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ABSTRACT

Two explicit forms of Backlund transformation of third order dispersive differential equation are derived. The method of
derivation depends on the use of a transformation that couples the equation with its modified one.

INTRODUCTION In this work we generalize the method given in [4] to
construct two forms of the Bicklund transformation of an
The Biicklund transformation of the KdV equation equation possessing more dispersion and nonlinear effects.

We consider the nonlinear evolution eqaution [3}
+n1, + 1N =0
T e+ T +T177 =17 +Tee = Mz + s =7 =0 (L1)
(where nny is the nonlinear effect and m, is the dispersion
effect) was given in [1]. The method of derivation depends where 7(x,?) is a real scalar field for every (x,f) € R*.
on the use of Miura transformation {2}
In this section we derive the transformation which

n= u + U, couples (1.1) with its modified equation.

which couples the KdV equation with the modified  u, +u, +uu, —uu, + Uy — 3y +30 — Uy =0
equation 12)
U, + "2“x g, =0 Theorem 1: If # is a solution of (1.2) then

n=u’ +,/6(u, -u,) (1.3)
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is the solution of (1.1).

Proof: From the definition of 7 one can easily calculate
Ty s s Thoe> Mt » T AN 77,,, . Thus we have

M+ 1 + 01 =N + N = Iy + 3y — My =

Qu +§—§C—)(u, Flg AU~ 0P U Uy Uy + Uy~ )

which proves the theorem.

Theorem 2: Equation (1.1) is invariant under the
transformation

x»(l—%)x—%t,t e%x+(l+%)t,n —>7+A4 (1.4)

Proof : By direct calculation of the whole derivatives in
(1.1) in terms of the new variable the proof follows
immediately.

Now, using the result of the last theorem we could work
with 77— A(4 is arbitrary parameter) rather than 7, thus
we write '

n=n+u’ +,/6(u, —u,)
and then (1.2) becomes

up +uy, + (u? + Ay, — (u? + A+t = 3ty +3uyy, ~ Uy, =0
(1.5)

Explicit form of the Béicklund Transformation of (1.1)

It is clear that if u is a solution of (1.2) then so is -u .
This suggests that we introduce two functions

n=A+u’ +,/6(ut —u,)
N =A+u’ —,/6(ut -u,)

for given u and A . These two equations imply that

n-n'=246(u, —u,) , n+n' =2A+u?)  Q2.1)

At this stage it is convenient to introduce the additional
transformation

n=-(v,-v,) and =@ -Vv) (2.2)

and it follows from (1.1) that v and v’ an be taken to satisfy
the equations

1
v, -V, — E(V, V) v, —3v_ +3v,,+v, =0 (2.3)

V-V — %(v,’ VY AV -3 4 4V, =0 24
and equation, (2.1) become
v—v' = -2J6u (2.5)
r 1 "n2
+v), —(v+v), =—21+E(v—v) (2.6)

respectively. Equation (2.6) constitutes one part of the
Bicklund transformation for v and v’ which in turn
generates the solution of (1.1) via (2.2).X

To find the other part of the Bicklund transformation it

_is clear that by making use of (2.1), (2.2) and (2.5),
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equation (1.5) can be written as

=), + (=), —%[(v, ) 0 =V =)

-3(v-V),, +3v-v),-(v-V),, =0 2.7

Equations (2.6) and (2.7) constitute the Bicklund
transformation of (1.1). However, we can write equation
(2.7) in a more convenient form as follows: First operate on

both sides of (2.6) with the operator ( 2. 94 )2 to obtain
a &

2.8)
2
+(v—v')[g—aj v—v')
AV AN
(58] *E{K?a)(“ dE
2.9)

On the the other hand equation (2.7) can be rewritten as

W -V~ =), - %{(vt —v)? - =)+
L[ v=p
ad & a &)

Using equation (2.9), equation (2.10) reduces to

(2.10)
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1
=)= =), =0 - ve)? = ) = V)’

2
, 1o & ,
+2v, +2v; — (v} — vx)2 + _6—[[:?;_ g)(v - v)]
2
+—~(v v')[%—%} v-v)=0

The last equation can be simplified as
’ 0 1 ’ 7
W+ + 0+ V), =210 =) + 0= V)0 =)

F -] - %(v CVN = V) = 200 = V) + 0 = V)]
@.11)

Hence, we have proved the following theorem

Theorem 3: The Bicklund transfornation of the nonlinear
evolution equation

M 0 =Ny TN + N = 3N + 30 =Ny =0 (1.1)

is given by the system of equations:

V+V), ~(@+V), =-24- %(v —v)? (2.6)

W+, + @ +V), = %[(vt —v)? V)L - VL) +

) —V,)?] —%(v—v’){(v‘—v')xx Sy + @ - V)]
@.11)

where n=v, —-v, ,n =v, —v,

Once we have derived an explicit form of the Biicklund
transformation for the given equation (1.1), we turn now to
establish another form for the Bécklund transformation by
making use of the first one.

Theorem 4: Another form of the Backlund transformation
of equation (1.1) is given in the form:

W+V), -(v+v), =-21- %(V -v)?
, , 2 _0
V'=-v),+(-v), = (E - —é;][—Z(vxx -2v, +v,)
~ Lo —vp+ 2 -
3 3
(where =v, —v, ,n'=v, -v; )

Proof : Rewritting (2.11) in the form:

(0 =), + (=) = =200, +v,) + —31—[(\4 )’

+ OV, =V, V) + 0 +V))7] (2.12)

l 7 ’
- g(v -V =V) =200 =V + (v = V'), ]
and making use of (2.3), we have
V=) +(v-V), =2V — IV, 3V —vm)——é(vt -v,)

1 r 7
[V =v )+ (v - ;)]—;[(Vrvx)—(vt—vx)][(vt—vx)
1 '
-V -vl- g(v—v,)[(v—v,)xx =2v=v)y +(v—=v),]
Using now the relation
’ 1 N2
v+v),-(v+v), =24 -—@-V)
12
we have
1.
V=V, + V=V, =2 =3V + 3V — Vi) — ;(v, -v,)
1 ., 1

(v, =v) + (v =Vl - gl(vt —Vy) = (v = VIl-24 - g(v -vi-

1 , ’
L =) = 20 V) + =y
ie.,
(V’_V)r +(V_V')x =2V =3V 3V, _vm)_é(vt _vx)2

[0+ 45 VI S AU, v )+, V=30, <)

; —v)l+ —;—(v—v’)[(v—v’)xx =2V +(v—¥")y]
Operating on both sides of the equation

1
V+v), -(+V), = 2),—E(v—v’)2

a é
by the operator | — —— |, we have
ytheaperator (-2

V' V) — 200 +V), + (V' +V), =

1 , @.14)
- g(v - v,)[(vt - vx) - (V; - vx)]

Equations (2.13) and (2.14) together yield
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V' =) + (V' =V, =2V = Ve + Vi — Vi)

- %(v, —v I, —vy) + ()~ V)] +-§-u(vt v )+ = V)]

- %(v -, —2v,, —v,)l
2.15)

Now, since

Vi = Vxt + 3V —Vig = _(g - %J(Vxx =2V, +Vy)

Then (2.15) can be rewritten in the form

' , é 2
V=) +(-v),= E~-0;56~)[—2(vxx—2vx,+vﬂ)

- %(v =V, ~v, )+ %Z,(v -]

and the theorem is proved.

CONCLUSION

Theorem 3 and theorem 4 guarantee the existence of

two explicit forms of Bicklund transformation of the given
equation (1.1). The two forms are in fact equivalent in the
sense that from one we obtain the other as it appears from
theorem 4. On the other hand this equation is thought to

182

have multi-soliton solution since many equations such as
the KdV equaiton, sine Gordon equation and others which
possess Bicklund transformation proved to have multi-
soliton solutions [4]. We are trying to sort out this problem
and shall report on it in the near future.

i
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