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ABSTRACT 

The problem of an infinitely long annular cylinder whose inner surface is thermally 

insulated and whose outer surface is kept at a constant temperature is considered in 
the presence of an axial uniform magnetic field. The surfaces of the cylinder are 

taken to be traction free The problem is in the context of generalized 

magneto-thermoelasticity theory with one relaxation time. The Laplace transform with 
respect to time is used. The inversion process is carried out using a numerical method 

based on a Fourier series expansion. 
Numerical computations for the temperature, displacement and stress distributions 

as well as for the induced magnetic and electric fields are carried out and represented 

graphically. 
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Magneto-thennoelasticity for a hollow cylinder 

Biot [1] formulated the theory of coupled 

thermoelasticity to eliminate the paradox inherent in the 

classical uncoupled theory that elastic changes have no 

effect on the temperature. The heat equations for both 

theories are of the diffusion type predicting infinite speeds 

of propagation for heat waves contrary to physical 

observations. Lord and Shulmann [2] introduced the theory 

of generalized thermoelasticity with one relaxation time by 

postulating a new law of heat conduction to replace the 

classical Fourier's law. This law contains the heat flux 

vector as well as its time derivative. It contains also a new 

constant that acts as a relaxation time. The heat equation of 

this theory is of the wave-type, ensuring finite speeds of 

propagation for heat and elastic waves. The remaining 

governing equations for this theory, namely, the equations 

of motion and the constitutive relations remain the same as 

those for the coupled and the uncoupled theories. This 

theory was extended by Dhaliwal and Sherief [3] to general 

anisotropic media in the presence of heat sources. 

An increasing attention is being . devoted to the inter­

action between magnetic fields and strain in a thermoelastic 

solid due to its many applications in the fields of geophysics 

, plasma physics and related topics. Usually, in these in­

vestigations the heat equation under consideration is taken 

as the uncoupled or the coupled equation not the generalized 

one. This attitude is justified in many situations since the so­

lutions obtained using any of these equations differ little 

quantitively . However, when short time effects are con­

sidered, the full generalized system of equations has to be 

used or a great deal of accuracy is lost. 

A comprehensive review of the earlier contributions to 

the subject can be found in [4]. Among the authors who con­

sidered the generalized magneto-thermoelastic equations are 

Nayfeh and Nemat-Nasser [5] who studied the propagation 

of plane waves in a solid under the influence of an electro­

magnetic field. They have obtained the governing equations 

in the general case and the solution for some particular cas­

es. Choudhuri [6] extended these results to rotating media. 

Lately, Sherief [7] has solved a problem for a solid cylinder, 

while sherief and Ezzat [8] has solved a thermal shock half­

space problem using asymptotic expansions. 

FORMULATION OF THE PROBLEM 

Let (r,'lf, z) be cylindrical polar coordinates with the z­

axis coinciding with the axis of an annular infinitely long 
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elastic circular cylinder of a homogeneous, isotropic ma­

terial of finite conductivity whose inner and outer radii are 

R1 and R2. The surfaces of the cylinder are taken to be 

traction free. The inner surface is taken to be thermally in­

sulated while the outer surface is kept at a constant tem­

perature. A constant magnetic field of strength H
0 

acts in 

the direction of the z-axis. Due to the effect of this magnet­

ic field there arises in the medium an induced magnetic 

field h and an induced electric field E (both assumed to be 

small). Also, there arises a force F (the Lorentz Force). 

Due to the effect of this force points of the medium under­

go displacement u which gives rise to a temperature T. 

This situation resembles that inside nuclear reactors and in 

some components of electronic devices. 

The electromagnetic quantities satisfy Maxwell's equa­
tions 

aD 
curlh = J +at , 

curiE=-
08 
at' 

divh=O, divE=O, 

B = J.lo(llo+h) , D =Eo E. 

where J is the electric current density, Jlo and £0 are the 

magnetic and electric permeabilities, respectively and B, D 

are the magnetic and electric induction vectors, respectively. 

The elastic quantities satisfy the equations ofmotion in 
vector form olu 

a+ F = f(9ho) Ot2 , (
5
) 

where cr is the stress tensor, F the external body force , which 

is here equal to the Lorentz force and f (rh0 ) is the density. 

The last field equation is the equation of energy balance, 
namely ! (peE T +yT0e] = -divq, (6) 

where q is the heat flux vector, cE is the specific heat at 

constant strain, e = div u is the cubical dilatation, y is a ma­

terial constant equal to (3A+2fJ.)a1 where A,fJ. are Lame's 

modulii and t is the coefficient of linear thermal expansion. 

T0 is a reference temperature assumed to be such that 

I(T-T0)tr01<<1. 

The above field equations are supplemented by con­

stitutive equations which consist first of Ohm's law 

J=oo[E+J.to: x(Ho+h}J, 
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where cr0 is the electeric conductivity. The above equation 

can be linearized by neglecting small quantities of the sec­

ond order giving 

J = cr0 [ E + J.Lo: x H 0 J. (7) 

The second constitutive equation is the one for the Lo­

rentz force which is 

F=JXB. (8) 

The third constitutive equation is the Hooke-Duhamel­

Neumann's law, namely 

cr·· = 2•• e ··+A e B ·· -y (T-T0) B ·· IJ I"" IJ IJ IJ ' (9) 

where 8ij is kronecker's delta tensor and eij is the strain ten­

sor whose components are given by 

(10) 

The last constitutive equation is the generalized Fourier's 

law of heat conduction which has the form 

aq 
q + "toa-=-kgradT. 01 ) 

Substituting from equation (9) into equation (5) and us­

ing equation (1 0), we arrive at the equations of motion in 

vector form 
2 

(A.+ J.L)V2u + J..Lgraddivu -ygradT+F= p 
0
:. (12) 

Ot 
Applying the div operator to both sides of equation (12), 

we obtain a2 
(A.+ 2J.L)V2e- yV2 T + divF = p--= (13) Ot2 • 

where V2 is Laplace's operator in cylindrical coordinates, 

given by 
2 o2 1 a v =--+-­ar2 r Or 

Applying the div operator to both sides of equation (11), 

then substituting from the resulting equation into equation 

(6) and its time derivative, we obtain the generalized heat 

equation ( 2 ) 

kV
2
T= ! +"to : 2 (pcET+yT0e). (14) 

Because of the cylindrical symmetry of the problem all 

the considered functions will be functions of r and t, also, 

components of the displacement vector will be of the form 

ur = u , u'l' = Uz = 0. 

The strain tensor components are thus given by 
au u 

err = Or ,e""" = 7 Czz = erz = eflll = e'I'Z = 0. 

It follows that the cubical dilatation e is.of the form 
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au u 1 o(ru) 
e=-+-=--- . 

c3r r r Or 
(15) 

From equation (9) we obtain the components of the stress 

tensor as 
au L crrr = 2J..L ar + 1\,1;; - y (T - T0), 

cr'l"'' = 2J..L -% + 'Ae - y (T - T0), 

crzz = 'Ae - y (T - T0), 

crrz = O'z'lf = O''lfr = 0. 

(16a) 

(16b) 

(16c) 
(16d) 

The induced magnetic field h will have one component h 

in the z-direction while the induced electric field E will have 

one component E in the \jl- direction. From equation (7), it 

follows that the electric current density will have one com­

ponent only in the \jl-direction, given by 

J = cro[ E- J.LoHo :J. (17) 

The vector equations (1) and (2), reduce to the following 

scalar equations 

: =-[J+so :J 
1 o(rE) oh 
---=-J.Lo­
r or Ot 

(18) 

(19) 

Eliminating J between equation ( 17) and ( 18 ), we obtain 

oh au [ aEJ or =croJ..LoHoat- croE+soat . (20) 

Eliminating E between equations (18) and (19), we 

obtain 

(21) 

The Lorentz force has one component F in r-direction 

obtained from equations (8) and (17) as 

[ oE oh] F = -J.LoHo so-+-
Ot Or 

0 
(22) 

Substituting from equation (22) into equations (13), we 

obtain upon using equation ( 19) 

2 2 2 o2 h 
(A.+2J.L)V e-yV T+J.LosoHo-2 

a2e 
- J..LoHoV2h=p-2. 

Ot 

Ot 
(23) 

We shall use the following non-dimensional variables 
' R' R ' ·- ' gaii r =c 111r, ; =c111 ; , u =gc 1,u,e -ge, cr;j =---;-

2 2 T-To F- -To 
t' = c 1 11t • 1:0 = c 1 111:0 • e = -- • F{ = -·--

To To 
q' = _q_ q = _!:;_ , h' = 'lg h , E' = 'lg E . 

kT0c 111 kc1'1 cro~oHo cr0~2H0c 1 0 

h Y peE ~'i..+Z~. th d f w ere , g =peE ,,=k and c1 = -P-ts e spee o 

propagation of isothermal elastic waves. 
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In terms of these non-dimensional variables, the 

governing equations (18),(19), (21), (23) and (14) 

reduce to (dropping the primes for convenience) 

oh =au -[vE + y2 oEJ 
Or at at ' (24) 

1 o(rE) oh ---=--
r iJT at' (25) 

(26) 

(27) 

v2s = (! +~o !:}s+e), (28) 

where 1/v = 11/0'oJlo is a measure of magnetic viscosity, 

V = c1/c where c is the speed of light given by c2 = 1/ 

EoJlo , EJ= bg /~2 is the thermoelastic coupling constant 

where b = yT0/Jl, ~2 = (A.+2Jl)/Jl and E2=JloH0
2/pc1

2 is 
the magnetoelastic coupling constant. We note that equa­

tion (15) retains its form. 

The non-dimensional constitutive equations take the 

form 
2 2u 2 

Orr= 13 e---&tl3 9, 
r 

2 au 2 
a'l"ff = 13 e-2 or -&tl3 9. 

Ozz =(132 -2)e-e11329, 

Orz = Oz'f' =a..,.. = 0. 

(29a) 

(29b) 

(29c) 

(29d) 

The initial conditions of the problem are taken to be 

homogeneous, while the boundary conditions are taken as 

follows 

( 1) The transverse components of the vector E are con­

tinuous across the surface of the cylinder, this gives 

E(Rj,t) = Ej(Rj,t) , t > 0 , j = 1,2 , (30) 

where E1 and E2 are the components of the electric field in­

tensities in the 'If-direction in free space inside and outside 

the cylinder, respectively. 

(2) The transverse components of the vector h are con­

tinuous across the surface of the cylinder, this gives 

h(Rj,t) = ~(Rj,t), t > 0, j =1,2, (31) 

where h1 and h2 are the components of the induced magnet­

ic field in the z-direction in free space inside and outside 

the cylinder, respectively. 

(3) The surfaces of the cylinder are traction free, i.e. 
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0'rr(Rj,t) = 0 , t > 0 , j = 1 ,2. 

(4) The heat conduction boundary condition 
00 
-=0 atr= R 1 Or ' ' 

S = S0 H(t), at r = R2 , 

(32) 

(33a) 

(33b) 

where e0 is a constant and H(t) is the Heaviside unit step 

function. 

In order to utilize equations (30) and (31) above, we 

must obtain the induced fields Ej, hj in the free space sur­

rounding the medium. These quantities satisfy the following 

non-dimensional equations 

(34) 

..!. o(rEj) = _ ohj J. = 1 2 . 
rar at'. (35) 

SOLUTION IN THE LAPLACE TRANSFORM DOMAIN 

Taking the Laplace transform with parameter s (denoted 

by a bar) of both sides of equations (24 )-(35), we obtain the 

following set of equations 

ah - 2 -
a;:-=su-(v+V s)E, 

.!. o(rE) = _5 h 
r ar ' 

[v2 - vs- V2s2 )il =se, 

cv2 - s2 )e = e1 v2 9 +£2 v(v2 - v2s2)il, 

v29 = (s+'t0s2 Xe +e). 

(36) 

(37) 

(38) 

(39) 

(40) 

The non-dimensional constitutive equations (29) in the 

Laplace transform domain take the form 
- 2- 2u -
Orr= 13 e--- b9, 

r 

- 2- au -
a'fllll =13 e-2 Or -be, 

- 2 - -
Ozz = (13 -2)e-b9, 

(41a) 

(41b) 

(41c) 

The boundary conditions in the Laplace trnsform domain 

become - -j 
E(Rj,S) = E (Rj,s) , j = 1,2 

- -j 
h(R j, t) = h (Rj, t) , j = 1,2 . 

arr(Rj,s) = 0 , j = 1,2 . 

00 
-=0 at r=R1 Or ' ' 

- So e =-,at r = R 2 . 
s 

(42) 

(43) 

(44) 

(45a) 

(45b) 
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Equations (34) and (35) take the following form in the 

Laplace transform domain 

alii -· 
-:;-V2 sEJ J·=l2 Or , , ' (46) 

1 o(rEj) -j 
---=-sh J·=12 
r Or ' ' · 

(47) 
- -

Eliminating h and e between equations (38)-(40), we get 

the following sixth order didderential equation satisfied by e 

where 

A= s[E1(s't0 +I)+ e2v + v+ s ('to+ V2 +1) +1], 

B = s2{E1(s't0 +I) (v+ sV2) + e2v(s('t0+V2)+1)+ 

+v(s('t0 +l)+s(s('to (V2+1)+V2)+V2+1)}, 

C = s4(s't0 +I )(E2v V 2+ v+ sV2). 

(48) 

It should be noted that the above equation reduce to the 

usual equations of generalized thermoelasticity without 

electro-magnetic effects in the limit as v, V and e2 ~ 0 . 

Equation (48) can be factorized as 

(49) 

where k 1
2 , k2

2 , k3
2 are the roots of the characteristic 

equation 

k6 - A k4 + B k2 - C = 0 

These roots are given by 

k 1
2 =-}[A+ 2P sin Q], 

k2
2=-} [A- P sin Q- VP cosQ], 

k3
2=-} [A- P sin Q +VP cosQ], 

where 

P=JA2 -38 , R= 9AB- 2A
3

-
27C , Q=.!_sin" 1(R). 

2P3 3 

The solution of equation (49) can be written as the sum 

- 3-
e= Lei, 

i=l 

where ei is the solution of the equation 

Thus, the general solution of equation (49) has the form 
- 3 
e = L(A;I0 (k;r) + B;K0 (k;r)), (50) 

i=l 

where Ai and Bi are parameters depending on s only, i = 
I ,2,3 and I0 and K0 are the modified Bessel functions of or-
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der zero of the first and second kinds, respectively. 

Eliminating h, e and then 9, e between equations (38)-
- -

( 40), we find that e and h satisfy the same equation as e, i.e. 

( V6 - A V4 + BV~ C) 9 = ( V6 - A V4 + BV~ C) h = 0 
e and h are thus given by 

(51) 

(52) 

where Ai , Bi , Ai , and Bi , are parameters depending on s 
only. The compatibility between equations (50)-(52) and 
equations (38) and (40) give 

A· = s(l+'toS) A· 
I 2 I ' k; - s(l + 't0s) 

B· = s(l + 'toS) B· (53) 
I 2 I• 

k; -s(l+'t0s) 

" s 
' B; = 2 2 2 B; . (54) 

k; - vs- V s 

Substituting from equations (53) and (54) into equations 

(51) and (52), we obtain 

(55) 

- l (A; I0 (k;r)+B; K 0 (k;r)) 
b:;sL 2 22 . 

i•l k; -vs-V s 
(56) 

Substituting from equation (50) into the Laplace trans­

form of equation (15) and integrating both sides with respect 

to r, we obtain 
- 3 I 
U= i~l k;"(A; I,(k;r)-B; K 1(k;r)). (57) 

In obtaining equation (57), we have used the following 

relations of the Bessel functions [9] 

J zi0 (z) dz = zi1 (z), J zKo (z) dz = zK1(z). 

Substituting from equations (56) and (57) into equation 

(36), and using the relations [9] 

I~(z) = I1(z), K~(z) = K1(z), 

we obtain 
- 2 3 (A; I1(k;r)-B; K 1(k;r)) (58) 
E:;-s L . 

i=l k;(k?- vs- v2 s2
) 

Substituting from equations (50), (55) and (57) into equa­

tion (4la), we obtain 

- 3 { 2 [ Ets(l+'toS) } ) orr:;: L j3 1-
2 

A; lo(k;r)+B; K 0 (k;r) 
i•l k; - 5(1 + 'tos) 

-~;(A; lt(k;r)-B; Kt(k;r))}. (59) 



Magneto-thennoelasticity for a hollow cylinder 

Differentiating both sides of equqtion (57) with respect 

to r and using the relations [9] 

dJJ(Z) 1 dK1(z) 1 
~=10(z)-;1 1 (z), dz =-K0 (z)-;K1(z), 

we obtain 

(60) 

Substituting from equations (50), (55) and (60) into 

equation ( 41 b), we obtain 

a'fllll = .rAi([~2 -2 &~~2s( 1 +'toS)]Io(k;r)+2_11(k;r)) 
1•l ki -s(1+'tos) k;r 

+ rsi([~2 +2- &~~25( 1 
+'toS) l Ko(kir) +2_KJ(k;r))' 

i•l k; -s(1+'tos) k;r (61) 

In order to obtain the induced field in free space, we 

eliminate Ej between equations (46) and (47), to obtain 

(v2 - v2s2)iij = o,j = 1,2. (62) 

h1 
and 112 

are the solutions of equation (62) which are 

bounded at the origin and at infinity, respectively. Thus, we 

have -1 
h =A0I0 (Vsr), 

-2 
h = B0K0 (Vsr), 

(63) 

(64) 

where A0 and B0 are some parameters depending on s 

only. 

Substituting from equations (63) and (64) into equation 

(46), we obtain 
-1 Ao 
E =-y-11(Vsr), (65) 

-2 8 0 E = -K1 (Vsr). v (66) 

We shall now use the boundary conditions of the prob­

lem to evaluate the unknown parameters of the problem, 

namely Ai and Bi , i =0, 1 ,2,3. Equations (30) and (31) in the 

Laplace transform domain together with equations (56), 

(58), (63), (64), (65) and (66) immediately give 

2 ~(A; I 1(k;R1)- B; K 1(k;R1)) Ao 
s L. ( ) --I1(VsR1)=0 

i•l k; k~- vs- y2s2 V ' 
(67) 
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(70) 

Equations (32) and (59) give 

.r.(~2 [l- : 1s(
1
+'tos) }A; 10(k;R1)+B; Ko(k;R1)) 

1•1 k; - 5(1 + 'tos) 

- R~k; (A; l1(k;R1)-B; K1(k;R1))l=O, (71) 

.i(P2[1 :•s(l+'tos) 1A; lo(k;R2)+B; Ko(k;R2)) 
1·1 k; -s(1+'t0s)J 

- R:k; (A; l1(kiR2)-B; K1(k;R2))l=O. (72) 

Equations (45) and (55) give 

_J; k;(A; ll(k;R1)-B; K1(k;R1)) 
~ 2 0, 
i=l k; - 5(1 + 'tos) 

(73) 

3 (A; I 0(k;R2)+B; Ko(kiR2)) a0 ! 2 = • 
i=l k; -s(1+'t0s) s2 (l+'tos) (74) 

Equations (67)-(74) constitute a system of eight linear 

equations in the eight unknown parameters Ai, Bi , i = 

0,1,2,3, whose solution (numerically) completes the solution 

of the problem in the Laplace transform domain. 

INVERSION OF THE LAPLACE TRANSFORM 

We shall now outline the numerical inversion method 
used to find the solution in the physical domain. Let f(s) be 
the Laplace transform of a function f(t) . The inversion for­
mula for Laplace transforms can be written as 

1 d+iao 
f(t) = -. I estf(s)ds 

2m d-ioo 

where d is an arbitrary real number greater than all the real 

parts of the singularities of f(s). Taking s = d+iy, the above 

integral takes the form 

e• oo . -
f(t) =- I e4Yf(d+iy)dy . 

211: -GO 

Expanding the function h(t) = exp( -dt)f(t) in a Fourier 

series in the interval [0,2T], we obtain the approximate for­

mula [1 0] 

f (t) = foo (t) +En, 
where 

foo(t) = fco + rck for 0 s t s 2T , (75) 
k•l 

and 

(76) 

E0 is the discretization error, with can be made arbitrari­

ly small by choosing d large enough [ 1 0]. 
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Since the infinite series m equation (75) can only be 

summed up to a finite number N of terms, the approximate 

value of f(t) becomes 
1 N 

fN(t) = 2co + ~ck for 0 s t s 2T . (77) 
k=l 

Using the above formula to evaluate f(t), we introduce a 

truncation error ET that must be added to the discretization 

error to produce the total approximation error. 

Two methods are used to reduce the total error. First, the 

"Korrecktur" method is used to reduce the discretization er­

ror. Next, the €-algorithm is used to reduce the truncation 

error and hence to accelerate convergence. 

The Korrecktur method uses the following formula to 

evaluate the function f(t) : 

f (t) = C (t)-e-2dT foo(2T +t) +Eo, 

where the discretization errors lEo 1<< Eo 1[10]. Thus, the 

approximate value of f(t) becomes 

fNK (t)= fN (t) -e·2dTfN (2T+t), (78) 

N' is an integer such that N' < N. 

We shall now describe the €-algorithm that is used to ac­

celerate the convergence of the series in equation (77). Let 

N be an odd natural number, and let 
m 

Sm = ~ck 
k=l 

be the sequence of partial sums of (77). We define the €­

sequence by 

and 

e 
1.0-

0.8 

0.6 -

0.4 

0.2-: 

1.2 1.4 1.6 
r 

Fig.l 
Temperature Distribution 
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----~· 
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1.2 1.4 1.6 1.8 2 

r 

Fig.3 
Radial Stress Distribution 39 

It can be shown that [10] the sequence 

converges to f(t) + E0 - cof2 faster than the sequence of par­

tial sums 

Sm, m = 1,2,3, ... 

The actual procedure used to invert the Laplace trans­

forms consists of using equation (78) together with the £­

algorithm. The values of d and T are chosen according to the 

criteria outlined in [10]. 

NUMERICAL RESULTS 

The copper material was chosen for purposes of numer­

ical evaluations. The constants of the problem were taken as 

R1 = 1 , R2 = 2 ,c1 = 0.01 68, c2 = 0.0008 ;t0 = 0.02 , 

v =1.39(10r5 .~2 = 4' andv= 0.008. 

The computations were carried out for two values of 

time, namely t = 0.1 and t = 0.2. The numerical technique 

outlined above was used to obtain the temperature, dis­

placement and radial stress and transverse stress dis­

tributions as well as the induced magnetic and electric field 

distributions. In all figures, dashed lines represent the func­

tion when t =0.1 while solid lines represent the function 

when t=0.2. The temperature increment e is represented by 

the graph in figure 1. The displacement u is shown in figure 

2. The stress components <Jrr and <J'¥'¥ are shown in figures 

3 and 4, respectively while the induced fields h and E are 

shown in figures 5 and 6 respectively. 
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