begin{array}{l}
\varnothing_{1}^{+}(t)=\frac{\varphi_{1}(t)}{2}+\frac{1}{2 \pi i} \int_{c_{1}} \frac{\varphi_{1}(t)}{\tau-t} d \tau \\
\varnothing_{1}^{-}(t)=-\frac{\varphi_{1}(t)}{2}+\frac{1}{2 \pi i} \int_{c 1} \frac{\varphi_{1}(t)}{\tau-t} d \tau \tag{4}
\end{array}\right\}
$$

Substituting from (4) into (1), we have

$$
\begin{align*}
& A_{1}\left[\frac{\varphi_{1}(t)}{2}+\frac{1}{2 \pi i} \int_{c_{1}} \frac{\varphi_{1}(\tau)}{2} d \tau,-\frac{\varphi_{1}(t)}{2}+\right. \\
& \left.\quad+\frac{1}{2 \pi i} \int_{c_{1}} \frac{\varphi_{1}(t)}{\tau-t} d \tau\right]=F\left[\varnothing_{2}(t), \overline{\varnothing_{2}(t)}\right] \ldots \ldots \tag{5}
\end{align*}
$$

and therefore we have the singular integral equation (5) with respect to the unknown function $\varphi_{1}(t)$ for which we can apply Noether's theorems. Under certain conditions we obtain $\varphi_{1}(t)$ and consequently $\varnothing_{1}(z)$.

It is known that the function $\varnothing_{1}(\mathrm{z})$ can be written in the form

$$
\begin{equation*}
\varnothing_{1}(z)=\frac{1}{2 \pi i} \int_{c_{1}} \frac{\epsilon_{1}\left[\varnothing_{2}(t), \overline{\varnothing_{2}(t)}\right]}{t-z} d t \tag{6}
\end{equation*}
$$

Thus, on c_{2}

$$
\begin{equation*}
\varnothing_{1}(t)=\frac{1}{2 \pi i} \int_{c_{1}} \frac{\epsilon_{1}\left[\varnothing_{2}(\tau), \overline{\left.\varnothing_{2}(\tau)\right]}\right.}{\tau-t} d \tau \tag{7}
\end{equation*}
$$

Subtituting from (7) into (2), we have

$$
\begin{align*}
& A_{2}\left[\varnothing_{2}^{+}(t), \varnothing_{2}^{-}(t)\right]=F_{2}\left[\frac{1}{2 \pi i} \int_{c_{1}} \frac{\epsilon_{1}\left[\varnothing_{2}(\tau), \overline{\varnothing_{2}(\tau)}\right]}{\tau-t} d \tau\right. \\
& \left.\quad-\frac{1}{2 \pi i} \int_{c_{1}} \frac{\overline{\epsilon_{1}\left[\varnothing_{2}(t), \overline{\varnothing_{2}(t)}\right]}}{\bar{\tau}-\bar{t}} \overline{d \tau}\right] \ldots \ldots \ldots \ldots \ldots \ldots \tag{8}
\end{align*}
$$

Let A_{2} have properties such that $\varnothing_{2}(z)$ can be obtained from (8) and assume that whenever $z=t$, on c_{1}, we define $\varnothing_{2}(t)$.

Thereby from (8), we immediately obtain an integral equation with respect to $\varnothing_{2}(\mathrm{t})$.
By obtaining the solution $\varnothing_{2}(t)$ of such integral equation the function $\varnothing_{1}(\mathrm{z})$
follows directly from (6). Similarly, we find $\varnothing_{2}(z)$.
The method is complete.

We now give an application of this method:
Consider the following system of boundary value problems of Hilbert type [1].

On c_{1}

$$
\begin{equation*}
\varnothing_{1}^{+}(t)-A_{1}(t) \varnothing_{1}^{-}(t)=f_{1}(t)+\propto_{1}(t) \varnothing_{2}(t)+\propto_{2}(t) \overline{\varnothing_{2}(t)} \tag{9}
\end{equation*}
$$

and on c_{2}

$$
\begin{equation*}
\varnothing_{2}^{t}(t)-A_{2}(t) \varnothing_{2}^{-}(t)=f_{2}(t)+\beta_{1}(t) \varnothing_{1}(t)+\beta_{2}(t) \overline{\varnothing_{1}(t)} \tag{10}
\end{equation*}
$$

and let the index ae of $A_{1}(t)$ be not negative.

From (9), we have

$$
\begin{align*}
\varnothing_{1}(z)=\frac{X(z)}{2 \pi i} \int_{c_{1}} & \frac{f_{1}(t)+\propto_{1}(t) \varnothing_{2}(t)+\propto_{2}(t) \overline{\varnothing_{2}(t)}}{X^{+}(t)} \frac{d t}{t-z}+ \\
& +p_{a_{1}}(z) X(z) \ldots \ldots \ldots \ldots \ldots \ldots \tag{11}
\end{align*}
$$

where $X(z)$ is the canonical function of the associated homogeneous equation with respect to (9) and $p_{\mathrm{ae}_{1}}(z)$ is a polynomial of degree $a e_{1}$ with arbitrary coefficients.

Whenever $z=t$, on c_{2}, then

$$
\begin{align*}
\varnothing_{1}(t)=\frac{X(t)}{2 \pi i} \int_{c_{1}} & \frac{f_{1}(\tau)+\propto_{1}(\tau) \varnothing_{2}(\tau)+\propto_{2}(\tau) \overline{\varnothing_{2}(\tau)}}{X^{+}(\tau)} \frac{d \tau}{\tau-t} \\
& +p_{\mathrm{ae}_{1}}(t) X(t) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{12}
\end{align*}
$$

Thus, the right hand side of (10) can be written in the form

$$
\begin{array}{r}
F(t), \frac{1}{2 \pi i} \cdot \int_{c_{1}} \frac{\propto_{1}(\tau) \varnothing_{2}(\tau)+\propto_{2}(\tau) \overline{\varnothing_{2}(\bar{\tau})}}{X^{+}(\tau)} \frac{d \tau}{\tau-t} \\
\frac{1}{2 \pi i} \int_{c_{1}} \frac{\overline{\alpha_{1}(\tau)} \overline{\varnothing_{2}(\tau)}+\overline{\propto_{2}(\tau)} \varnothing_{2}(\tau)}{X^{+}(\tau)} \frac{d \bar{\tau}}{\overline{\tau-\bar{t}}} \\
=F \varnothing_{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{13}
\end{array}
$$

From (13) the boundary condition (10)

$$
\begin{equation*}
\varnothing_{2}^{+}(t)-A_{2}(t) \varnothing_{2}^{-}(t)=F \varnothing_{2} \tag{14}
\end{equation*}
$$

Let the index ae_{2} of $\mathrm{A}_{2}(t)$ be not negative. Then we have

$$
\begin{equation*}
\varnothing_{2}(t)=\frac{y(t)}{2 \pi i} \int_{C_{2}} \frac{F \varnothing_{2}}{y^{+}(t)} \frac{d \tau}{\tau-z}+Q_{a_{2}}(z) y(z) . \tag{15}
\end{equation*}
$$

M.I. MOHAMED

where $y(z)$ is the cononical function of the associated homogeneous equation with respect to (14) and $Q_{a_{2}}$ with arbitrary coefficients.

Whenever $z=t$, on c_{1}, we have

$$
\begin{equation*}
\varnothing_{2}(t)=\frac{y(t)}{2 \pi i} \int_{c_{2}} \frac{F \varnothing_{2}}{y^{+}(\tau)} \frac{d \tau}{\tau-t}+Q_{\mathrm{ae}_{2}}(t) y(t) \tag{16}
\end{equation*}
$$

and therefore from (13) and (16), we immediately obtain an integral equation with respect to $\varnothing_{2}(t)$. By applying Fredholm's Integral Equation Theory we obtain $\varnothing_{2}(t)$ and consequently from (11) we find $\varnothing_{1}(z)$. Similarly we find $\varnothing_{2}(\mathrm{z})$.

REFERENCES

Gakhov, V.D. 1977. "Boundary value problems" Nayka.

نظام خاص من مسائل القيير الحدية
 محمد إبراهيم محمد

في هذا البحث درس نظام خاص من مسائل القيم الحدية وأعطيت طريقة حل هذا النظام ، ثم طبقت الطريقة بالتفصيل لنظام من مسائل القيم الحدية من نوع هلابرت .

