A PROBLEM IN THERMOELASTICITY WITH TWO RELAXATION TIMES FOR AN INFINITE THERMOELASTIC LAYER

By

Hany H. Sherief* and Heba A. Saleh**
* Faculty of Sciencc, University of Qatar, Doha, Qatar
** Faculty of Science, University of Alexandria, Alexandria, Egypt

تم في هذا البحث حل مسألـة لشنريكه سميكه محدود وعمتدة الى مـالالهاية تخضع لعادلات نظريـة المرونة

 حسابات عددية لقيم دوال الحرارة والإزاحة والإجهاد كا تم تمثيل هذه الدول بيانياً .

Key Words : Thermoclasticity - Generalized Thermoclasticity - Thermal Stresscs.

Abstract

The problem of a thermoclastic layer of finite thickness and infinite extent is considered within the context of the theory of thermoclasticity with two relaxation times. The upper surface of the layer is taken as stress free and is suddenly subjected to a thermal shock. The lower surface of the layer rests on a rigid base that is thermally insulating. Laplace transform techniques are used. The problem is solved by using a dircct approach. The inverse Laplace transforms are obtained analytically by using asymptotic expansions valid for small values of time. Numerical computations for the temperature, the displacement and stress distributions are carricd out and represented graphically.

\section*{NOMENCLATURE} $\lambda, \mu \quad$ Lamé's constants $\alpha_{t} \quad$ coefficient of linear thermal expansion $\beta=[(\lambda+2 \mu) / \mu]^{1 / 2}$ $\gamma=(3 \lambda+2 \mu) \alpha_{t}$ $\rho=$ density $\mathrm{V}_{1}=$ speed of propagation of isothermal longitudinal waves $=[(\lambda+2 \mu) / \rho]^{1 / 2}$ $\sigma=\sigma_{\mathrm{xx}}$ component of the stress tensor in x-direction u component of displacement in x-direction c_{E} specific heat at constant strain k thermal conductivity $\eta=\rho c_{E} / k$ t time T absolute temperature T_{0} reference temperature chosen so that $\left[\left(T-T_{0}\right) / T_{0}\right] \ll 1$ $b=\gamma T_{\mathrm{o}} / \mu$ $g=\gamma / \rho c_{E}$

τ, \vee relaxation times

q the heat flux normal to the surface of the layer

INTRODUCTION

Biot [1] formulated the theory of coupled thermoclasticity to eliminate the paradox inherent in the classical uncoupled theory that elastic changes have no effect on the temperature. The heat equations for both theories are of the diffusion type predicting infinite specds of propagation for heat waves contrary to physical observations.

Lord and Shulman [2] introduced the theory of generalized thermoelasticity with one relaxation time for the special case of an isotropic body. This theory was extended [3] by Dhaliwal and Sherief to include the anisotropic case. In this theory a modified law of heat conduction including both the heat flux and its time derivative replaces the conventional Fourier's law. The heat equation associated with this theory is hyperbolic and hence eliminates the paradox of infinite specds of propagation inherent in both the uncoupled and the coupled theories of thermoclasticity. Uniqueness of solution of this theory was proved under different conditions by J. Ignaczak in [4], [5], by Shericf and Dhaliwal in [6], [3] and by Shericf in [7]. The state space approach to this theory was developed by Anwar and Shericf in [8] and by Sherief in [9]. The boundary integral equation formulation was conducted by Anwar and Sherief in [10]. The fundamental solution for this theory was obtained by Sherief in [11].

Green and Lindsay [12] developed the theory of generalized thermoelasticity with two relaxation times which is based on a generalized inequality of thermodynamics. This theory does not violate Fouricr's law of heat conduction when the body under consideration has a centre of symmetry. In this theory both the equations of motion and of heat conduction are hyperbolic but the equation of motion is modified and differs from that of the coupled thermoclasticity theory. This theory was initiated by Müller [13]. It was further extended by Green and Laws [14]. The final form used in the present work is that of Green and Lindsay [12]. This theory was also obtained independently by Şuhubi [15]. Longitudinal wave propagation for this theory was studied by Erbay And Şuhubi in [16]. Ignaczak investigated a strong dis-
continuity wave and proved a decomposition theorem for this theory in [17] and [18], respectively. Sherief has obtained the fundamental solution for this theory in [19] Sherief has also formulated the state space approach in [20] and solved a thermo-mechanical shock problem in [21]. The boundary integral equation formulation was done by Anwar and Sherief in [22].

FORMULATION OF THE PROBLEM

In this work we shall consider a homogeneous, isotropic, thermoclastic solid occuping the region of a layer $0 \leq x \leq h$. The lower surface of the layer ($x=h$) is taken to be thermally insulated and has a rigid foundation. The upper surface of the layer $(x=0)$ is suddenly heated and kept at a constant temperature and is stress free.

We assume that there are no external forces or heat sources acting inside the region. Since the layer is extending to infinity in both y and z directions, the problem is essentially one-dimensional. The displacement components thus have the form
$\mathrm{u}_{\mathrm{x}}=\mathrm{u}(\mathrm{x}, \mathrm{t}) \quad, \quad \mathrm{u}_{\mathrm{y}}=\mathrm{u}_{\mathrm{z}}=0$.
The strain tensor components are given by
$e_{x x}=\frac{\partial u}{\partial x}, e_{x y}=e_{y z}=c_{z x}=e_{y y}=e_{z z}=0$.

The cubical dilatation e is equal to
$e=\frac{\partial u}{\partial x}$.

The solid is assumed to obey the equations of thermoelasticity with two relaxation times. These equations are [12]
(1) The equation of motion
$\rho \frac{\partial^{2} u}{\partial t^{2}}=(\lambda+2 \mu) \frac{\partial^{2} u}{\partial x^{2}}-\gamma\left[\frac{\partial T}{\partial x}+v \frac{\partial^{2} T}{\partial x} \partial \mathrm{t}\right]$.
(2) The encrgy equation
$k \frac{\partial^{2} T}{\partial x^{2}}=\rho c_{E}\left[\frac{\partial T}{\partial t}+\tau \frac{\partial^{2} T}{\partial t^{2}}\right]+\gamma T_{o} \frac{\partial^{2} u}{\partial x \partial t}$.
(3) The constitutive equations
$\sigma=\sigma_{\mathrm{xx}}=(\lambda+2 \mu) \frac{\partial \mathrm{u}}{\partial \mathrm{x}}-\gamma\left[\mathrm{T}-\mathrm{T}_{\mathrm{o}}+v \frac{\partial \mathrm{~T}}{\partial \mathrm{t}}\right]$,
$\sigma_{y y}=\sigma_{z z}=\lambda \frac{\partial \mathrm{u}}{\partial \mathrm{x}}-\gamma\left[\mathrm{T}-\mathrm{T}_{\mathrm{o}}+\mathrm{v} \frac{\partial \mathrm{T}}{\partial \mathrm{t}}\right]$,
$\sigma_{\mathrm{xy}}=\sigma_{\mathrm{yz}}=\sigma_{\mathrm{zx}}=0$.

These equations can be put into a more convenient form by using the following non-dimensional variables :
$x^{*}=v_{1} \eta x, t^{*}=v_{1}^{2} \eta t, \theta=\left(T-T_{0}\right) / T_{0}$,
$u^{*}=v_{1} \eta u, \tau^{*}=v_{1}^{2} \eta \tau, v^{*}=v_{1}^{2} \eta v, \sigma_{i j}^{*}=\sigma_{i j} / \mu$.
Using the above variables equations (2) - (5), take the following form where we have dropped the asterisks for convenience.
$\frac{\partial^{2} u}{\partial x^{2}}-\frac{b}{\beta^{2}} \frac{\partial}{\partial x}\left[\theta+v \frac{\partial \theta}{\partial t}\right]=\frac{\partial^{2} u}{\partial t^{2}}$,
$\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{\partial \theta}{\partial t}+\tau \frac{\partial^{2} \theta}{\partial t^{2}}+g \frac{\partial^{2} u}{\partial x \partial t}$,
$\sigma=\beta^{2} \frac{\partial u}{\partial x}-b\left[\theta+v \frac{\partial \theta}{\partial t}\right]$,
$\sigma_{y y}=\sigma_{z z}=\left(\beta^{2}-2\right) \frac{\partial u}{\partial x}-\mathrm{b}\left[\theta+v \frac{\partial \theta}{\partial t}\right]$.
Since the upper surface is stress free and is kept at a constant temperature θ_{0}, the boundary conditions there take the form
$\left.\sigma(\mathrm{x}, \mathrm{t})\right|_{\mathrm{x}=0}=0$,
$\left.\theta(x, t)\right|_{x=0}=\theta_{0} H(t)$,
where $\mathrm{H}(\mathrm{t})$ is the Heavyside unit step function.
The lower surface has a rigid base and is thermally insulated so the boundary conditions there take the form
$\left.u(x, t)\right|_{x=h}=0$,
$\left.q\right|_{x=h}=0$.
Using Fouricr's law of hcat conduction, namely
$\mathrm{q}=-\mathrm{k} \partial \theta / \partial \mathrm{x}$, the last condition reduccs to
$\left.\frac{\partial \theta}{\partial x}\right|_{x=h}=0$.

The initial conditions are taken to be homogeneous, i.e.
$\left.u(x, t)\right|_{t=0}=\left.\frac{\partial u(x, t)}{\partial t}\right|_{t=0}=0$,
$\left.\sigma(\mathrm{x}, \mathrm{t})\right|_{\mathrm{t}=0}=\left.\frac{\partial \sigma(\mathrm{x}, \mathrm{t})}{\partial \mathrm{t}}\right|_{\mathrm{t}=0}=0$,
$\left.\theta(x, t)\right|_{t=0}=\left.\frac{\partial \theta(x, t)}{\partial t}\right|_{t=0}=0$,

SOLUTION IN THE LAPLACE TRANSFORM DOMAIN

Differentiating equation (2) with respect to x and using equation (1), equations (2)-(3) can be written as

$$
\begin{align*}
& \frac{\partial^{2} \mathrm{c}}{\partial t^{2}}=\frac{\partial^{2} \mathrm{c}}{\partial x^{2}}-\frac{b}{\beta^{2}} \frac{\partial^{2}}{\partial x^{2}}\left[\theta+v \frac{\partial \theta}{\partial t}\right] \tag{17}\\
& \frac{\partial^{2} \theta}{\partial x^{2}}=\frac{\partial \theta}{\partial t}+\tau \frac{\partial^{2} \theta}{\partial t^{2}}+g \frac{\partial c}{\partial t} \tag{18}
\end{align*}
$$

Introducing the Laplace transform defined by the formula
$\bar{f}(p)=\int_{0}^{\infty} e^{-p t} f(t) d t$,
into equations (17), (18), (8) and (9), we get upon using the initial conditions (14)-(16)
$\beta^{2}\left(D^{2}-p^{2}\right) \bar{c}=b(1+v p) D^{2} \bar{\theta}$,
$\left(D^{2}-p-\tau p^{2}\right) \bar{\theta}=g p \bar{e}$,
$\bar{\sigma}=\beta^{2} \bar{e}--b(1+v p) \bar{\theta}$,
$\bar{\sigma}_{y y}=\bar{\sigma}_{z z}=\left(\beta^{2}-2\right) \overline{\mathrm{e}}-\mathrm{b}(1+v p) \bar{\theta}$,
where D stands for $\partial / \partial \mathrm{x}$.
Eliminating $\bar{\theta}$ between equations (19) and (20), we
get the following fourth-order differential equation for the function $\overline{\mathrm{e}}$
$\left\{\left[D^{4}-D^{2}\left[(1+\varepsilon) p+(1+\tau+\varepsilon v) p^{2}\right]+p^{3}(1+\tau p)\right] \bar{e}=0\right.$.
The general solution of equation (23) can be written as
$\overline{\mathrm{e}}=\sum_{i=1}^{2} \mathrm{~A}_{\mathrm{i}} \cosh \mathrm{k}_{\mathrm{i}}(\mathrm{h}-\mathrm{x})+\mathrm{B}_{\mathrm{i}} \sinh \mathrm{k}_{\mathrm{i}}(\mathrm{h}-\mathrm{x})$
where A_{1}, A_{2}, B_{1} and B_{2} are parameters depending on p only to be determined from the boundary conditions and $\mathrm{k}_{1}, \mathrm{k}_{2}$ are the roots with positive real parts of the characteristic equation
$k^{4}-k^{2}\left[(1+\varepsilon) p+(1+\tau+\varepsilon v) p^{2}\right]+p^{3}(1+\tau p)=0$
Similarly, eliminating $\overrightarrow{\mathrm{e}}$ between cquations (19) and (20), we sce that the function $\bar{\theta}$ satisfics the differential equation (23), we thus have .
$\bar{\theta}=\sum_{i=1}^{2} A_{i}^{\prime} \cosh k_{i}(h-x)+B_{i}^{\prime} \sinh k_{i}(h-x)$
where $A_{1}^{\prime}, A_{2}^{\prime}, B_{1}^{\prime}$ and B_{2}^{\prime} are parameters depending on p only.

From equation (19), it follows that the parameters must satisfy the compatibility conditions
$\beta^{2}\left(k_{i}^{2}-p^{2}\right) A_{i}=b(1+v p) k_{i}^{2} A_{i}^{\prime}$,
$\beta^{2}\left(k_{i}^{2}-p^{2}\right) B_{i}=b(1+v p) k_{i}^{2} B_{i}^{\prime}, i=1,2$
Substituting from cquations (27) into equation (26), we obtain

$$
\begin{align*}
\bar{\theta}=\frac{\beta^{2}}{b(1+v p)} \sum_{i=1}^{2} & {\left[\frac{A_{i}\left(k_{i}^{2}-p^{2}\right)}{k_{i}^{2}} \cosh k_{i}(h-x)\right.} \\
& \left.+\frac{B_{i}\left(k_{i}^{2}-p^{2}\right)}{k_{i}^{2}} \sinh k_{1}(h-x)\right] \tag{28}
\end{align*}
$$

Integrating both sides of equation (1) with respect to x and using equation (24), we obtain
$\bar{u}=\sum_{i=1}^{2} \frac{A_{i}}{k_{i}} \sinh k_{i}(h-x)+\frac{B_{i}}{k_{i}} \cosh k_{i}(h-x)$.
Using the Laplace transform of the boundary conditions (10)-(13) together with equations (21), (24) (28) and (29), we arrive at the following set of linear equations

$$
\begin{aligned}
& \sum_{i=1}^{2}\left[\frac{A_{i} \cosh k_{i} h+B_{i} \sinh k_{i} h}{k_{i}^{2}}\right]=0 \\
& \sum_{i=1}^{2}\left[\frac{k_{i}^{2}-p^{2}}{k_{i}^{2}}\right]\left\{A_{i} \cosh k_{i} h+B_{i} \sinh k_{i} h\right\} \\
& =\frac{\theta_{0} b(1+v p)}{\beta^{2} p} \\
& \sum_{i=1}^{2} \frac{B_{i}}{k_{i}}=0, \\
& \sum_{i=1}^{2} \frac{B_{i}\left(k_{i}^{2}-p^{2}\right)}{k_{i}^{2}}=0
\end{aligned}
$$

Solving the above system of lincar equations, we obtain

$$
\mathrm{B}_{1}=\mathrm{B}_{2}=0
$$

$A_{1}=\frac{\theta_{0} b(1+v p) k_{1}{ }^{2}}{\beta^{2} p\left(k_{1}{ }^{2}-k_{2}{ }^{2}\right) \cosh k_{1} h}$,
$A_{2}=\frac{-\theta_{0} b(1+v p) k_{2}{ }^{2}}{\beta^{2} p\left(k_{1}{ }^{2}-k_{2}{ }^{2}\right) \cosh k_{2} h}$.
Substituting from equations (30) into equations (24), (28) and (29), we gct
$\overline{\mathrm{e}}=\frac{\theta_{0} \mathrm{~b}\left(1+\mathrm{v}^{2}\right)}{\beta^{2} \mathrm{p}\left(\mathrm{k}_{1}{ }^{2}-\mathrm{k}_{2}{ }^{2}\right)}\left[\frac{\mathrm{k}_{1}{ }^{2} \cosh \mathrm{~K}_{\mathrm{k}}(\mathrm{h}-\mathrm{x})}{\cosh \mathrm{k}_{1} h}-\frac{\mathrm{k}_{2}{ }^{2} \cosh \mathrm{k}_{2}(h-x)}{\cosh \mathrm{k}_{2} h}\right]$,
$\bar{\theta}=\frac{\theta_{0}}{p\left(k_{1}^{2}-k_{2}^{2}\right)}\left[\frac{\left(k_{1}^{2}-p^{2}\right) \cosh k_{1}(h-x)}{\cosh k_{1} h}-\frac{\left(k_{2}^{2}-p^{2}\right) \cosh k_{2}(h-x)}{\cosh k_{2} h}\right]$.
$\bar{u}=\frac{-\theta_{0} b(1+v p)}{\beta^{2} p\left(k_{1}{ }^{2}-k_{2}^{2}\right)}\left[\frac{k_{1} \sinh k_{1}(h-x)}{\cosh k_{1} h}-\frac{k_{2} \sinh k_{2}(h-x)}{\cosh k_{2} h}\right]$.

From equations (31), (32) and (21), we obtain

$$
\begin{equation*}
\bar{\sigma}=\frac{\theta_{0} b p(1+v p)}{\beta^{2} p\left(k_{1}{ }^{2}-k_{2}{ }^{2}\right)}\left[\frac{\cosh k_{1}(h-x)}{\cosh k_{1} h}-\frac{\cosh k_{2}(h-x)}{\cosh k_{2} h}\right] . \tag{34}
\end{equation*}
$$

Equations (31) - (33) complete the solution of the problem in the Laplace transform domain. To obtain the solution in the physical domain, we shall obtain the inverse Laplace transforms using asymptotic expansions valid for small values of time. This method was used by Sherief in [19] and [21] .

INVERSION OF THE LAPLACE TRANSFORMS

Let us now determine the inverse transforms for the case of small values of time. By the initial value theorem of the Laplace transforms [23] this corresponds to large values of p . We note first that the roots $\mathrm{k}_{1}{ }^{2}$ and $\mathrm{k}_{2}{ }^{2}$ of equation (25) have the form.

$$
\begin{align*}
\mathrm{k}_{1,2}^{2} & =\frac{p}{2}[1+\varepsilon+\mathrm{p}(1+\tau+\varepsilon v) \\
& \left. \pm \sqrt{\{1+\varepsilon+p(1+\tau+\varepsilon v)\}^{2}-4 p(1+\tau p)}\right] . \tag{35}
\end{align*}
$$

Taking $y=p^{-1}$ (y is small) then equations (35) can be written as
$k_{i}^{2}=p^{2} f_{i}(y), \quad i=1,2$.
where
$f_{1}(y)=1 / 2[(1+\varepsilon) y+1+\tau+\varepsilon v+f(y)]$,
$f_{2}(y)=1 / 2[(1+\varepsilon) y+1+\tau+\varepsilon v-f(y)]$.
In the above equations, the function $f(y)$ is given by

$$
\begin{align*}
f(y)= & {\left[(1+\varepsilon)^{2} y^{2}+2[(1+\varepsilon)(\varepsilon v+\tau)+\varepsilon-1] y\right.} \\
& \left.+1+(\varepsilon v+\tau)^{2}+2(\varepsilon v-\tau)\right]^{1 / 2} \tag{38}
\end{align*}
$$

Expanding the function $f(y)$ into a Maclaurin serics of which the first five terms are retained, we obtain after some manipulations.
$f_{i}(y)=a_{i 0}+a_{11} y+a_{i 2} y^{2}+a_{i 3} y^{3}+a_{i 4} y^{4}, i=1,2$
where
$\mathrm{a}_{10}=\frac{1+\tau+\varepsilon \nu+\mathrm{A}}{2}, \mathrm{a}_{20}=\frac{1+\tau+\varepsilon \nu-\mathrm{A}}{2}$,
$a_{11}=\frac{(1+\varepsilon) A+B}{2 A}, a_{21}=\frac{(1+\varepsilon) A-B}{2 A}$,
$\mathrm{a}_{12}=\frac{\varepsilon \mathrm{C}}{\mathrm{A}^{3}}, \quad \mathrm{a}_{22}=-\frac{\varepsilon \mathrm{C}}{\mathrm{A}^{3}}$,
$a_{13}=\frac{-\varepsilon B C}{A^{5}}, \quad a_{23}=\frac{\varepsilon B C}{A^{5}}$,
$a_{14}=\frac{-\varepsilon C D}{4 A^{7}}, \quad a_{24}=\frac{\varepsilon C D}{4 A^{7}}$,
and
$A=\sqrt{1+(\varepsilon v+\tau)^{2}+2(\varepsilon v-\tau)}$,
$\mathrm{B}=(\varepsilon+1)(\varepsilon v+\tau)+\varepsilon-1$,
$C=1+(\varepsilon+1)(\nu-\tau)$,
$D=(\varepsilon+1)^{2} A^{2}-5 B^{2}$.

From cquations (36) and (37a,b), we get
$\frac{1}{k_{1}{ }^{2}-k_{2}^{2}}=\frac{1}{p^{2} f(y)}$.
This can be written as
$\frac{1}{k_{1}^{2}-k_{2}^{2}}=\frac{1}{p^{2} A}\left[1+\frac{2 B y+(1+\varepsilon)^{2} y^{2}}{A^{2}}\right]^{-1 / 2}$.

We shall use the binomial expansion
$(1+z)^{-1 / 2}=1-\frac{z}{2}+\frac{3 z^{2}}{8}-\frac{5 z^{3}}{16}+\frac{35 z^{4}}{128},|z|<1:$
with $z=\frac{2 B y+(1+\varepsilon)^{2} y^{2}}{A^{2}}$.

We note that since y and ε are very small and A, B are close to unity then it follows that $|z|<1$ and the above binomial expansion is valid. Thus, equations (41) and (42) yield after some algebraic manipulations (neglecting terms of higher order than y^{4})
$\frac{1}{k_{1}^{2}-k_{2}^{2}}=\frac{1}{p^{2}} \sum_{j=0}^{4} b_{j} y^{j}$,
where
$\mathrm{b}_{0}=\frac{1}{\mathrm{~A}}$,
$\mathrm{b}_{1}=-\frac{\mathrm{B}}{\mathrm{A}^{3}}$,
$b_{2}=\frac{3 B^{2}-(1+\varepsilon)^{2} A^{2}}{2 A^{5}}$,
$b_{3}=\frac{B\left[3(1+\varepsilon)^{2} A^{2}-5 B^{2}\right]}{2 A^{7}}$,
$b_{4}=\frac{3(1+\varepsilon)^{4} A^{4}-30 A^{2} B^{2}(1+\varepsilon)^{2}+35 B^{4}}{8 A^{9}}$,

From equations (36) and (39), we obtain

$$
\begin{gather*}
k_{i}=p \sqrt{a_{i 0}}\left[1+\frac{a_{i 1} y+a_{12} y^{2}+a_{i 3} y^{3}+a_{14} y^{4}}{a_{i 0}}\right] \\
i=1,2 \tag{44}
\end{gather*}
$$

We shall use the binomial expansion
$(1+z)^{1 / 2}=1+\frac{z}{2}-\frac{z^{2}}{8}+\frac{z^{3}}{16}-\frac{5 z^{4}}{128},|z|<1 ;$
with $z=\frac{a_{i 1} y+a_{i 2} y^{2}+a_{i 3} y^{3}+a_{14} y^{4}}{a_{i 0}}$.
As before, from the values of the parameters $a_{i j}, i=$ $1,2, j=1,2,3,4$, we conclude that $|z|<1$ and the expansion (45) is valid for this choice of z.
performing the necessary calculations and neglecting terms of order higher than y^{4}, we obtain.
$k_{i}=p \sum_{j=0}^{4} b_{i j} y^{j}, i=1,2$,
where
$b_{i 0}=\sqrt{a_{i 0}}$,
$b_{i 1}=\frac{a_{i 1}}{2 b_{i 0}}$,
$b_{i 2}=\frac{4 a_{i 0} a_{i 2}-a_{i 1}{ }^{2}}{8 a_{i 0} b_{i 0}}$,
$b_{i 3}=\frac{8 a_{i 0}{ }^{2} a_{i 3}-4 a_{i 0} a_{i 1} a_{i 2}+a_{i 1}{ }^{3}}{16 a_{i 0}{ }^{2} b_{i 0}}$,
$b_{i 4}=\frac{64 a_{0}{ }^{3} a_{i 4}-32 a_{i 0}{ }^{2} a_{i 1} a_{i 3}-16 a_{0}{ }^{2} a_{i 2}{ }^{2}+24 a_{i 0} a_{i 1}{ }^{2} a_{i 2}-5 a_{i 1}{ }^{4}}{16 a_{i 0}{ }^{3} b_{i 0}}$,
Since the parameter p is large, it follows from equation (46) that the roots $\mathrm{k}_{\mathrm{i}}, \mathrm{i}=1,2$ also take large values. Thus, the expression.
$\frac{\cosh k_{i}(h-x)}{\cosh k_{i} h} \quad i=1,2$
can be approximated as follows

$$
\begin{align*}
\frac{\cosh k_{i}(h-x)}{\cosh k_{i} h} & =\cosh k_{i} x-\tanh k_{i} h \sinh k_{i} x \tag{47}\\
& \approx \cosh k_{i} x-\sinh k_{i} x=e^{-k_{i} x} \quad, i=1,2
\end{align*}
$$

since for large k_{i}, tanh $\mathrm{k}_{\mathrm{i}} \mathrm{x} \approx 1$. Substituting for k_{1} and k_{2} from equaions (46) and retaining only the first three terms, we obtain
$\frac{\cosh k_{i}(h-x)}{\cosh k_{i} h}=e^{-x\left(b_{i 0} p+b_{i 1}+b_{i 2} / p\right)}, i=1,2$
In a similar manner, it can be shown that for large p, we have
$\frac{\sinh k_{i}(h-x)}{\cosh k_{i} h}=e^{-x\left(b_{i 0} p+b_{i 1}+b_{i 2} / p\right)}, i=1,2$

STRESS DISTRIBUTION

Substituting from equations (43) and (48a) into equation (34), we obtain
$\bar{\sigma}=\theta_{0} b \sum_{j=0}^{4} \frac{c_{j}}{p^{j}}\left[c^{-x\left(b_{10} p+b_{11}+b_{12} / p\right)}\right.$

$$
\begin{equation*}
\left.-e^{-x\left(b_{20} 0^{p}+b_{21}+b_{22} / p\right)}\right] \tag{49}
\end{equation*}
$$

where
$c_{0}=v b_{0}, c_{j}=v b_{j}+b_{j-1}, j=1,2,3,4$.
Taking the inverse Laplace transform of both sides of equation (49), we arrive at

$$
\begin{aligned}
\sigma=\theta_{0} b & {\left[e ^ { - b _ { 1 1 } x } \left(c_{0} L^{-1}\left[e^{-b_{10} 0^{x p}} e^{-b_{12^{x / p}}}\right]\right.\right.} \\
& \left.+\sum_{j=0}^{3} c_{j+1} \mathcal{L}^{-1}\left\{\frac{e^{-b_{10} x p} e^{-b_{12} x / p}}{p^{j+1}}\right\}\right)
\end{aligned}
$$

$$
\begin{align*}
& -e^{-b_{21} x}\left(c_{0} L^{-1}\left[c^{-b_{20} x p} e^{-b_{22^{x / p}}}\right]\right. \\
& \left.\left.-\sum_{j=0}^{3} c_{j+1} \mathcal{L}^{-1}\left\{\frac{e^{-b_{20} x p} e^{-b_{22} 2^{x / p}}}{p^{j+1}}\right\}\right)\right] \tag{50}
\end{align*}
$$

We shall make use of the convolution theorem of the Laplace transform [23], namely
$\mathcal{L}^{-1}\left[\overline{\mathrm{~g}}_{1}(\mathrm{p}) \overline{\mathrm{g}}_{2}(\mathrm{p})\right]=\int_{0}^{\mathrm{t}} \mathrm{g}_{1}(\mathrm{z}) \mathrm{g}_{2}(\mathrm{t}-\mathrm{z}) \mathrm{dz}$,
and the following relations from [24]
$\mathcal{L}^{-1}\left[\mathrm{e}^{-\alpha p}\right]=\delta(\mathrm{t}-\alpha)$,
$L^{-1}\left[\mathrm{e}^{-\alpha / \mathrm{p}}\right]=\delta(\mathrm{t})-\sqrt{\alpha / \mathrm{t}} \mathrm{J}_{1}(2 \sqrt{\alpha \mathrm{t}}), \alpha>0$,
$L^{-1}\left[e^{\alpha / p}\right]=\delta(t)+\sqrt{\alpha / t} I_{1}(2 \sqrt{\alpha t}), \alpha>0$,
$\mathcal{L}^{-1}\left[\frac{e^{-\alpha / p}}{p^{j+1}}\right]=\left(\frac{\iota}{\alpha}\right)^{j / 2} J_{j}(2 \sqrt{\alpha t}), \operatorname{Re}(j)>-1, \alpha>0$,
$\mathcal{L}^{-1}\left[\frac{\mathrm{e}^{\alpha / p}}{\mathrm{p}^{j+1}}\right]=\left(\frac{t}{\alpha}\right)^{\mathrm{j} / 2} \mathrm{I}_{\mathrm{j}}(2 \sqrt{\alpha \mathrm{t}}), \operatorname{Re}(\mathrm{j})>-1, \alpha>0$,
where J_{j} and I_{j} are the Bessel and the modified Bessel functions of the first kind of order j , respectively.

It can be easily shown that the Dirac delta function satisfies the following relation.
$\int_{0}^{t} \delta(z-\alpha) f(z) d z=f(\alpha) H(t-\alpha) H(\alpha)$.
Using the above formulae and inverting each term in equation (50) separately, we obtain .

$$
\begin{gathered}
L^{-1}\left[\frac{e^{-b_{10} 0^{x p}} e^{-b_{12} 2^{x / p}}}{p^{j+1}}\right]=\int_{0}^{1}\left\{L^{-1}\left[e^{-b_{10} x p}\right]\right\}_{t=1-2} L^{-1}\left[\frac{e^{-b_{12} / p}}{p^{j+1}}\right]_{t=z} d z \\
\quad=\int_{0}^{1} \delta\left(t-z-b_{10} x\right)\left[\frac{z}{b_{12} x}\right]^{j / 2} J_{j}\left(2 \sqrt{b_{12} x z}\right) d z \\
\left.\quad=\left[\frac{t^{-b_{10} x}}{b_{12} x}\right]^{j / 2} J_{j}\left\{2 \sqrt{b_{12} x\left(t-h_{10} x\right.}\right)\right] H\left(b_{10} x\right) H\left(t-b_{10} x\right)
\end{gathered}
$$

In the above expression, we have used the easily checked fact that $b_{12}>0$.

Using the abbreviations

$$
x_{1}=\frac{t-b_{10} x}{b_{12} x}, z_{1}=2 \sqrt{b_{12} x\left(t-b_{10} x\right)}
$$

and the fact that $b_{10}>0$, the last result reduces to

$$
\begin{equation*}
\mathcal{L}^{-1}\left[\frac{\mathrm{c}^{-b_{10} \times \mathrm{x}} \mathrm{e}^{-\mathrm{b}_{12} \mathrm{x} / \mathrm{p}}}{\mathrm{p}^{\mathrm{j}+1}}\right]=\mathrm{x}_{1}^{\mathrm{j} / 2} \mathrm{~J}_{\mathrm{j}}\left(\mathrm{z}_{1}\right) \mathrm{H}\left(\mathrm{t}-\mathrm{b}_{10} \mathrm{x}\right) . \tag{51}
\end{equation*}
$$

Similary, noting that $b_{22}<0$ and $b_{20}>0$, we obtain
$\mathcal{L}^{-1}\left[\frac{c^{-b_{20} \times p^{-b}} e^{-b_{22} \times / p}}{p^{j+1}}\right]=x_{2}^{j / 2} I_{j}\left(z_{2}\right) H\left(t-b_{20} x\right)$. where $x_{2}=\frac{t-b_{20} x}{-b_{22} x}, z_{2}=2 \sqrt{-b_{22} x\left(t-b_{20} x\right)}$.

Using similar techniquics, we obtain
$L \cdot\left[e^{-b_{10} x p^{-b}} e_{12} x p\right]=\left[\delta\left(t-h_{10} x\right)-\frac{1}{\sqrt{x_{1}}} J_{1}\left(z_{1}\right)\right] H\left(t-b_{10} x\right)$.
$\mathcal{L}^{-1}\left[\mathrm{e}^{-b_{20} \times P_{c}-b_{22} x / p}\right]=\left[\delta\left(t-b_{20} x\right)+\frac{1}{\sqrt{x_{2}}} I_{1}\left(z_{2}\right)\right] H\left(t-b_{20} x\right)$.

Substituting from equations (51) - (54) into equation (50), we obtain the final form of the stress distribution σ valid for short times in the form.

$$
\begin{array}{r}
\sigma=0_{0} b\left\{e^{\cdot b_{11} \times} H\left(t-b_{10} x\right)\left[c_{0}\left(\delta\left(t-b_{10} x\right)-\frac{1}{\sqrt{x_{1}}} J_{1}\left(z_{1}\right)\right)+\sum_{j=0}^{3} c_{j+1} x_{1}^{j n} J_{j}\left(z_{1}\right)\right]\right. \\
\left.-e^{\cdot b_{21} x} H\left(t-b_{20} x\right)\left[c_{0}\left(\delta\left(1-b_{20} x\right)+\frac{1}{\sqrt{x_{1}}} I_{1}\left(z_{2}\right)\right)+\sum_{i=0}^{3} c_{j+1} x_{2}{ }_{2}^{j n_{j}} I_{j}\left(z_{2}\right)\right]\right\} \tag{55}
\end{array}
$$

TEMPERATURE DISTRIBUTION

Substituting from equations (36), (39), (43) and (48a) into equation (32), we obtain.

$$
\bar{\theta}=\theta_{0} \sum_{i=1}^{2}(-1)^{i+1} e^{-b_{i 1} x} \sum_{j=0}^{3} \frac{c_{i j}}{p^{j+1}} e^{-b_{i 0} \times p} e^{-b_{i 2} \times / p}
$$

$$
\begin{align*}
& \text { where } \tag{56}\\
& \begin{aligned}
c_{i 0}=b_{0}\left(a_{i 0}-1\right), c_{i j}=b_{j}\left(a_{i 0}-1\right)+ & \sum_{k=0}^{j-1} b_{k} a_{i(j-k)} \\
, i & =1,2, j=1,2,3 .
\end{aligned}
\end{align*}
$$

Taking the inverse Laplace transform of both sides of equation (56), and using cquations (51) and (52), we obtain the temperature distribution in the form .

$$
\begin{array}{r}
\theta=\theta_{0}\left\{e^{-b_{11} x} H\left(t-b_{0} x\right) \sum_{j=0}^{3} c_{1(j+1)} x_{1}{ }^{j / 2} J_{j}\left(z_{1}\right)\right. \tag{57}\\
\left.-e^{-b_{21} 1^{x}} H\left(t-b_{20} x\right) \sum_{j=0}^{3} c_{j+1} x_{2}^{j / 2} I_{j}\left(z_{2}\right)\right\}
\end{array}
$$

DISPLACEMENT DISTRIBUTION

Substituting from cquations (43), (46) and (48b) into equation (33), we obtain .
$\overline{\mathbf{u}}=\frac{-\theta_{0} \mathrm{~b}}{\beta^{2}} \sum_{\mathrm{i}=1}^{2}(-1)^{i+1} \mathrm{e}^{-\mathrm{b}_{\mathrm{i} 1} \times} \sum_{\mathrm{j}=0}^{3} \frac{\mathrm{~d}_{\mathrm{ij}}}{\mathrm{p}^{j+1}} \mathrm{c}^{-\mathrm{b}_{\mathrm{i} 0} \times p} \mathrm{c}^{-\mathrm{b}_{\mathrm{i} 2} \times / p}$,
where

$$
\begin{array}{r}
d_{i 0}=v b_{0} b_{i 0}, d_{i j}=v \sum_{k=0}^{j} b_{k} b_{i(j-k)}+\sum_{k=0}^{j-1} b_{k} b_{i(j-k-1)}, \\
i=1,2, j=1,2,3
\end{array}
$$

Taking the inverse Laplace transform of both sides of equation (58), and using equations (51) and (52), we obtain the displacement distribution in the form

$$
\begin{gathered}
u=\frac{-\theta_{0} b}{\beta^{2}}\left\{e^{-b_{11} x} H\left(t-b_{10} x\right) \sum_{j=0}^{3} d_{1 j} x_{1}{ }^{j / 2} J_{j}\left(z_{1}\right)\right. \\
\left.-e^{-b_{21} x} H\left(t-b_{20} x\right) \sum_{j=0}^{3} d_{2 j} x_{2}^{j / 2} I_{j}\left(z_{2}\right)\right\} .
\end{gathered}
$$

NUMERICAL RESULTS

The copper material was chosen for purposes of numerical evaluations. The constants of the problem were taken as.
$\varepsilon=0.0168, \beta^{2}=3.5$ and $\tau=\nu=0.02$.

The computations were carried out for three values of time, namely for $t=0.05,0.1$ and 0.15 . The results are illustrated graphically in figures (1), (2) and (3) for the temperature, stress and displacement distribution, respectively. We should note here that as $x \rightarrow 0, x_{1} \rightarrow \infty$. Numerical evaluations of the functions at $x:=0$ were done using the relation

$$
\lim _{x \rightarrow 0} x_{1}{ }^{j / 2} J_{j}\left(z_{1}\right)=\lim _{x \rightarrow 0} x_{1}^{j / 2} I_{j}\left(z_{1}\right)=\frac{t^{j}}{j!},
$$

and a similar one for x_{2}. These relations follow easily from the fact that .

$$
J_{j}(x), I_{j}(x)=\frac{x^{j}}{2^{j} j!}\left[1+O\left(x^{2}\right)\right]
$$

All the functions considered have two discontinuities at $\mathrm{x}=\mathrm{t} / \mathrm{b}_{10}$ and $\mathrm{x}=\mathrm{t} / \mathrm{b}_{20}$ and vanish identically for $\mathrm{x}>\mathrm{t} / \mathrm{b}_{20}$. The stress has infinite discontinuities at these points. The temperature has jumps equal to
$-\theta_{0} c_{10} e^{-b_{11} t / b_{10}}, \theta_{0} c_{20} e^{-b_{21} t / b_{20}}$
at the two points of discontinuity. The comesponding values for the displacement are

$$
\frac{\theta_{0} b d_{10}}{\beta^{2}} e^{-b_{11} t / b_{10}}, \frac{\theta_{0} b d_{20}}{\beta^{2}} e^{-b_{21} t / b_{20}} .
$$

The numerical values of these of these jumps and their locations are shown in table 1 .

	$\begin{aligned} & \text { jump } 1 \\ & t=0.05 \end{aligned}$	jump 2 $t=0.05$	$\begin{aligned} & \text { jump } 1 \\ & t=0.1 \end{aligned}$	jump 2 $t=0.1$	jump 1 $t=0.15$	jump 2 $t=0.15$
X	0.049991	0.353614	0.099983	0.707228	0.149974	1.060842
θ	-0.000349	-0.286530	-0.000349	-0.082128	-0.000349	-0.023540
u	-0.005609	0.000227	-0.005606	0.000065	-0.005604	0.000019
σ	∞	∞	∞	∞	- $-\infty$	- $-\infty$

Table 1

REFERENCES

[1] Biot, M., 1956. Thermoclasticity And Irreversible Thermo-Dynamics, J. Appl. Phys., 27, 240-253.
[2] Lord, H., and Y. Shulman, 1967. A Generalized Dynamical Theory Of Thermoelasticity, J Mech. Phys. Solid, 15, 299-309.
[3] Dhaliwal, R. S., and H. Sherief, 1980. Generalized Thermoclasticity for Anisotropio Media, Quart. Math., 33, 1-8 .
[4] Ignaczak, J., 1979. Uniqueness in Generalized Thermoclasticity, J. Thermal Stresses, 2, 171-175.
[5] Ignaczak, J., 1982. A Note On Uniqueness In Thermoclasticity With Onc Rclaxation Time, J. Thermal Stresses, 5, 257-263.
[6] Sherief, H., and R. Dhaliwal, 1980. A Uniqueness Theorem And A Variational Principle for Generalized Thermoclasticity, J. Thermal Stresses, 3, 223-230.
[7] Sherief, H., 1987. On Uniquencss And Stability In Generalized Thermoelasticity, Quart. Appl. Math., 45, 773-778.
[8] Anwar, M., and H. Sherief, 1988. State Space Approach To Generalized Thermoclasticity, J. Thermal Stresses, 11, 353-365, 1988.
[9] Sherief, H., 1993. State Space Formulation for Generalized Thermoclasticity With One Relaxation Time Including Heat Sources, J. Thermal Stresses, 16, 163-180.
[10] Anwar, M., and H. Sherief,1988. Boundary Integral Equation Formulation of Gencralized Thermoclasticity In A Laplace Transform Domain, Appl. Math Modclling, 12, 161-166.
[11] Sherief, H., 1986. Fundamental Solution Of The Generalized Thermoclastic Problem for Short Times, J. Thermal Stresses, 9, 151-164.
[12] Green A. E., and K. A. Lindsay, 1972. Thermoelasticity, J. Elast., 2, 1-7.
[13] Müller, I., 1971. The Coldness, A Universal Function In Thermo-clastic Solids, Arch. Rat. Mech. Anal., 41, 319-332.
[14] Green A. E., And N. Laws, 1972. On The Entropy Production Incquality, Arch. Rat. Mech. Anal., 45, 47-53.
[15] Şuhubi, E S., 1975. Thermoclastic Solids, In A. C. Eringen (cd), Continuum Physics, II, chap. 2, Academic, New York.
[16] Erbay, S., and E. S. Şuhubi, 1986. Longitudinal Wave Propagation In A Generalized Thermoelastic Cylinder, J. Thermal Stresses, 9. 279-295.
[17] Ignaczak, J., 1985. A Strong Discontinuity Wave In Thermoelasticity With Relaxation Time, J. Thermal Stresses, 8, 25-40.
[18] Ignaczak, J., 1978. Dccomposition Theorem For Thermoclasticity With Finite Wave Speeds, J. Thermal Stresses, 1, 41-52.
[19] Sherief, H., 1992. Fundamental Solution for Thermoclasticity With Two Relaxation Times, Int. J. Engng. Sci., 30, 861-870.
[20] Sherief, H., 1993. State Space Approach To Thermoclasticity With Two Relaxation Time, Int. J. Engng. Sci., 31, 1177-1189.
[21] Sherief, H., 1994. A Thermo-Mechanical Shock Problem for Thermoclasticity with Two Relaxation Time, Int. J. Engng. Sci., 32, 313-325.
[22] Anwar, M., and H. Sherief, 1994. Boundary Integral Equation Formulation for Thermoclasticity With Two Relaxation Time, J. Thermal Stresses, 17, 257-270.
[23] Churchill, R. V., 1972. Operational Mathematics, Third edition, McGraw-Hill Book Company, New York.
[24] Oberhettinger, F., and L. Badii, 1973. Tables of Laplace Transforms, Springer Verlag, New York.

