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ABSTRACT

In this paper we present a family of biorthonormal wavelets generated by a MRA orthonormal
wavelet, which possesses two arbitrary parameters. Then we discuss new expressions of
reproducing kernel as well as the corresponding Mallat's reconstruction and decomposition
algorithm with respect to the family of biorthonormal wavelets.
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1 Introduction

AII over this paper, we denote the Fourier transform of f (t)bV f@),D:: i , and

F,, , , ( t )  : :23 F(z^t  -  n) ,  m,n e Z.

Lo(R) (p ) r) denotes the family of functions /(r) satisfying iltAlPd,t 
< *.

ln L2(R), the inner product and the norm are defined by

7
(f  ,g):  . l  f  l t )o{t)at ,  l l  /  l l :

and the Parseval identity [1]

( f  ( t ) ,s( t ) ) :  ( f ( r ) ,  0@)),  f  ,s  € L ' (R)

holds. Ll* denotes the family of functions /(t) satisfying

r
f  ^ . . . n

I  l f  ( t) l 'dt  < x and /( t  +2r):  f  ( t) .
:n

In the recent ten years, wavelet analysis has drawn attention widely from both mathemati-
cians and engineers. Wavelet analysis presents a kind of new bases for representing functions
(signals). Y. Meyer [2] constructed the first orthonormal wavelet whose dyadic dilations and
integer translations constitute an orthonormal basis for L'(R). Later on, in 1989, S. Mallat

[3] introduced the important concept of multiresolution analysis (for simplicity, MRA) of L2(R)
which is the best approach for constructing the orthonormal wavelets. Here we introduce briefly
the theory of MRA [3,4,5] which will be used heavily in this paper.

Definition. Let {V*}*ez be a sequence of the closed subspaces of L2(R) satisfying the fol-
Iowing:

( l )  V*  CVnt+r t  m e Z;  ! r * :  L2(R);  
A"r* :  

{0} .

( i i )  / ( t )  €V* +--+ f  (2 t )  €Vm+Lt  m€ Z.

(iii) There exists a function p(t) e % such thar {9(t - n)}.ez is an orthonormal basis of %.
Then {7-} is called a multiresolution analysis (MRA), and g(t) is called an orthogonal scaling
function.

It is clear by this concept that there exists a sequence {o,} , Dla.l' ( N, such that

|rfil: T 
a.e(t - n) (I'�(R))'

Equation (1) is called the bi-scaling equation and the coefficient {a,} is called the impulse
response. Taking Fourier transform of (1), it follows that

[i,r,', ro') ,

( 1 )

QQr) :  m(w)Q@), ( ) \
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where m(a) is called the transfer function

m(u): 
T 

(t,e-in' (L3),

and m(u) satisfies the identity

|  ̂ ( r )  l2 + |  m(u - t  r )  12:  l ,  a.e.  u e R.

Theorem A. Let the function rb(t) satisfy the condition

$@):".7*ff i0(:) (5)

Then lh*,(t)\*,ez isan orthonormal basis for L2(R).

The function t!(t) is called a MRA orthonormal wavelet. The formula (5) is a basic formula for
finding an orthonormal wavelet.

From this, one obtains the orthogonal decomposition for L2(R) as follows.

Let W* : sQm{1h,,,n(t), n e Z} (where )' spdnl1 is a closure of linear combination). Then
{rb^p(t)}"62 is an orthonormal basis of W,n, and {W*}-67 poss€sses the following properties:

W*LW**1, ,  f  ( t )  €W*,-  f  (2 t )  eWrn+r t

and
V^@W,n: V-*r (Odenotes orthogonal sum), L'(R) :  QW*.

However, for decomposition and reconstruction of the functions (signals), the orthogonality of
bases is not very important, so one turn to discuss the bi-orthonormal wavelets [4].

Let {g"(t)} be a sequence of L'(R) andV : span{gn(t),n e Z}. If there is a pair of positive
constants A, B such that

of | ".1'<111""s.(t) l l '< BDI ""1'

for all Dlc.lt< *, then {g*(t)} is called a Riesz basis of the subspaceV of. L2(R)151.

All Riesz bases can be obtained as the images of the orthonormal bases under the bounded
linear operators. Riesz bases are the next best bases to the orthonormal bases.

Let g(t) € L2(R), g,(t) : g(t - rz) and V : sFdfi,{g(t - n),n e Z}. It is well known [5]
that the sufficient and necessary condition for the fact that {g(t - n)},<z is a Riesz basis
of the subspace V of L2(R) is that there exists a pair of positive constants A, B such that
A <+ | 0@ + 2ntr) l2< B, a.e. w e R.

Theorem B. Let {g"(t)} and {h,(t)} b" two Riesz bases of a subspace lJ c L2(R), and
(g^ ,h , ) : 6 * ,n .Then  f  ( t ) :D ( f  , g , )h . ( r )  :  t ( / ,  h " )g " ( t )  f o r  any  f  e  U .

(3)

(4)

(6)
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Definition. Let lt@(|, 4ttzt(t) e L2(R). If both {rbg)"(t)} afi {{fri"(t)} are Riesz bases of
L'(R), and

Qpg)r!),rbfl),,,(r)) : 5*,,n,5n,n, (^,*',n,n' € z),

then {rp(t) (t),4tfzl (t)} is called a biorthonormal wavelet tslof L2(R).

In addition, it is well knownla,s] that the sufficient and necessary condition for the fact that the

{f (t - n))nez is an orthonormal system of L2(R) is that

^ 1
|  . f  ( o  + 2 n r )  l z :  ^  ,  o . r . a  e  R .'2r

For a given MRA, we have known that there exists always an MRA orthonormal wavelet r!(t). In

this paper, based on$(t),we construct a family of bi-orthonormal wavelets {rtrr(t'l ' ')(r), {/(2'''")(r)}

with two chosen arbitrarily parameters l,r. Further, with help of them we give new expresses

of reproducing kernel for orthogonal complementary space W^, and discuss the corresponding
Mallat' algorithm with respect to them.

2 Main Results

In this paper, first we give the following two theorems.

Theorem 1. Let {V,-} be a MRA of L21R), p(f) the corresponding orthogonal scaling function
and {(t) the MRA orthonormal wavelet based on tp(t). For I e Z,l , l. i (, € Ii), set

E(r, r , r )  ( t ) : rb( t )+r( t ! ( t+ l )  -  ,1, ( t - t ) ) ,  EQ,I , r ) ( r )  : i  i f - � tY": r '4) f t - rnt-2kt) ,  (8)
n:0 k:0

Then {rlr(t,t,') (l,Vel,O (t)} ls a family of biorthonormal wavelets of

t (7)

where CT :

L , (R) .

Next, we give new expressions of reproducing kernel and new reproducing formulas of W,n.

Let
rf i 'k) @,0 : 2*rf '* '  (2^ t,2-t), i  + k ( i ,  k : r,2),

where ,f 'o)(r,f) : :  f ,  \ [rLr ' l ' r)(f  - n)v(kr ')  (* - n).

Theorem 2. U"d";;e assumptions of Theorem 1, suppose further that

( i) The MRA orthonormal wavelets ,bQ): O((t+ | t  | ;-ta+' l ;  (.  > 0).

( i i )  (A( , , , ) ) ( t ' )  e  L1( /?)  ( ,  :  0 ,1,2,3) .

Then, for any h(t) € W*, Lhe following two equalities hold
09

h( t ) :  
lnor ,g 'q1a, t )d , r ,  

i  +k  ( i , k : r ,2 ) .

The above two equalities are new reproducing formulas of W,n, andr?'k)(r,t) are new expres-
sions of reproducing kernel.

Then, we discuss the corresponding Mallat's reconstruction and decomposition algorithm.

7nt ( rn-n) l '
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3 Proof of Theorem 1

In order to prove Theorem 1 , we need two Lemmas.

Lemma 1. Let Wfi) : sFm{Vf-|i)(t), n e Z} (j : r,2). Then {Vg|,{)(t)}"r, is a Riesz
basis of the space WJI (i : L,2) and Wfi) C V,n (j : L,2).

Proof. First we prove that {V**)}.rt is a Riesz basis of the space Wd).

Since Vg,'i)ft) :2+,yU't,r)(2,-t - n), their Fourier transforms are

Og:',{) @) : 2-TSo,t,,t (f i), ,+,, i  :  r,2.

For the case jr : 1, we consider a sum D I Vg',k')@ + 2un) 12.

On the one hand, by (9), we have

I | &*',k') (a + 2ur) l': 2-^I | 0,t,',", (' *^!^"" 
) l''  

2 m  
' l

T a k i n g  r . , : 2 * k , 2 ' " k + 1 , 2 * k * 2 , . . . , 2  k + 2 *  - L ,  k  e  Z  w e  c a n s p l i t  t h e  i n t e g e r s  u  e  Z
into 2 groups ) corresponding to this, the sum on right-hand side of the above equality can
be split tnto 2* sum , that is, it can be rewritten by rearrangement of the terms in the form

L. l v')'|, (r + 2ur) 12: r-^{+l r}tr'r '"r t# * 2kr) 12* I l Q(r.r r) (+f + 2kr) l ' + ..
k -

* | Qrr,r,'1 ( + 2(?T - r)r 
+ 2kr) 12\'.

k -

On the other hand , taking Fourier transform in the first formula of (8), we have

Q(r,r,r) (r) : f(rxr * 2i,rsin(t cr)).

Q(1,r,r)(r) : "-,7 ̂ffiOfilO * 2i,rsin(/ r,.,)),

Sr(r) , :  I  I  Q(t ' r ' ' )  @ +2kn) l ' : l  1 *2trsin(tcr) l ' r r(r) ,
k

(e)

(10)

(  1 1 )

Again, by (5),

and so

where

(r2)

(13)

(r4)s1(a.,) :: Y | *(Z i kr-t ")A(; + kr) l2 .
k '

Splitting the odd and even terms of the sum on the right-hand side of (1a) and noticing that
mla) is a periodic function with 2zr-period, we have

s r ( c - r )  :  
t  t * ( 7 * 2 u r  + " ) Q ( l + 2 , " 1 (  * ) 1 . ( Z + 2 u r ) Q ( f , + 2 , "  - n )  l '

u v
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'  ' Q  + n ) l '  I  l O ( :  * 2 u r ) l ' + l * ( ? )  l ' ) :  l A e  t 2 u r  - n ) 1 ": l m \ 2  
7 " , 2  

' - " t t  ' t " - \ 2 r ,  
T , " z

Since p(t) is an orthogonal scaling function , by its definition and (7) we see that

I  aG *2ur) :  +,  +l  a(+ *2ur):  * ,a.e. a € R.

Fbom this and (4),

s r ( o )  : * , a . e . a e  R .

Again, by (13), we get for almost everywhere w €. R,

s,(r )  :  
t  I  Qtr ' r ' " r  @ +2ktr)  f  :  * ]+2trs in( lo)12.

Combining this with (10), we obtain for almost everywhere w e R,

D1ifi,,!i 1w * 2un)f :'ff 1r + 2ir srn(tfi)l ' + lr * 2lr sin(t+P) l' + ...

+11 + ztr"inlfJlV-J)" 171.
A g a i n ,  i n v i e w o f  1 -  2 l r l < l  1 +  2 i r s i n ( l y ) l <  1 +  2 l r l , , w e  o b t a i n

( r - 2 l r l ) 2  <  \ -  r 0 ( 1 : l ; , )  ( u + 2 u t r ) p . 0 + ? l r l ) z  , a . e . a  e  R .
2f 

- /-/ | -n

According to the sufficient and necessary condition for the fact that it is a Riesz basis , we
know that {Vg,hd (t)},rt is a Riesz basis of the space WG) .

Similarly, taking Fourier transform in the second formula of (8), and using the binomial formula

(a + b)": .i Cfak6'-r" and the summation formula of geometrical series * : f^r", we get
k:0 n:O

bv (5)
gtz,t,,) @) : irzi,{O focl1r"or,7"J" 

(-re-;.ru1k

: 0@)0 - 2,irsin(ta.,))-1

: e-t?mg+ It) A(?G - 2i,rsin(1c,.'))-1.

Again, replacing (12) by (15), and then going along the above derived line , we can also prove
that {ilrfi'fu')(t)},ez is a Riesz basis of the space W@.

Next, we prove that WS) C Vm+r, j : 1,2.

Set
^(t) (w) : e-i'm(u + tr) (l + 2lr sin(2lcu)),

^(z)@) : "- i '^1u1a n) ( l  - 2irsin(21u,'))-1,

t

(15)

(16)

(17)

where *(w) is stated in (3).
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Since m(r) € L7*, it is clear 11161 pj)(r) e L7*, j : I,2. So we can expand them as follows:

^ri l@): I Bu)"t" '  @7), j  :  L,2.

From this and (16), (17), we see by (12; und (15) that

sul,,) (r) : D gg)ei"z o{i) trr{n)), j : r,2.

Taking inverse Fourier transform of the above formula , we have

Eu,t'r) (r) : t 2p$) eet + n) (L2(R)), j : r,2.

Further,

v  ^ f i p U )
1r v 2Y2n-kY'rn+
r  , , k ( t )  (L2 (R) )  ( "  e  z ) , i : r , , 2 ,

(18 )

( 1e)

1r{r) @) - -mG) (a) j rnllw + r) 
. h\2) (r) :

| * 2i,r sin(2la) 1

7@ @) : "* *"'{,1, 
;n ??r*?rl 

"r, h@ (u) :

m(qhs @) + m@ lrSn{z) 1.u)
m@)h@(r) + rnD(a)h@ (r) : t,

m(w)-t  m(w * r)
1 +

-iu- t t

Zir sin(2lw) '

m ( u ) - m ( w * n )

: Q  " " ,

a.e.  w e R.

L + 2ir sin(2ft,,')
Bv (a) and (16), we get

m@)m@1u*r )  -m(u l - r )m\ ( r )  :  - " -0 , ( t *2 t rs in (2 lw) )  10 ,  a .e .  a  €  R

and so

On the other hand, noticing that both m(a) un6 *0) (a) are periodic functions with 2zr-period
and I e Z , tt is clear that tr{i) (w) (j : I, ...,4) are periodic functions with zr-period, and so we
can expand them into Fourier series as follows:

| t i )@):  
T tv ) " ro*  ( j  :1 , . . . ,4) .

v*,,f)(t) : zTpU,I,r)(2*t - n) : Dz'# p[:)_rtp(2*+rt _ k)

Because p*+r,*(t) e Vm+r (k e Z), the above equalities show that

v9,:,'{)(t) ev^a1 (n e Z), j : r,2.

By the definition of WS), we know thatWS) CVm+r, j:L,2.

So the proof of Lemma 1 is completed.

Lemma 2. Wp : W* (j : I,2).

Proof. For the case i :1. Iet
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From this and (19),

m(r)Dt|f;,"'0" a ^G) (r)D tL?"',"' : e-i ', a-e. a € R,

m(a)L, l5}" ' ' " '  I  mtt(")  I  1[4, \  "2 in '  :  l ,  a.e.  a e R.

Replacing a by ,#ni" t; above two equaliti"l, und then multiplying by

a(#)e- ik# @ e z),

we obtain bV Q) for almost everywhere a € R

A(#) D 4l "-ak-n)2-* w * mG) ffrAeffi,) T 4? " i(k-n)2-*a -

By the definition of MRA
Vpa1, So

, we see that V^ C Vrn+r. Again,

V* +WS) C V,n+t'

Vm+t : Vr, + W#) .

^ ,  @ , s -  ( 3 )  -g \ * ) + 
rn,, i(k - n)2- m' 

+ m(t' t#il o (#i D lLo,) r-'tk-n)2- 
- a : O( ;n ) s-i k2- - "

But, by (12) and (15-17), we know that

Eti, t , ,)  @) _ m0 f i l  ef i l ,  j  :  r ,2.

So, for almost everywhere w e R, we have

A (h) D 4l "-,(t< - n)2- ^ u + 0 (r,2,") 
6) + 

"y5? e- an - ")2- ^' - O {};rl " i(k + +)2- * Q

a(#)D#lj"-<k-n)2-^a + 0(1,,,') 6)>1Ll)e-an-o2-^'� 
- etffil" ik2-ma

Again, taking inverse Fourier transform of the above two equalities , we obtain f.or k e Z,

D 4l - r*p,,,, (t) + \, t5') - r,v *',r') (t) : J1,p m + r,2 k + r (t),

L, 4? _ r,p ̂ ,, (t) + | tLn) - r,v *,,k' ) (il : Ji p * + t,z n (t) .

Since {g,n*r,n}nr7 is an orthonormal basis of V,na1, the above two equalities mean that

v*+t C v^ *  W$\ (21)

by Lemma 1 we see rhat WS) a

(20)

From this and (21)
(  ) ) \
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Similar to the derivation process of (22), we can also obtain

Vrn+r : V* a 1Y@ .

Below, we shall prove that V,"LWS) (j : t,Z).
Using the Parseval identity and the definition of inner product,we get

(23)

9.v9,'{) (0, p,,,(t) ) : ( Qgll' (r), Q^,,kr) ) : I ag:;' @)q,.r@ da

Again, by (9) and Q*,(a) :2-T Q(h)"-uh' we get

/ ;  r  - \  
T

( v!1'1l) (t) , p, ,*(t) ) : 2-* [ 
gtt,t' ', 

l2-^ a)QQ-*a1 "i(n-k)2-^w 4,V m . K  \ " 1 ' Y r t t \ l t \ " l )  -  
I  

-  \ -

T _: 
J O@ $(i't'') (u)si('-n)' d,a :: sz.

But, by (2) and (20), the furt t"l- of the above formula (24) equals

(24)

32 : 
_l *@ tZl "4p I OG) 12 "t'(n-k)a6,

(2u*2)n
: | / rn(i)e)*@ | a@ 12 "t'(n-k)uL,

u 2ur

2r
:  I  " i (n-k)urz(a)da,  k ,n € Z,

where

sz(a) :+^{n19 i  ur);q.,  )  |  AG * un) l2 .

Replacing | ̂ G -t ur 1-r) l' by pQ) 1v + un)nt(e" + 4 in (1a) and passing a direct calculation
which is similar to s1(c,,'), we can obtain by (16) and (17) that s2(cr) : 0. Combining this with
(24), we get

g|vll:'"ti ' (t), e^,,(t) ) : 0, k,n e z, i : r,2.

Since {Vg:{) Q)}r." is a Riesz basis of W0 and. {p,.,,(t)},E2 is an orthonormal basis of V,,.
The above formulas show that WH\ LV,,, j :1,2.

Again, by (22) and (23) we know that

V m + r : V , " @ W H ) ,  i : 1 , 2 .

Finally, by (6), we obtain
W l i t : W ' n '  j : r , 2 '

This completes the proof of Lemma 2.
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Proof of Theorem 1. By Lemmas 1 and 2, and L'(R) : @W* of (6), we can conclude using

the definition of Riesz basis that {V*'P(t))*,,e2 (j : I,2) are two different Riesz bases of

L, (R) .

In order to prove that {rlr(1,tr)(t), E(z't'')(t)} is a family of biorthonormal wavelets of f'2(R),

by the definition, we need only to prove that the equality (V*1ko , VS|[)) : 6*,*,5,-,n, holds.

Case L: m: mt. By (11), (15) and (5), we have

g(t, t ,r)(u.,)Srz.r"t1,u) : l0@) lr .  (2b)

Using the Parseval identity and the definition of inner product, we obtain bV (9) and (25)

9:
11v(r,r,r)11i {'Q,',f;T) (r)) : (01,1;l;.)(,r) , OS,,|T)(r)) : I t rttfq 12 ,-i(n-n')ud.a :: st. Q6)\ - m ' n  \ " /  )  - r n , n '  \ " ' , ' t  \ - m ' n  \ -  

_ ;

By the definition of the subspace Ws, we know that {t!(t - n)}.ez is an orthonormal basis of

Wg, so we get bV (7) 
1

Dl $@ * 2ur) l ' :  ; '
and the integral 53 in (26) is calculated as follows:

2(v*l)r 2r

ss: I  
r l_ 

|$@)12 r- i (n-n ' )ad, :  ID|0@i2ur)12 
u- i (n-n)u6,

r " n: 
2n f 

"-ot"-"'), d,u : 6,.,n,.
0

Combining this with (26), we get

(v*1kd (D , v|;f;) (t)) : 5,,*,

Case 2z m I *' . In view of. W*LW*,, noticing that

v*,,;,. ')(D ewP :w,n, v%l,:)(D €wfl :w*,, n,n' e Z,

it is clear that ({/g'h't11 , Vftl.:)All:0, and hence the proof of Theorem 1 is completed.

4 Proof of Theorem 2

To prove Theorem 2, we need the following two lemmas.

Lemma 3. Under the condition of Theorem 2, then

Eu, I , r )  ( t  -  n )vGJD@ -  n ) :  o ( (1+  l ,  - t  1 ; -31r+  l ,  -  r  l ) -3 ) ,  j  +  k ( j , k :  r ,2 ) .

10
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Proof. On the one hand, by the condition (ii) and noticing that the functions

r-t 2i,r sin(2tw), (I - 2i,r sin(2tu))-r, l"l . 1, t e Z

and their derivatives are all bounded with respe ct, to w,we know * ,rt, and (15) that

(0( i ' , , ' ) (ur ) )Q' )  e  LI (E)  ( , '  :  0 ,1,2,3) .

on the other hand, by the condition (i), we know that {(t) € LL(R) and Fd,ft) € Lr(R).
Further, ($@D"'is continuous on R. so we obtain from'(ir) u"j (rs; that 10o,i,,11171),,i,
continuous on R.

Combining the above two results, using the property of differentiability of Fourier transform
[1], we get that the Fourier transform of (Q(r,r'');"' is equal to (it)3 multipiied by the Fourier
transform og S(i,t,') (w). But tlre Fourier transform of OdJ,,) (a) is just .q,rul 1s ,U(iJ,,) (-t), and
so the Fourier transform of (00'2,'l;"' is equal to (zt)eV(r,t,,)i_tt).

Since (Q(i'r' ')(ur)) "' e Lr(R), by Riemman-Lebesgue Lemma [1], Fourier transform of (Q(r,1,') (r)),,,
tends to zero when ltl --+ oo. Again because it is continuous on R, the Fourier transform of
10ti't,'l (r))"'is bounded on the whole real axis ft.

From this, we know that

E U , r , , )  ( r )  : O ( ( 1 +  l , l ) _ r ) ,  i : 1 , 2 .

Again, using the inequality

( 1 +  |  o  l ) ( t +  |  b  l )  >  r - r  I  a - b l ,

we obtain the conclusion of Lemma 3 immediately.

By Lemma 3, the following lemma is clearly true.

Lemma 4. Under the conditions of Theorem 2, let

,9 ' r ) ( r , t ) : :  !vo ' t , " )1 t -ev@I i@ _�n) ,  j  +k  ( i ,k : t ,z )
_oo

converges uniformly on every bounded closed interval in ,R for fixed t e fi with respect to r.

Proof of Theorern 2. Let h(t) e W*. By the property of {W,,}, n(D ,: h(h) € Wo. Again
by Lemma 1 and Lemma 2, we know that {V0 't',) (t - n)}, j : I,2 are two Riesz bases of. Ws
and (\y(1,, '4 (t - m),E{2,t,,)(t  - n)) :  6^,,.By Theorem B we f ind

n1t1 :  D#,orv t i ,1 , , ) ( t - �n) (L2(R)) ,  j  *  k  ( j , t r : r ,2) ,

(27)

(28)

11
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where
T

cf' ') : I n1r\vtnt, ') (r - n)dr, k : r,2.,, ,l

N
Let S$$''' ' '(t) : 1 cft,o)E<i,tr)(t - n). By (29), we can rewrite them in the form' -^/

- / ; , - \ .  T =  - - r ; r . \s$' ' ' ' )1r;  :  I  n@)NH'*) (r , t )dr i  + k ( i  :  7,2),' . 1

/ ;  t - \

where K'f,'"' (r,f) is given by (27). Consider the deviations:

s$' ' ' ' )11; - [  n61rf ' r '1r,t1d,r:  
I  neX*H'* '(",r) -rg'* '(r . t) ]d'r '

*t -"-

Because (1 + y)-3 -- O (E -- -), for given rl ) 0, there exists ffi such that (1 + Mg)*i a rt.

So, fixing Ms, we split the integral on the right-hand side of the above formula into two parts

s$$$$$'r'")11; - T nf-lrg'k) (n,t)dr :, Ir(t) + I2(t),
r Y  

. /

Ir(t1 : t n1r11tcft'r) (*,,t) - ,g'r) (r,t)\d,r,
J

lr- t l<Ms

I2(t) : t n4ltNll'D (r,t) - ,g'r) @,lld,r.
J

lr- t l>Ms

(2e)

where

First, we estimate I2(t).

By Lemma 4 and (28), we know easily that r[ '  '*) (*,t):  O((1+ | ,  - t  l)-B) Using Cauchy's

integral inequality, we get

(30)

(31)

oo oo

r z ( t ) : o ( ( 1 +  M o l i x  /  I f i 1 r ]  1 ' a r .  I t  * l , - � t l ) - ' a r 1 i .' , . J  J
-oo

r2(t) :  o((1 + M\Y+)J'  l l  t  l l

-oo

and hence

Next, we estimate 11(t).

By Lemma 4, we know that for fixed f, KII'r) (2, t) converges uniformly to ,9'*) (r,t) onlr-tl <

ffi. So, for given q > 0,

Wfr'r) @,0 - ,F'r) (r,t)l < rt, l" - t l  I Mo,

12
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when N is large enough. Using Cauchy's inequality, we get

. -
1 1 , ( r ) l  s r y {  |  d ; .  l l n f a , } + 3 , t y E A l l  h l l

v--,(sro -J,o

From this and (30-31), we obtain S|i't''t(t) - T nOyF'k) (r,t)d,r, ly' ---+ oo.

On the other hand, since,gli 't'')Q) -- iltlfrif^ll,by Riesz'Theorem, we know that there
exists a subsequence {Na} such that Sfr't''1(q -- h(t).

Thus, by the uniqueness of  l imi ts,  we obtain nQ) :  f  n1*7rN'k)(r , t !d,r ,  j  + k ( j ,k:7,2).

Again, by the definition nQ) : h(#),they are ,"*rlttln in the form

- o o o o
"  t  r ' ' ' L ' rN 'k )p . t )d . r  :  I  ng lz* r l ' o \12* r . t7d"* .n \ z - ) :  

J  n \ z - ) -  
J

-oo

Replacing h fV f , and using (28) we obtain

-oo

T
h(L):  I  t  1r1Z*r?,r ,(Z-r.2^t)d.r :

-t

where rfi 'k)(r,t) : 2 rf 'r ' (2*r,,2*t), j + k (j,k :
Theorem 2.

5 Algorithm

In this section, we give the corresponding Mallat's reconstruction and decomposition algorithm
with respect to the family of biorthogonal wavelets {V(r,/,')1t;, Ur(z'l' ')(t)} based on the MRA
orthonormal wavelet r/(f ).

I

i*,,
h@)r t t 'k )  ( r , t )dr ,

, and so we complete the proof of

5 . 1

Since

Reconstruction Algorithm

{p*+t,(t)}nez ts an orthogonal basis of V,,a1, for each f (t) €Vm.+rt

f (t) : D 
rT*',p,"+t,.(t),

where ,T* t  :  ( f  ( t ) ,g , -+t , , ( t ) ) ,n  e Z.

By the concept of MRA, we see {p,.,"(t)}.E2 rs drr orthonormal basis of V,n. By Lemmas
1 and 2, we see that {V*):{)(t)},e2, j : I,2 are two Riesz bases of W,n. Again, because

Vrn+r : V,.AW*, we know that {g*,r(0,V|'"t-{) (t)}n,n,ez, j : I,2 are two bases of the space
Vrn+r. So, for f (t) e Vrn+rt we have

f ( t ) :4"Tr, . , " (r)  +t  af f ,*)vf i , f )1t1,  k+ j ,  k, j : r ,2,

13
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where cT : U(t),e,-,.(t)), d*'*t : (f (t),,V*:kn(t)) k: L,2.

Hence

But by 1r1"*a 1141,we know that

9*,n(t) : l  P,-zngr,+t,u(t) (Pn: u/2a,).

v*,i) @ : +q[i)z,e^+r,(t)

(g**(t) ,  p*,n'( t ))  :  \n,n'  .

Since g-,n(t) e V,n, vf,:,Li) Q) e W^ and. V*LW*, we have

1vff; ! i )1t7,p*,,(t)):  o (r :1,2).

(q[j) : tfzP9ll (i : r,2).

Dq*',p-+t,,(t): t cTs*,,(t) +Daf,'"tvfr,l;t1t1, k + j (k,, j : r,2). (32)

(33)

(34)

Combining (33) and (34) with (32), and then interchanging the order of the summations, we
have

D "T*' p*+r,(t) : I D(q p, -r, t df, '*) n[j)r,) p,.*r,,(t), k + i (k, i : L, 2).
U U T L

So by equating the coefficients, we obtain by (33) and (3a) that the corresponding Mallat's
reconstruction algorithm is as follows:

"T*' -- t/i\("y",-2n t a*,*) pf)_) k + j (k, j : r,2),

where q : (f (t),p.,,*(t)), o[-, : (f (t),v*:k') (t)), and *,, l3g)are given bv (1) and (18).

5.2 Decomposition Algorithm

Multiplying both sides of (32) by the factors VX;L? Q) (k :1, 2) and g;,",6 respectively, and
then integrating both sides over (-oo, oo), by the definition of inner product, we obtain the
following two equalities for j + k(j,k: I,2)

Dq*'@m+r,(t),v*,,|T,(r)) : Dq(p*,,(t),vg;l)(r))+D d,*,*) gg*,) Q),v*;k? (r)) (3b)

+q*t(e,-+r,*(t),v*,,'(t)): T 
cT(p,,,*(t).,e*,,,(i)) + \af,'d1v[i"'i;4(t),e,,,,,(t)). (36)

Since {rlr(t'l ' ' l (t),vQ,t,'l1t)} is a biorthonomal wavelet of L'(R), by the definition we know that

(v*,*n (t),vff,lft St11 : dn,,,, j + k (j, k : 1,2).

Again, since {rp-,.(t)}.ez is an orthonormal basis of V,n, we see that

(37)

I4
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Combining these results, we can rewrite (35) and (36) in the form

d,*""): 
T 

"T*r(p**r,.,vg',kl), (k : r,2).

'*'*) : D q*t @mr7'nt 9*',') '

However, by (33) and (34) as well as the properties of inner product we get bV (37)

(p,n+r,n,vl!,;f;f'): t qll)r.,(p,,*t,n,em*r,,) : qf)^, (k : r,2).

(g^*r,n, g^,r, ' ,) : \Fr-zr,(g^*r,n, gro+t,r) : pn-2n, .

From this and (38-39), we obtain that the corresponding Mallat's decomposition algorithm is
as follows:

d,9'*) : \/rDq*'pty)_, (k:1,2).

cT : t/z\cff+ra.-,,

where cT : UQ),p*,,(t)),, d*,,,1 : U|),vir;,11t11, and en, 0*) ur"given bv (1) and (1s).
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