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ABSTRACT 

 
SAEED, NOORA, MOHSIN, Masters: June : [2018:], Applied Statistics 

Title: Weibull distribution based on education partly interval censored data 

Supervisor of Project: Dr. Faiz Ahmed Elfaki. 

 

 

The work in this project is concerned with the applying of techniques for the assessment 

of survival analysis in data that include censored observations. Survival analysis has a lot 

of achievement in the medical, engineering, economic, education and other fields and it 

also known as failure time analysis. Partly Interval Censoring (PIC) is one of the techniques 

of the censoring that used in the survival analysis and it can help to treat many types of 

data especially the incomplete data. One of the most commonly lifetime distribution used 

in the reliability applications is Weibull distribution. In this project we use Weibull model 

based on modified education partly interval censored data as well as medical data and 

simulation data. Based on the medical data, we found that our model is comparable with 

Turnbull method. From the education data and simulation study for this particular case, we 

can conclude that our proposed distribution describes well the nature of the model as 

compared to the Turnbull method in terms of the value of scale and shape parameter 

estimates. Plots of survival distribution function against failure time are used to examine 

the predicted survival patterns for the two types of failures. 
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CHAPTER 1 

 INTRODUCTION 

 

CHAPTER OVERVIEW 

In this chapter we introduce, the survival analysis, censored data and Weibull 

distribution model. The chapter also, present the background of the research, the problem 

statement, the objective and the scope of the research. 

 

1.1 INTRODUCTION  

1.1.1 SURVIVAL ANALYSIS 

The analysis of data in various applications is quite important as it can discover 

many useful information, options and conclusion in decision making. Statistical method is 

one way that is widely used by researchers as it is provides much kind of methods in dealing 

with data. One of that methods used in the data analysis is the survival analysis method.  

 

Survival analysis or failure time analysis in the lifetime it described as one of the 

most significant advancements method of mathematical statistics in the last quarter of the 

20th century (Sam and Krongs, 2008). In fact, Singh and Totawattage (2013) mention that 

it’s a major focus of statistics because it is involved with death and failures of components. 

Kleinbaum and Klein, (2005) described the survival analysis as the procedures of analysis 

data in statistic and the outcome is time until an event occurs.  
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There are many applications in survival analysis for examples in; medical, 

engineering, education, economic and other areas. Mostly the survival analysis method is 

has been widely used in the engineering applications as well as in the biomedical 

application. As mentioned by Xian Liu (2012), one of the examples of engineering 

application that deals with the survival analysis method is in the life of testing the durability 

of a mechanical or an electrical component. The scientist applies this technique to track the 

products and material’s life span for predicting the product reliability. The probability of 

the patients / participant will survive this the main estimate of the duration or computing a 

survival function in survival analysis. 

  

The duration of certain life for humans this are interested by demographers and 

social scientists. As an example, marriage and, in particular, the marriages formed during 

the year 1980 in a particular country. Lawless, (2003) described that the duration would be 

lifetime of a marriage; a marriage may end due to annulment, divorce, or death. Other 

example from education scope, as mentioned by Eagle and Barnes (2014) used survival 

analysis approach for measuring time until an event occurs and account for teacher’s 

attrition. 

 

Yin et al., (2012) described the variable that measures the time from a starting time 

to a particular endpoint of interest is the survival time. There are some participants in any 

study who may incomplete a survival time due to censoring and some time we do not know 

exactly their survival time. In the following section will be introduce the censored data. 
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1.1.2 CENSORED DATA 

Censored data is one of the important factors in survival analysis. Also, censored 

data is a key issue for the analysis of survival data and is the reasons why survival analysis 

is a special topic within statistics. The presence of censored data make the survival analyses 

difference with other statistical analysis (Thamrin, 2013). The reasons for censoring is due 

to; a participants does not experience the event before the study ends; a participant is lost 

to follow-up during the study period and; might withdraw from the study because of death 

or some other reasons. Right, left, and interval censoring, this are the main three types of 

censoring data. 

 

If the study ends before the event has occurred when a subject leaves the study 

before an event occurs in this situation we described the right censored (Kleinbaum and 

Klein, 2005). In this right censoring, the data that is known is in minimum value. This right 

censoring is a common type that many researchers used in their study. Left censoring will 

happened when the subject is already failed before the study. The data that is known from 

this study is maximum value only. However, the use of left censored data is rarely used 

compared to the use of right censored. Moreover, when the survival time of a subject is 

occur with interval for example [a,b] then this type we called interval censoring. When 

censored consist interval censored and exact data then we have Partly Interval Censored 

(PIC) (Kim, 2003). 

 

In this study, Weibull distribution model will be used based on partly interval 

censoring data. In next section will be introduce the Weibull distribution model. 
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1.1.3 WEIBULL DISTRIBUTION MODEL 

In lifetime data one of the most useful distributions for analyzing & modelling is 

the Weibull distribution in various fields such as; the medical, biological, engineering and 

other fields. It was applicable to various failure situations and was proposed by Weibull 

(1939). Lee and Wang, (2003) proposed that Weibull distribution it used in many mortality 

of the human disease studies and reliability studies. It is described by two parameters that 

is; shape parameter that is determine the distribution curve and the other parameter 

determine the scaling. 

 

 Rinne, (2008) described that the data used by Weibull distribution have been 

modelled that originate from such different areas such as the biological, environmental, 

health, physical and social sciences. 

 

Lee and Wang (2003) proposed that the probability density function of the two 

Weibull distribution parameters as;  

𝑓(𝑡; 𝛼, 𝛽) = {
𝛽

𝛼
(
𝑡

𝛼
)
𝛽−1

𝑒−(
𝑡
𝛼
)
𝛽

, 𝑖𝑓 𝑡 ≥ 0

0, 𝑖𝑓 𝑡 < 0.                           (1.1)

 

where β and α are represented the shape and scale parameters respectively. For which 

both parameters are positive. 

The cumulative Weibull distribution function is give as; 

𝐹(𝑡; 𝛼, 𝛽) = {1 − 𝑒−(
𝑡
𝛼
)
𝛽

, 𝑖𝑓 𝑡 ≥ 0
0, 𝑖𝑓 𝑡 < 0.                                     (1.2)
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In the next chapters, we will derive the model under survivorship and the estimation 

of the curve of the survival probability function will be calculated by using censoring data 

based on Weibull distribution model. 

 

1.2 BACKGROUND 

In this study, the general aim is to apply the survival analysis concept in the 

prediction of the survival of students in schools from one grade to another during an 

educational stage in a specific school year. The high survival rate in school indicates a high 

retention level and a low dropout rate. As mention (UIC ,2009), the survival rate in the last 

grade of an educational level is a matter of interest for observation. For example, the rate 

of survival in the last grade of primary education, which is the main objective of Education 

for All (EFA) and the Millennium Development Goals (MDGs), is of interest to monitor 

and follow the primary education program. The calculation of this indicator is based on 

student flow rates whereas the reliability of the retention rate to the last grade in an 

educational stage depends on the constancy of the enrollment data and grade repeat from 

their comprehensiveness over time and grades. This indicator is predicted by using Cohort 

analysis models based on a number of assumptions. For example; the survival of flow rates 

is constant throughout the study life of the cohort.  

 

The data set which will be used in this study refers to students in a specific school 

year who are in Grade 7 and follow up each student until the graduate from Grade 12. The 

sample of students there are in Grade 7 for 2010-2011 school year and follow up each 

student until graduate Grade 12 at the end of 2015-2016 school year. In this study we will 
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estimate the curve of the survival probability function based on Weibull distribution via 

partly interval censoring data.  

 

1.3 PROBLEM STATEMENT 

Several researchers used PIC data via Weibull distribution. For instance, Alharpy 

and Ibrahim (2013) used parametric Weibull distribution for score test and likelihood ratio 

test. Similarly, Elfaki et al. (2012) used Cox model with Weibull distribution and applied 

it to AIDS studies. Seguro and Lambert (2000) used Weibull distribution to estimate the 

parameters by three methods that is; the graphical method, maximum likelihood method, 

and the modified maximum likelihood method and applied it to wind speed study. 

 

However, there are few studies that focus on the partly interval censored data and 

even fewer applied it to education related applications. This includes Singer and Willett 

(1993) who study duration and the timing of events based on discrete time survival 

analysis. Moreover, Plank et. al., (2008) estimated the duration of student surviving in high 

school.  

 

In this research we will tackle partly interval censored data for survival analysis 

and apply a model that is significantly applicable to be used in education data. 

Consequently, the Weibull distribution model based on simple imputation techniques will 

be used to simplify the procedure. 
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1.4 OBJECTIVE 

This study aims to predict of survival ability of students in schools for education 

partly interval censored based on Weibull model with different imputation techniques. 

However, the parameters in the model will be estimated using MLE method. Therefore, 

the main objectives of this study are: 

• To use the Weibull model that is suitable for education (PIC) data based on simple 

imputation techniques. 

• To compare the performance of our Weibull model with Turnbull model.  

• To use secondary medical data, real education data and simulation data. 

 

 1.5 SCOPE OF THE RESEARCH 

The research study is limited to use education partly interval censored data based 

on the Weibull model to predict of the survival-ability of students in Qatar school. This 

model is described in chapter III and the MLE will be used to estimate the parameters in 

the model. Simple imputation techniques will also be used to modify the real data set into 

PIC data. 

 

The literature review of the survival analysis, partly interval censoring and Weibull 

distribution model are presented in chapter 2. The Weibull distribution model based on 

survival analysis and derivation of maximum likelihood estimator for parameters will be 

described in chapter 3. In chapter3 also, the likelihood ratio test will be presented. At the 

end of chapter III, the real education data set and the process to be treat as survival time 
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data will be described. In addition, the simple imputation techniques that used to modify 

the education data to be right, interval and PIC.  

 

Weibull model that is suitable for our modified data sets based on simple imputation 

methods will be presented in Chapter IV. At the end of this chapter, an illustrate based on 

our model secondary medical data, real data set and simulated data will be given. Finally, 

chapter V summarizes the conclusions arrived in previous chapters and present some 

suggestions for future research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

CHAPTER OVERVIEW 

In this chapter, we will review some existing related literature for survival analysis 

which have been applied in various areas such as medicine, engineering and education. 

Then we will focus on one type of censoring data that used in this project that is partly 

interval censoring. Finally, some existing related literature for Weibull distribution model 

will be provided. 

 

2.1 SURVIVAL ANALYSIS 

Many researchers have applied survival analysis in their research area such as; 

medical and engineering application and other fields. Sam and Krongs, (2008) described 

that the survival analysis is one of the most significant advancements of mathematical 

statistics in the lifetime. There have been only a few research in survival analysis that 

applied it in the education application. However, in this research we will present some 

related literature for general survival analysis by considering different situations. 

 

  Giolo (2004) presented the nonparametric method for estimation of the survival 

function using interval censored data. Giolo used the Turnbull's algorithm to obtain the 

estimation survival functions and implemented the procedure by the software R. It has been 

observed that the analysis based on this type of censored data and then applying this method 

to standard time to event data can lead to worthless inferences. Therefore, Giolo advises 
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that the analysts to be more careful when using the latest methods for analysing interval 

censored data.  

 

Singh and Totawattage (2013) discussed the applications of survival analysis via 

interval failure time data. Five different techniques were used based on parametric and non-

parametric methods. The techniques which were used in this study were Kaplan-Meier 

estimator, Turnbull method, Logspline of the survival curve, Weibull model and piecewise 

exponential model to estimate the parameters of survival function. They used different data 

sets, which were AIDS, Hemophilia, and Breast Cancer to illustrate the methods in their 

study. From this data, they showed that the parametric method can be more satisfying in 

the performance particularly when the log-normal family or Weibull is chosen to estimate 

the parametric because it provides a wide range of distributive forms. So, they suggest 

using a piecewise constant hazard model to allow additional flexible modelling with weak 

parametric assumptions.  

 

From the scope of education application, Singer and Willett (1993) studied duration 

and the timing of events based on discrete-time survival analysis. Moreover, they have 

observed that the discrete-time survival analysis provides an easily applicable framework 

for analysing a type of event occurrence data which is frequently collected in educational 

research. The interpretation of the parameters of the discrete-time hazard model that can 

easily be fitted based on analysis of the standard logistic regression. In addition, the 

discrete-time approach facilitates examination the hazard function shape which is in 

contrast to Cox regression model, where the shape of the hazard function is ignored in 



  
   

11 
 

support of estimating only the shift parameters associated with covariates under the 

assumption of proportionality. 

 

Plank et al. (2008) provides the surviving of student in high school. Their study 

objective was explore to combined of Career & Technical Education (CTE) and core 

academic courses that influence the likelihood of leaving school. In their study, they used 

the hazard model for dropout of youths by one of the most common methods in estimation, 

which is Cox Regression model. It has been observed that the hazard model indicate that 

to significant curvilinear association between the CTE to academic course that taking ratio 

and the risk of reducing out for youths who were aged 14 and younger when they entered 

the ninth grade.  

 

Similarly, Eagle and Barnes (2014) used survival analysis for measuring time to 

event data and account for participant attrition by Cox regression proportional hazards 

model and accelerated failure time (AFT) model. They demonstrated that the duration data 

collected from intelligent tutors are applicable for survival analysis and useful when a study 

experiences participant attrition. 

 

Weybright et al. (2017) identified the risk of dropping out of secondary school for 

male and female teenagers based on survival analysis approach. Based on secondary 

longitudinal data, they examine the influence of substance and leisure experience 

predictors while controlling for demographic. They used Kaplan-Meier (KM) with SAS 

PROC LIFETEST to estimate the survival and hazard functions. Also, they used SAS 
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PROC PHREG to estimate the parameters of Cox Regression model with discrete time 

survival analysis based on demographic, substance use, and leisure experience variables to 

predict dropout.  

 

While the reviewed studies have similarity with our research project in the sense 

that they are also focused on survival analysis. However, they are different from this 

research in many ways. For example, they are different based on the type of censoring data 

and methods used. In this research we will focus on Weibull model based on partly interval 

censored. 

 

2.2 PARTLY INTERVAL CENSORING 

There are several researchers that used partly interval censored in their studies. In 

addition, partly interval censoring data appear a lot in practice and in follow-up studies. 

Kim (2003) investigated the partly interval censored data using the MLE for the Cox 

model. In their study they used two methods to estimate the variance–covariance matrix of 

the MLE of the regression parameter that generalized missing information principle and 

generalized profile information procedure. The simulation studies indicate that both 

methods work well in terms of variance for samples of moderate size and the bias. In 

addition, the researcher illustrated this method using an application to diabetes data in 

Denmark. Zhao et al. (2008) studied the partly interval censored failure data using 

generalized log-rank test as that discussed by Peto and Peto (1972). They evaluated the 

method using a set of real data from a diabetes study and simulation studies.  

 



  
   

13 
 

Guure et al. (2012) used partly interval censored data based on Weibull distribution 

model with several estimations of parameter methods which were MLE, Least Square (LS) 

estimators of one variable on other variable to determine the survival estimator among 

these methods for estimating the parameters and to show that the bias the estimators’ of 

the parameters are to the true values. Their used MSE bias to compared their mentioned 

methods Bias based on simulation study. They observed that the MLE was better for 

estimating the scale parameter. On the other hand, the least square for first variable was 

more reliable for estimating the shape parameter with relatively small samples, but with 

larger samples the least square on other variable was the preferred method. 

 

Elfaki et al. (2012) examined the parametric proportional hazard Weibull model 

based on Expectation Maximization (EM) algorithm for PIC data of the application for an 

AIDS study. In their research also, partly interval censored will be mainly used in order to 

estimate the survivability of failure rate. They investigated the treated of HIV/AIDS of 

hemophiliacs in two hospitals in Sudan. In their study they showed that there are no 

differences between the two treatment in the real data set. But they are strongly support the 

generalized missing information principle in a parametric context in simulation studies and 

suggested to use the generalized profile information for non-identically distributed 

samples. 

 

Moreover, Alharpy and Ibrahim (2013) used parametric Weibull distribution for 

two testing that Likelihood Ratio Test (LRT) and Score Test (ST) based on PIC data. They 

observed that the LRT is better than score test to test the parametric for partly interval 
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censored under Weibull distribution. 

 

In another study, Elfaki et al. (2013) proposed the semiparametric Cox’s 

proportional hazards regression for PIC a competing risks model based on EM algorithm 

to estimate the parameters. They used two competing risks models that is the Censoring 

Complete (CC) model and a Weighting Technique (WT) model. They investigated the 

possible association among the treatment and the anti D in Rhesus time to study the effect 

of covariates on the development of complications which have been applied to a set of time 

data arising from anti D in Rhesus D negative pregnant women in Sudan. The study 

conclude that the covariates do not have a significant difference due to the negative group 

had a significantly higher risk of the onset of anti D rhesus after infection. 

 

Yousif et al. (2016) also presented the Cox Model to estimate the regression 

coefficients for partly interval-censored data using Bayesian method. They were simulated 

the data to verify the model which was developed and which worked well as well as 

because easy to implement. From simulation data they showed that the developed model 

performs well and is demonstrated that it is applicable. 

   

Zyoud et al. (2016) studied the partly interval-censored data using nonparametric 

analysis based imputation methods to estimate the survival function. The simple imputation 

includes right-point, left-point and mid-point imputation. On the other hand, the probability 

based imputation methods that includes mean imputation, median imputation, conditional 

mode, multiple imputation and random imputation. They implemented their proposal for 
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estimating the survival function using R software. They observed that the random, mean 

and median imputations are better compared with other imputation techniques. 

 

Wu et al. (2017) proposed the semiparametric sieve MLE method to analyse partly 

interval censored data using Cox Regression. In their study, they considered the non-

mixture Cox Regression cure rate model and adopt the semiparametric spline-based sieve 

maximum likelihood approach to analyse such data. Also they are illustrated the methods 

using modern empirical process theory for both the parametric and the nonparametric parts 

of the sieve estimator. Then, they observed that the sieve estimator was consistent. They 

simulated the data to show the performance for the proposed method and they observed 

that the proposed sieve MLE is satisfactory. Following that, they have applied the proposed 

method on spontaneous abortion studies and have applied it successfully. 

 

As can see in this chapter, even though many studies have used distribution method 

based the partly interval censored data. This is because this method is flexible when being 

used to estimate the parameter. The purpose of our study is to apply the Weibull model that 

is suitable for education PIC data. Also, to investigate the performance of Weibull model 

and to ascertain its effectiveness by using suitable methods.  

 

2.3 WEIBULL DISTRIBUTION MODEL 

There are many researchers who used the Weibull distribution method in survival 

and human disease mortality, among other; Murthy, Xie, and Jiang (2004) they promoted 

the usefulness of this distribution by modelling data sets from various disciplines.  
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Harter and Moore (1965) presented Weibull and Gamma distribution to estimate 

the parameters using the complete and censored data by maximum likelihood estimates 

(MLEs). They used numeric examples to estimate the parameters from the first failure 

times simulation. They show that the MLE have shown good results in cases when the 

estimation is non-regular. 

 

Cohen (1965) used MLE to estimate the two parameters of Weibull distribution for 

complete, singly censored and progressively (multiple) censored data. In addition, he 

computed the asymptotic variance-covariance matrices for each of these sample. 

 

Moreover, Seguro and Lambert (2000) used MLE, the proposed modified MLE 

method and graphical method to estimated the parameters in Weibull distribution and 

applied it to wind speed study. They have demonstrated that the MLE is the more 

appropriate computer based method and recommended method for prediction of the 

parameters of the Weibull distribution for wind energy analysis. 

 

Odell et al. (1992) presented accelerated failure time regression model based on 

Weibull distribution to find the parameters for interval censored data by two methods 

maximum likelihood estimates (MLEs) and midpoint estimator (MDE). They have 

observed that the maximum likelihood estimates better than midpoint estimator for 

decreasing hazards. While midpoint estimator can be used in others situations if the study 

is based on the covariate factor. Thus, the percentage of missing data, the size of the sample, 

and the width of the intervals should be considered. 
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Farnum and Booth (1997) also used Weibull distribution to estimate the two 

parameters for complete failure data and right censored data by maximum likelihood 

estimates (MLEs). They have observed that the maximum likelihood estimates have simple 

lower bounds on the parameter, quick approximation for parameter estimates and they can 

be used to show that the MLE for the parameters are unique. 

 

Balakrishnan and Kateri (2008) proposed alternative approach for Weibull 

distribution to estimate the parameters using graphical method to determinate the MLE of 

the shape parameter. They have taken samples from simple censored and progressive 

censored data (Type I & II). They showed that the MLE have existence and uniqueness. 

 

As can be shown in foregoing to discussion the nature of the review of material are 

many of the reviewed materials have used the syntax method to demonstrate how important 

to employ PIC data in application by using the Weibull distribution model. Accordingly, 

this is the reason why in our present research we trying to adopt this approach by using a 

data from education. The following chapter will provide a methodology for this study. 
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CHAPTER 3 

 METHODOLOGY 

 

CHAPTER OVERVIEW 

This chapter presents the estimation of the parameters of Weibull distribution using 

maximum likelihood estimator in general and under censored data. The chapter also, 

present the likelihood ratio test and describes the real data set that is used in this study and 

the process to treat the data to survival time data. At the end of the chapter, the simple 

imputation technique will be presented. 

 

3.1 WEIBULL MODEL 

The Weibull distribution model is one of the continuous probability distributions 

and failure time model. In the past few decades Weibull distribution has had importance in 

survival analysis and reliability application. After the evolution of scientific research, 

Weibull distribution has become an accompaniment to these developments in the lifetime 

analysis. Many researchers have contributed to studying the characteristics of this 

distribution and its application in various areas such as the analysis of wind speed, rainfall 

and flood data, and other analysis in health sciences. However, the most extensive use of 

this distribution remains in reliability and survival analysis.  

 

As mentioned early the Weibull distribution is commonly used in analysis of 

lifetime data. Moreover, it can be used as the underlying survival process and the process 

that leads to censored observation as well. Now, let T be a random variable that follows the 
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probability density function of the two parameters in Weibull distribution presented in 

early Chapter. Lee and Wang (2003) give the survivorship function as; 

𝑆(𝑡) = P{𝑇 > 𝑡} 

𝑆(𝑡) = 1 −  P{𝑇 ≤ 𝑡} 

𝑆(𝑡) = 1 −  F(t) 

𝑆(𝑡) = 1 − ∫ 𝑓(𝑡) = 1 − ∫
𝛽

𝛼
(
𝑡

𝛼
)
𝛽−1

𝑒−(
𝑡
𝛼
)
𝛽𝑡

0

𝑡

0

𝑑𝑡 

Let u= − (
𝑡

𝛼
)
𝛽

 then du= −
𝛽

𝛼
(

𝑡

𝛼
)
𝛽−1

𝑑𝑡. Hence, 

𝑆(𝑡) = 1 − ∫ 𝑒𝑢𝑑𝑢
𝑡

0

= 1 − (1 − 𝑒−(
𝑡
𝛼
)
𝛽

) =  𝑒−(
𝑡
𝛼
)
𝛽

  

                  𝑆(𝑡) = 𝑒−(
𝑡

𝛼
)
𝛽

                      (3.1) 

And the hazard function as 

                      ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
=

𝛽

𝛼
(

𝑡

𝛼
)
𝛽−1

                                        (3.2) 

 

In the next section, the two parameters of Weibull distribution will be estimated 

by using one of the most common method in estimation, that is a maximum likelihood 

estimator.  

 

3.2 MAXIMUM LIKELIHOOD ESTIMATORS 

The method of maximum likelihood is the most popular technique for deriving 

estimators and has a very wide application. Maximum likelihood estimation (MLE) is the 

parameter value for which the observed sample is most likely similar. There are several 
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advantages when this method is used. One advantage of using it is presents a consistent 

approach to parameter estimation problems. This means that maximum likelihood 

estimates can be developed for a large variety of estimation situations. Another advantage 

of the maximum likelihood estimators is having desirable mathematical and optimality 

properties, especially when the sample size increased the minimum variance will be 

unbiased estimators.  

 

The likelihood function for Weibull distribution is given as (Lee and Wang, 2003): 

𝐿(𝛼, 𝛽) = ∏𝑓(𝑡𝑖; 𝛼, 𝛽)

𝑛

𝑖=1

 

= ∏
𝛽

𝛼
(
𝑡𝑖
𝛼
)

𝛽−1

𝑒−(
𝑡𝑖
𝛼

)
𝛽𝑛

𝑖=1

 

= (
𝛽

𝛼
)
𝑛

∏(
𝑡𝑖
𝛼
)
𝛽−1

𝑒−(
𝑡𝑖
𝛼

)
𝛽𝑛

𝑖=1

 

                                          = (
𝛽

𝛼
)
𝑛

[(
1

𝛼
)

𝛽−1

]
𝑛

∑ 𝑡𝑖
𝛽−1𝑛

𝑖=1 𝑒−∑ (
𝑡𝑖
𝛼
)
𝛽

𝑛
𝑖=1                       (3.3) 

 

Then take the log-likelihood function, we can have; 

𝑙(𝛼, 𝛽) = ln𝐿(𝛼, 𝛽) 

= 𝑛lnβ − 𝑛ln𝛼 − 𝑛(𝛽 − 1)ln𝛼 + ∑(𝛽 − 1)ln𝑡𝑖

𝑛

𝑖=1

− ∑(
𝑡𝑖
𝛼
)

𝛽
𝑛

𝑖=1

 

= 𝑛lnβ − 𝑛ln𝛼 − 𝑛𝛽ln𝛼 + 𝑛ln𝛼 + ∑(𝛽 − 1)ln𝑡𝑖

𝑛

𝑖=1

− ∑(
𝑡𝑖
𝛼
)

𝛽
𝑛

𝑖=1
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=  𝑛lnβ − 𝑛𝛽ln𝛼 + ∑(𝛽 − 1)ln𝑡𝑖

𝑛

𝑖=1

− ∑(
𝑡𝑖
𝛼
)
𝛽

𝑛

𝑖=1

 

 

Differentiating the above log-likelihood with respect to α and β, we have 

𝜕𝑙

𝜕𝛼
= 0 −

𝑛𝛽

𝛼
+ 0 + 𝛽 ∑(𝑡𝑖

𝛽𝛼−𝛽−1)

𝑛

𝑖=1

 

𝜕𝑙

𝜕𝛽
=

𝑛

𝛽
− 𝑛ln𝛼 + ∑ln𝑡𝑖

𝑛

𝑖=1

− 
∑ [𝑡𝑖

𝛽ln (𝑡𝑖)]
𝑛
𝑖=1 − ln (𝛼)∑ 𝑡𝑖

𝛽𝑛
𝑖=1

𝛼𝛽
 

Setting the above equations equal to zero to maximize the function, α and β can be 

obtained as follows: 

         𝛼 =
(∑ 𝑡𝑖

𝛽𝑛
𝑖=1 )

1
𝛽

𝑛
1
𝛽

                                                  (3.4) 

and 

0 =
𝑛

𝛽
− 𝑛ln𝛼 + ∑ ln𝑡𝑖

𝑛
𝑖=1 − 

∑ [𝑡𝑖
𝛽 ln(𝑡𝑖)]

𝑛
𝑖=1 −ln(𝛼) ∑ 𝑡𝑖

𝛽𝑛
𝑖=1

𝛼𝛽                      (3.5) 

Substituting (3.4) into (3.5) and solving for β, we obtain ̂ , which is the MLE. Then we 

can derive α easily. 

 

The maximum likelihood estimates can be used to estimate the Weibull distribution 

with censored case. In this case let 𝑡1, 𝑡2, … , 𝑡𝑟 , 𝑡1
+, 𝑡2

+, … , 𝑡𝑛
+ be the survival times observed 

from the n individuals, with r is an exact times and (n-r) is censored times.  
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The likelihood function for Weibull distribution with data involve failure, right 

censored and interval-censored is given as (Guure et al. 2012): 

𝐿(𝑡𝑖, 𝑢𝑗 , 𝑣𝑗 , 𝛼, 𝛽) = ∏𝑓(𝑡𝑖)

𝑘

𝑖=1

∏ (1 − 𝐹(𝑡𝑖))

𝑟

𝑗=𝑘+1

∏ (𝐹(𝑣𝑖 , 𝛼, 𝛽) − 𝐹(𝑢𝑖 , 𝛼, 𝛽)

𝑛

𝑗=𝑟+1

) 

This implies that, 

𝐿(𝑡𝑖 , 𝑢𝑗 , 𝑣𝑗 , 𝛼, 𝛽) = ∏
𝛽

𝛼
(
𝑡𝑖
𝛼
)
𝛽−1

𝑒−(
𝑡𝑖
𝛼

)
𝛽𝑘

𝑖=1

× ∏ 𝑒−(
𝑡𝑖
𝛼

)
𝛽𝑟

𝑗=𝑘+1

× ∏ (𝑒−(
𝑢𝑗

𝛼
)
𝛽

− 𝑒−(
𝑣𝑗

𝛼
)
𝛽𝑛

𝑗=𝑟+1

) 

Let 𝐿(𝑡𝑖 , 𝑢𝑗 , 𝑣𝑗 , 𝛼, 𝛽) = 𝑙 

Then 

𝑙 = (
𝛽

𝛼
)
𝑘

∏(
𝑡𝑘
𝛼

)
𝛽−1

𝑒−(
𝑡𝑖
𝛼

)
𝛽𝑘

𝑖=1

× ∏ 𝑒−(
𝑡𝑘
𝛼

)
𝛽𝑟

𝑗=𝑘+1

× ∏ (𝑒−(
𝑢𝑗

𝛼
)
𝛽

− 𝑒−(
𝑣𝑗

𝛼
)
𝛽𝑛

𝑗=𝑟+1

) 

Implying 

𝑙 = (
𝛽

𝛼
)
𝑘

∏[(
𝑡𝑘
𝛼

)
𝛽−1

]

𝑘

𝑖=1

𝑒𝑥𝑝 { ∏ {−(
𝑡𝑖
𝛼
)
𝛽

}

𝑟

𝑗=𝑘+1

∏ [−(
𝑡𝑘
𝛼

)
𝛽

]

𝑟−𝑘𝑟

𝑗=𝑘+1

}

× ∏ (𝑒
−(

𝑢𝑗

𝛼
)
𝛽

− 𝑒
−(

𝑣𝑗

𝛼
)
𝛽𝑛

𝑗=𝑟+1

) 

Then the log-likelihood will be 

ln(𝑙) = 𝑘[𝑙𝑛𝛽 − 𝛽𝑙𝑛𝛼] + (𝛽 − 1)∑ln(𝑡𝑖)

𝑘

𝑖=1

−
1

𝛼𝛽
[∑(𝑡𝑖)

𝛽 + (𝑟 − 𝑘)

𝑘

𝑖=1

(𝑡𝑘)
𝛽]

+ ∑ ln(𝑒−(
𝑢𝑗

𝛼
)
𝛽

− 𝑒−(
𝑣𝑗

𝛼
)
𝛽

)                                          (3.6)

𝑛

𝑗=𝑟+1
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Then differentiating with respect to α and β give the following: 

𝜕𝑙𝑛 (𝑙)

𝜕𝛼
= (−

𝑘𝛽

𝛼
+

𝛽

𝛼
[∑(

𝑡𝑖
𝛼
)

𝛽

+ (𝑟 − 𝑘)

𝑘

𝑖=1

(
𝑡𝑘
𝛼

)
𝛽

]

+ ∑

[
 
 
 (

𝑢𝑗

𝛼)
𝛽

(
𝑢𝑗

𝛼) 𝑒𝑥𝑝 {−(
𝑢𝑗

𝛼)
𝛽

} − (
𝑣𝑗

𝛼)
𝛽

(
𝑣𝑗

𝛼) 𝑒𝑥𝑝 {− (
𝑣𝑗

𝛼)
𝛽

}

𝑒𝑥𝑝 {−(
𝑢𝑗

𝛼)
𝛽

} − 𝑒𝑥𝑝 {−(
𝑣𝑗

𝛼)
𝛽

} ]
 
 
 𝑛

𝑖=𝑟+1

) 

 (3.7) 

and 

𝜕𝑙𝑛 (𝑙)

𝜕𝛽
= (

𝑘

𝛽
− 𝑘𝑙𝑛𝛼 + ∑ln(𝑡𝑖) −

1

𝛼𝛽
[∑(𝑡𝑖)

𝛽𝑙𝑛 (
𝑡𝑖
𝛼
) + (𝑟 − 𝑘)(𝑡𝑘)

𝛽𝑙𝑛 (
𝑡𝑘
𝛼

)

𝑘

𝑖=1

]

𝑘

𝑖=1

+ ∑

[
 
 
 (

𝑢𝑗

𝛼)
𝛽

(
𝑢𝑗

𝛼) 𝑒𝑥𝑝 {−(
𝑢𝑗

𝛼)
𝛽

} − (
𝑣𝑗

𝛼)
𝛽

(
𝑣𝑗

𝛼) 𝑒𝑥𝑝 {− (
𝑣𝑗

𝛼)
𝛽

}

𝑒𝑥𝑝 {−(
𝑢𝑗

𝛼)
𝛽

} − 𝑒𝑥𝑝 {−(
𝑣𝑗

𝛼)
𝛽

} ]
 
 
 𝑛

𝑖=𝑟+1

) 

            (3.8) 

Setting (3.7) and (3.8) equal to zero and use the numerical method, such as Newton Rapson 

method we can obtained β and α. 

 

The Likelihood Ratio Test (LRT) will be present in the following section. 
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3.3 LIKELIHOOD RATIO TEST 

Likelihood Ratio Test (LRT) is a hypothesis test that help to choose the best model 

from two nested models. In this research project, the likelihood ratio test will be used to 

perform tests of hypotheses about parameters that have been estimated by MLE in two 

situations. One of the test statistics is for testing weather all parameters in the distribution 

are equal to certain values and the other test statistics is for testing whether some of the 

parameters in the distribution are equal to certain values. To test a subset of parameter in a 

distribution, let 𝛽 = (𝛽1, 𝛽2) denote all the parameters in a parametric distribution, where 

𝛽1 and 𝛽2 are subsets of parameters. Then the hypothesis will be  

𝐻0: 𝛽2 = 𝛽0                           (3.9) 

where 𝛽0 is a vector of specific numbers. Let �̂� be MLE of 𝑏 , �̂�1(𝛽0) the MLE of 𝛽1 given 

𝛽2 = 𝛽0, and 𝑉2̂(𝛽) the submatrix of the covariance matrix. Under 𝐻0 the statistic test has 

chi-square distribution with degrees of freedom equal to the dimension of  𝛽2 or the number 

of parameters in 𝛽2. Then the likelihood ratio test statistic is given as; 

𝑋𝐿 = 2[𝑙(�̂�) − 𝑙(�̂�1(𝛽0), 𝛽0)]                              (3.10) 

If the number of parameters in  𝛽2 is equal to q, for a given significant level α. Then  𝐻0 is 

rejected if 𝑋𝐿 > 𝑋𝑞,𝛼
2 . 

To test whether all of the parameters in β equal a given set of known values 𝛽0, the null 

hypothesis will be  

𝐻0: 𝛽 = 𝛽0              (3.11) 

Then the LRT is given as; 

𝑋𝐿 = 2[𝑙(�̂�) − 𝑙(𝛽0)]                               (3.12) 
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Then 𝐻0 will be rejected if 𝑋𝐿 > 𝑋𝑝,𝛼
2  for a given significant level α (Lee and Wang, 2003). 

 

3.4 DATA SET 

The data set which is used in this study was collected from the Ministry of 

Education and Higher Education in Qatar by following up the students in National Student 

Information System (NSIS) from grade 7 until graduation from grade 12. In this data set, 

the sample of students was followed up from September-2010/June-2011 school academic 

year to September-2015/June -2016. Two schools were chosen randomly, one of the school 

for boys and the other for girls. However, all the students were started from grade 7 and 

were followed up until graduation from grade 12. 

 

As mentioned earlier, the data will be treated as survival time data. In this data, the 

event is graduation and the outcome is time in years until the students graduate. Censoring 

occurs when the information about student graduate do not know exactly. In this case, there 

are two reasons why censoring occurs;  

- A student does not graduate before the study ends  

- A student is lost to follow-up during the study period. 

 

The data set contains five column which are student ID, Gender, Nationality, Year 

(event) and Censored. The sample size in the first group was 390 students for which were 

(208) male among them (135) Qatari and (73) Non-Qatari and they were (182) female 

(among them (105) Qatari, (77) Non-Qatari).  
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3.5 IMPUTATION 

Imputation approaches are sometimes used to transform the problem of analyzing 

data. In this research project, we will modified the data based on imputation technique to 

be as right censored data, interval censored data and partly interval censored (PIC) data. 

The motivation behind that is the imputation process is very simple and there are numerous 

methods to deal with the data. There are two diverse types of imputation; simple imputation 

and multiple Imputation. The simple imputation technique will used in this research. 

 

3.5.1 SIMPLE IMPUTATION 

Simple imputation technique is one of most common used to treat the missing data. 

Because the simple imputation is conjectural and appealing often utilized this technique in 

the simple cases of observations. As mentioned by Zyoud, et al. (2016), the simple 

imputation methods have three main types that is; 

1. The right limit of the interval iR  which represent right point. 

2.The left limit of the interval iL  that represent the left point. 

3. The midpoint of the interval ],[ ii RL
 
as 2/)( ii RL +  for which represent the midpoint. 
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CHAPTER 4 

 RESULTS AND DISCUSSION  

 

CHAPTER OVERVIEW 

We will illustrate the implementation of the methods discussed in the earlier 

chapters using three data sets. The first one is breast cancer data, the second one education 

real data, and the third one is from generated data. All calculations were computed using 

R software. 

 

4.1 BREAST CANCER DATA  

Several researchers used this data in their study such as; Zyoud, et al. (2016) 

modified to partly interval censored and compared with the Turnbull method. They were 

two failure times that is Radiation (R) and Radiation + Chemotherapy (R+C). In the first 

failure time (R) there were 66 patients and they were 68 patients for the second failure time 

(R+C). The breast cancer data are shown in Table 4.1. Our objective is to compare the 

cosmetic effects of the first failure time against the second failure time on women with 

early breast cancer and the event of interest was represent by the time to first occurrence 

of breast retraction. The actual dates will be recorded exactly if available, when the patients 

visits the clinic every 4 to 6 months.  

 

To set up the data as the PIC we follow the same way that used by Alharphy & 

Ibrahim (2013) and Zyoud, et al. (2016). For more details of this data set reader can refer 

to Zyoud, et al. (2016) and Alharphy & Ibrahim (2013). 
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Table 4.1: The breast cancer data for patients with two treatments. 

Radiotherapy Radiotherapy + Chemotherapy 

(0,7]; (0,8]; (0,5]; (4,11]; (5,12]; (5,11]; 

(6,10]; (7,16]; (7,14]; (11,15]; (11,18]; 

15; 17; (17,25]; (17,25]; 18; (19,35]; 

(18,26]; 22; 24; 24; (25,37]; 

(26,40]; (27,34]; 32; 33; 34; 

(36,44]; (36,48]; 36; 36; (37,44]; 

37; 37; 37; 38; 40;  45; 46; 

46; 46;46; 46; 46; 46; 46; 10; 

23; 20; 37; 36; 20; 30; 20; 18; 30; 44; 23; 

29; 15; 20; 22; 15; 45; 41; 38 

(0,22]; (0,5]; (4,9]; (4,8]; (5,8]; (8,12]; 

(8,21]; (10,35]; (10,17]; (11,13]; 11; 

(11,17]; 11; (11,20]; (12,20]; 13; 

(13,39]; 13; 13; (14,17]; (14,19]; 

(15,22]; (16,24]; (16,20]; (16,24]; (16,60]; 

(17,27]; (17,23]; (17,26]; (18,25]; (18,24]; 

(19,32]; 21; (22,32]; 23; (24,31];  

(24,30]; (30,34]; (30,36]; 31; 32; 

(32,40]; 34; 34; 35; (35,39]; (44,48]; 

48; 16; 25; 14; 12; 24; 28; 26; 18; 40; 

13; 21; 17; 27; 21; 22; 27; 9; 20; 40; 14 

 

 

 

Figure 4.1 shows the survival curve for Radiotherapy and Radiation + 

Chemotherapy using Weibull distribution and Turnbull method. It is clear from the figure 

that the estimated survival curves obtained by our Weibull model lies close to the one 

obtained by Turnbull. These results indicated that our model is similar to Turnbull method. 

Parameters estimates (shape and scale) of Weibull distribution and standard errors (se) of 

the two treatments are presented in Table 4.2. Moreover, the likelihood ratio test for this 

model is (12.86, with P-value is almost zero). In next section will be implement our model 

using education data set. 
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Figure 4.1: The survival function obtained by our Weibull model and Turnbull methods 

based on PIC data.  

 

 

Table 4.2: The parameters estimated based on Weibull distribution for breast cancer PIC 

Data. 

 

PICD        *est       L95%          U95%      **se  

All patients 
shape 1.858 1.574 2.193 0.157 

scale 32.402 29.095 36.085 1.780 

Radiotherapy 
shape 1.620 1.240 2.110 0.220 

scale 39.690 32.720 48.160 3.920 

Radio + Chemo 
shape 2.195 1.785 2.699 0.232 

scale 26.786 23.716 30.254 1.664 

*est: estimation **se: standard error  
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4.2 EDUCATION DATA SET 

The education data set will be used to implement the methods in this study that is 

the data set collected from the Ministry of Education and Higher Education in Qatar, reader 

referred to chapter 3 for more detail. In this study, we will compare the duration rate of 

students staying in school for the local and international students and the time represent the 

event of interest. All the students were followed up from grade 7 until graduated in grade 

12 where the graduate year represent the event that recorded as exact value if available. 

We consider one year as interval and the exact value will be given from data set. In this 

situation, we consider the data as PIC data as well as interval data. In the next sections, we 

will discuss the result obtained for right censored and PIC. 

 

Right Censored  

We will implements the method that discussed in chapter 3 using the above 

education data set when the data is right censored. The survival curve of student using 

Weibull distribution show that the local students have slightly longer survival compared 

with international students as presented in Figure 4.2 which indicate that the local students 

have less drop from school than the others.  

 



  
   

31 
 

 
Figure 4.2: Estimated of survival function using Weibull distribution based on Right 

Censored Data 

 

 

Table 4.3 shows the results from R software that present the shape parameter for 

all students is (16.1034) with standard deviation (0.8855). The shape parameter estimate 

for local students and international students is 15.0607 (se=1.1707) and 18.8465 (1.4057) 

respectively. Moreover, the scale parameter of all students, local students and international 

students are almost similar with small standard deviation. 

 

The result shows that the parameters estimate of local students and international 

students are almost similar. Furthermore, the likelihood ratio test for this model is (19.95) 

and zero P-value.  
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Table 4.3: The parameters estimated using Weibull distribution based on Right Censored 

Data 

 

Right Censored        est       L95%          U95%      se  

All Students 
shape 16.1034 14.4582 17.9358 0.8855 

scale 11.8879 11.7915 11.9851 0.0494 

Local Students 
shape 15.0607 12.9324 17.5394 1.1707 

scale 12.1143 11.9642 12.2662 0.0771 

International Students 
shape 18.8465 16.2833 21.8132 1.4057 

scale 11.5563 11.4411 11.6726 0.0591 

 

 

Partly Interval Censored Data 

In this section we will be implemented two scenarios for the PIC data. We have 

50% exact observed and 50 interval observed data in the first scenario where by in the 

second scenario we have 70 exact and 30 interval observed data. In contrast, we estimate 

the survival function for the two failures time that is the local and international students 

based on right point and left point imputations based on PIC data.  

 

Figure 4.3 and Figure 4.4 show similar survival curve for local and international 

students based on 50% exact observed data obtained by right and left point, respectively. 

Furthermore, Figure 4.5 and Figure 4.6 show the survival curve of local and international 

students when observed 70% of exact observed data that obtained also by right and left 

point, respectively. The survival curve on those Figures represent that the local students 

have slightly longer survival compared with international students especially on the right 

point. Which indicate that the international student have more drop from the school than 

the local students. 
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The shape and scale parameter for all students, local students and international 

students look similar that are as shown in Tables 4.4, 4.5, 4.6 and 4.7. The results also show 

that the likelihood ratio test obtained by right point for two scenarios are (27.07) and 

(30.33), respectively. Also, the likelihood ratio test obtained by left point for two scenarios 

is (19.95) in both scenario. Moreover, all likelihood ratio test for this model PIC is small 

P-value which implies significant fit the model. This result indicate that the Weibull model 

is significant enough based on the P-value obtained. 

 

 

 
Figure 4.3: The survival function based on PIC data (50:50) _ Right point imputation. 
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Figure 4.4: The survival function based on PIC data (50:50) _ Left point imputation.  

 

 

 
Figure 4.5: The survival function based on PIC data 70:30 (70% exact)_ Right point 

imputation. 
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Figure 4.6: The survival function based on PIC data 70:30 (70% exact) _ Left point 

imputation.  

 

 

Table 4.4: The parameters estimated based on Weibull distribution from PIC Data (50:50) 

- Right Point 

 

Partly Interval Censored Data (50:50) - 

Right Point 
       est       L95%          U95%      se  

All Students 
shape 23.4833 20.9383 26.3377 1.3744 

scale 12.0687 12.0012 12.1365 0.0345 

Local Students 
shape 26.7436 22.7432 31.4476 2.2109 

scale 12.1752 12.0891 12.2619 0.0441 

International Students 
shape 21.7677 18.5794 25.5030 1.7589 

scale 11.8458 11.7435 11.9489 0.0524 
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Table 4.5: The parameters estimated based on Weibull distribution from PIC Data (50:50) 

- Left Point 

 

Partly Interval Censored Data (50:50) - 

Left Point 
       est       L95%          U95%      se  

All Students 
shape 20.6814 18.8014 22.7494 1.0056 

scale 11.5996 11.5278 11.6719 0.0368 

Local Students 
shape 19.5738 17.1239 22.3742 1.3354 

scale 11.7499 11.6430 11.8577 0.0548 

International Students 
shape 23.4900 20.5950 26.7930 1.5760 

scale 11.3820 11.2910 11.4750 0.0470 

 

 

Table 4.6: The parameters estimated based on Weibull distribution from PIC Data (70:30) 

- Right Point 

 

Partly Interval Censored Data (70:30) - 

Right Point 
       est       L95%          U95%      se  

All Students 
shape 35.6397 31.5554 40.2526 2.2133 

scale 12.0900 12.0449 12.1353 0.0231 

Local Students 
shape 58.1418 48.9106 69.1153 5.1288 

scale 12.1090 12.0680 12.1501 0.0209 

International Students 
shape 26.3643 22.3207 31.1405 2.2396 

scale 11.9379 11.8528 12.0236 0.0436 

 

 

Table 4.7: The parameters estimated based on Weibull distribution from PIC Data (70:30) 

- Left Point 

 

Partly Interval Censored Data (70:30) - 

Left Point 
       est       L95%          U95%      se  

All Students 
shape 23.5433 21.5283 25.7469 1.0748 

scale 11.4866 11.4242 11.5493 0.0319 

Local Students 
shape 23.0743 20.4000 26.0991 1.4502 

scale 11.5874 11.4992 11.6763 0.0452 

International Students 
shape 24.6682 21.6870 28.0592 1.6211 

scale 11.3437 11.2565 11.4315 0.0446 
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4.3 SIMULATION DATA 

Rubinstein, (1981) described the simulation study as a technique that performing 

experiments on a computer that involve certain types of mathematical models for which 

explain the behavior of a certain system. To evaluate and study the behavior of statistical 

procedures in statistic we mostly used the simulation especially for the situation when a 

problem cannot be solved analytically (Elfaki, et al. (2017)).  

 

The technique consists of setting up a large number of samples. The samples are 

then individually reckoned in terms of statistics of interest, and the overall statistics of 

interest is used to study distribution properties. The simulations can also be used to generate 

estimates of the mean, variance, coverage probability of confidence intervals. The 

objective of this simulation study is to compare the survival function for local and 

international students as well as different type for partly interval censored and right 

censored based on Weibull model. 

 

The simulated data were generated based on the education data set with two failure 

times that the local and international students. The Weibull distribution is used to generate 

the data (used because the Weibull was found to be fit the data well based on early results). 

To generate the data we used the mean and standard deviation of the shape and scale 

parameters that were presented in Tables 4.3, 4.4, 4.5, 4.6 and 4.7). The data generated was 

for 500 for local students and international students. In the next section, we will discuss 

the result obtained for right censored and PIC. 
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Right Censored Data 

Figure 4.7 and Table 4.8 showed the estimated survival function and the parameters 

from simulation with right censored. The results show that the survival curves data lies 

very close to Weibull curves.  The local students showed to be have along survival compare 

on to international students which is indicate that the local students more stable. In 

additional that the shape and scale parameters for local and international student are almost 

similar. Moreover, the likelihood ratio test show to be 30.29, with P-value equal zero which 

is indicate that the model was fit well.  

 

 

 
Figure 4.7: The survival function based on Weibull distribution from right censored data. 
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Table 4.8: The parameters estimated based on Weibull distribution from simulation data 

with right censored. 

 

Right Censored        est       L95%          U95%      se  

All Students 
shape 19.5370 17.7535 21.4996 0.9542 

scale 11.9522 11.8836 12.0212 0.0351 

Local Students 
shape 24.4585 21.0071 28.4770 1.8983 

scale 12.0969 12.0103 12.1840 0.0443 

International Students 
shape 17.8576 15.8080 20.1728 1.1107 

scale 11.7570 11.6596 11.8553 0.0499 

 

 

Partly Interval Censored Data 

We following similar situation as in the real data in early section. There are two 

scenarios in for which the first scenario will take 50% exact observed and 50% the observed 

are interval. The second scenario will take the exact observed of 70% and 30% for the 

observed as interval. The result of this partly interval censored shows in Figure 4.8, 4.9, 

4.10 and Figure 4.11. There figures show that the survival curves obtaining by Weibull for 

the local students and international students, respectively. The figures indicate the that the 

result from the simulation study are similar as in the education data set. 

 

Table 4.9 and Table 4.11 show the shape and scale parameter obtained by our model 

and the results look similar for all students, local students and international students that 

obtained by right point in two scenarios. Likewise, the estimated parameters are similar 

that obtained by left point imputation for two scenarios with respect standard error (Tables 

4.10 & 4.12). 
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Moreover, the likelihood ratio test obtained by right point for two scenarios are 

38.11 (0) and 35.6 (0), respectively. Similarity, the likelihood ratio test obtained by left 

point for two scenarios are 38.48 (0.) and 40.38 (0), respectively, which implement the 

significant of the model. 

 

 

 
Figure 4.8: The survival function based on PIC data (50:50) _ Right point imputation. 
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Figure 4.9: The survival function based on PIC (50:50) _ Left point imputation.  

 

 

 
Figure 4.10: The survival function based on PIC data 70:30 (70% exact) _ Right point 

imputation. 
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Figure 4.11: The survival function based on PIC data 70:30 (70% exact) _ Left point 

imputation.  
 

 

Table 4.9: The parameters estimated based on Weibull distribution from simulation with  

PIC Data (50:50) - Right Point 

 

Partly Interval Censored Data (50:50) - 

Right Point 
       est       L95%          U95%      se  

All Students 
shape 32.2031 29.1061 35.6297 1.6614 

scale 12.0375 11.9959 12.0793 0.0213 

Local Students 
shape 66.1562 55.9205 78.2654 5.6736 

scale 12.0753 12.0418 12.1088 0.0171 

International Students 
shape 25.1130 22.1534 28.4679 1.6067 

scale 11.9086 11.8401 11.9775 0.0351 
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Table 4.10:The parameters estimated based on Weibull distribution from simulation with 

PIC Data (50:50) - Left Point 

 

Partly Interval Censored Data (50:50) - 

Left Point 
       est       L95%          U95%      se  

All Students 
shape 19.6628 17.9674 21.5183 0.9046 

scale 11.8267 11.7595 11.8943 0.0344 

Local Students 
shape 20.0321 17.3228 23.1652 1.4852 

scale 12.0285 11.9216 12.1364 0.0548 

International Students 
shape 20.3040 18.1430 22.7220 1.1650 

scale 11.6260 11.5420 11.7110 0.0430 

 

 

Table 4.11:The parameters estimated based on Weibull distribution from simulation with 

PIC Data (70:30) - Right Point 

 

Partly Interval Censored Data 

(70:30) - Right Point 
       est       L95%          U95%      se  

All Students 
shape 51.7831 46.4364 57.7454 2.8793 

scale 12.0663 12.0392 12.0933 0.0138 

Local Students 
shape 387.8800 328.8260 457.5400 32.6870 

scale 12.0180 12.0120 12.0240 0.0030 

International Students 
shape 32.9567 28.7980 37.7159 2.2681 

scale 11.9926 11.9386 12.0469 0.0276 

 

 

Table 4.12:The parameters estimated based on Weibull distribution from using simulation 

with PIC Data (70:30) - Left Point 

 

Partly Interval Censored Data (70:30) - 

Left Point 
       est       L95%          U95%      se  

All Students 
shape 19.7145 18.0668 21.5124 0.8779 

scale 11.7745 11.7091 11.8402 0.0335 

Local Students 
shape 21.6267 18.8002 24.878 1.5454 

scale 11.9787 11.8836 12.0745 0.0487 

International Students 
shape 19.7644 17.7192 22.0458 1.1016 

Scale 11.5507 11.4662 11.6359 0.0433 
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CHAPTER 5 

 CONCLUSION AND SUGGESTION FOR FUTURE RESEARCH 

 

CHAPTER OVERVIEW 

Two sections will be present in this chapter. The conclusion, which summaries the 

result obtained in the previous chapters will be presents in first section. Suggestion for 

future studies presented in second section. 

 

5.1 CONCLUSION 

In this study, we used Weibull model based on simple imputation technique to 

simplify the procedure for partly interval censored data. Weibull distribution model have 

been mostly applied in engineering and medical application. In this research project we 

used it for medical data and education data.  

 

In this research project, the estimated survival function was obtained based on the 

maximum likelihood estimation and comparisons were made with existing one under the 

Turnbull (chapter three). 

 

The first step of this study is to look for secondary data set to conform our model 

well fit to used. Thus, we used the medical data that was modified by Zyoud, et al. (2016) 

to partly interval censored. Based on the result from this data set, we found that our model 

fit well and easy to implement compared with the one obtained by Turnbull method.  
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In the second step, the education data set was used to implement our methods. The 

data was collected from the Ministry of Education and Higher Education in Qatar. The data 

was followed up the students in National Student Information System (NSIS) from grade 

7 until graduation from grade 12 in period from September-2010/June-2011 school 

academic year to September-2015/June -2016. Moreover, the time in years represent the 

event of interest until the students graduate from grade 12. In addition, the interval of one 

year period and the exact value will be given from data set. Then, the data set become 

partly interval censored data as well as interval data. 

 

Overall the result from education data has shown that, from survival curves for the 

two failure time that the local students and the international students. The local students 

showed to have longer survival compare with international students. The scale parameter 

is almost similar for the different type of censored. On the contrary, we note that the 

estimated shapes are slight difference for the different types of censored. The results 

indicate that the local students are more stable in school and they less drop from school 

compare with international. 

 

For the short period of interval data the simple imputation is better to used, because 

it is easy to used and always the result reliable enough. However, education partly interval 

censored data is preferable to used compared with medical data, because in the education 

data can easy control the exact data and interval data but for medical data dealing with 

observation that has a lot of missing observation.  
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The simulation data was used based on the education data. The data generated for 

500 times from international and local students.  We conclude that the simulation results is 

similar to the results obtained from education data for the both scenarios. Moreover, the 

education data is suitable for partly interval censored. 

 

Finally, the result observed that when the observed have more exact in the data the 

model is better fit which is same line with other results obtained some researchers such as 

Kim (2003), Zyoud et al. (2016) and Alharpy and Ibrahim (2013). The simulation study 

strongly supports if the data is partly interval censored then the Weibull model is better 

compared with interval data.  

 

5.2 SUGGESTION FOR FUTURE RESEARCH 

 This study can be extending to look into the properties of more than two parameters 

in the model. Also, can used different sample sizes with more factors in the data such as 

age, gender and others. Moreover, the type of data will be more accurate if the data is 

available from grade 1 to grade 12. 
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APPENDICES  

R CODE FOR OBTAINING THE SURVIVAL CURVES 

  

APPENDIX A: RIGHT CENSORED DATA  

 

require(survival) 

require(MASS) 

require("flexsurv") 

year <- dat$year - 2005 

eve <- year 

cens <- dat$Censored 

ident <- dat$Nationality 

 

for (i in 1:length(ident)){if(ident[i]==2) {ident[i]= 0}} 

data = data.frame(eve, cens, ident) 

dat1 <- data[data$ident==1,]   #Local Students 

dat2 <- data[data$ident==0,]   #International Students 

 

y=Surv(data$eve,data$cens==1) 

kmfit1=survfit(y~1) 

summary(kmfit1) 

 

survdiff(Surv(eve,cens)~ident,data=data) 

x=coxph(y~ident,data=data) 
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summary(x) 

y1=Surv(dat1$eve,dat1$cens==1) 

kmfit2=survfit(y1~1) 

summary(kmfit2) 

 

y2=Surv(dat2$eve,dat2$cens==1) 

kmfit3=survfit(y2~1) 

summary(kmfit3) 

 

plot(kmfit2$time,kmfit2$surv,type="s",main="Right Censored Data",col=1,lty=2, xlab="Time 

(Years)",ylab="S(t)",xlim=range(c(0,12))) 

lines(kmfit3$time,kmfit3$surv,type="s",col=2,lty=2) 

legend(1,0.65,lty=2,col=1,"Local Students", bty="n",cex=0.8) 

legend(1,0.6,lty=2,col=2,"International Students", bty="n",cex=0.8) 

 

#All Students 

est = flexsurvreg(Surv(data$eve,data$cens)~1, dist="weibull") 

est 

 

#Local Student 

est1 = flexsurvreg(Surv(dat1$eve,dat1$cens)~1, dist="weibull") 

est1 

 

#International Student 

est2 = flexsurvreg(Surv(dat2$eve,dat2$cens)~1, dist="weibull") 
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est2 

 

lines(est1 , col=3, lty=1, xlab="Time (Years)",ylab="S(t)") 

lines(est2 , col=4, lty=1, xlab="Time (Years)",ylab="S(t)") 

legend(1,0.55,lty=1,col=3, "Local Students weibull", bty="n",cex=0.8) 

legend(1,0.5,lty=1,col=4, "International Students weibull", bty="n",cex=0.8) 
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APPENDIX B: PARTLY INTERVAL CENSORED DATA 

 

require(survival) 

require("flexsurv") 

 

year <- dat$year - 2005 

eve <- year 

left = double(length(eve)) 

right = double(length(eve)) 

 

for (i in 1:length(eve)){ 

if (i<196) { 

left[i]=(ceiling(eve[i]/2))*2-1 

right[i] =(ceiling(eve[i]/2))*2 

} else { 

left[i] =eve[i] 

right[i] =eve[i] 

}} 

cens <- dat$Censored 

ident <- dat$Nationality 

for (i in 1:length(ident)){if(ident[i]==2) {ident[i]= 0}} 

data = data.frame(left, right, cens, ident)  

eve <- data$right 
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data = data.frame(eve, cens, ident) 

dat1 <- data[data$ident==1,]     #Local Students 

dat2 <- data[data$ident==0,]     #International Students 

 

y=Surv(data$eve,data$cens==1) 

 

kmfit1=survfit(y~1) 

summary(kmfit1) 

survdiff(Surv(eve,cens)~ident,data=data) 

x=coxph(y~ident,data=data) 

summary(x) 

 

y1=Surv(dat1$eve,dat1$cens==1) 

kmfit2=survfit(y1~1) 

summary(kmfit2) 

 

y2=Surv(dat2$eve,dat2$cens==1) 

kmfit3=survfit(y2~1) 

summary(kmfit3) 

 

plot(kmfit2$time,kmfit2$surv,type="s",main="PIC Data(50:50) - Right Point",col=1,lty=2, 

xlab="Time (Years)",ylab="S(t)",xlim=range(c(0,12))) 

lines(kmfit3$time,kmfit3$surv,type="s",col=2,lty=2) 

legend(1,0.65,lty=2,col=1,"Local Students", bty="n",cex=0.8) 

legend(1,0.6,lty=2,col=2,"International Students", bty="n",cex=0.8) 
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#All Students 

est = flexsurvreg(Surv(data$eve,data$cens)~1, dist="weibull") 

est 

 

#Local Student 

est1 = flexsurvreg(Surv(dat1$eve,dat1$cens)~1, dist="weibull") 

est1 

 

#International Student 

est2 = flexsurvreg(Surv(dat2$eve,dat2$cens)~1, dist="weibull") 

est2  

 

lines(est1 , col=3, lty=1, xlab="Time (Years)",ylab="S(t)") 

lines(est2 , col=4, lty=1, xlab="Time (Years)",ylab="S(t)") 

legend(1,0.55,lty=1,col=3, "Local Students weibull", bty="n",cex=0.8) 

legend(1,0.5,lty=1,col=4, "International Students weibull", bty="n",cex=0.8) 

 

 


