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Spray-Dried Alginate Microparticles for Potential Intranasal 

Delivery of Ropinirole Hydrochloride: Development, 

Characterization and Histopathological Evaluation  

 

Abstract 

Ropinirole hydrochloride (RH) is an anti-Parkinson drug with relativity low oral 

bioavailability owing to its extensive hepatic first pass metabolism. Spray-dried 

mucoadhesive alginate microspheres of RH were developed and characterized followed by 

histopathological evaluation using nasal tissue isolated from sheep. Spherical microparticles 

having high product yield (around 70%) were obtained when the inlet temperature of spray 

drying was 140°C. Fourier Transform Infrared (FTIR) studies revealed the compatibility of 

the drug with the polymer, and scanning electron microscopy (SEM) showed that drug-loaded 

microparticles were spherical, and the apparent surface roughness was inversely related to the 

ratio of polymer to drug. Furthermore, size of the spray-dried particles were in the range of 

2.5 - 4.37 µm, depending on formulation. All formulations had high drug encapsulation 

efficiencies (101 - 106%). Drug loaded into the polymeric particles was in the amorphous 

state and drug molecules were molecularly dispersed in the polymeric matrix of the 

microparticles which were revealed by X-ray diffraction and differential scanning calorimetry 

(DSC), respectively. The in vitro drug release was influenced by polymer concentration. 

Histopathological study demonstrated that RH-loaded sodium alginate microparticles was 

safe to nasal epithelium. In conclusion, spray drying of RH using sodium alginate polymer 

has produced microparticles of suitable characteristics for potential intranasal administration.    

 

Keywords: CNS, Microspheres, Nose, Ropinirole hydrochloride, Sodium alginate, Spray 

drying  
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1 Introduction 

Microparticles are established drug delivery systems designed by incorporating drugs into 

polymeric excipients in order to modulate the drug release and enhance absorption by 

exploiting the high surface area to volume ratio of the particles (Gavini et al., 2006; Nidhi et 

al., 2016). Formulation of drug in powdered microparticulate systems may enhance chemical 

stability of drug and excipients. Powder formulations can be designed without inclusion of 

preservatives and can be used for delivery of relatively large molecules (e.g. peptides) and 

conventional small drug molecules (Chaturvedi et al., 2011). Furthermore, It has been 

previously reported that drug bioavailability can be improved when microparticles are given 

intranasally as powders compared to the corresponding liquid formulations (Ishikawa et al., 

2001; Rassu et al., 2015; Salade et al., 2018). 

 

Delivery of drugs via the nose can be used to treat local diseases within the nasal cavity such 

as rhinitis and nasal congestions, and for targeting the central nervous system (CNS) to treat 

diseases such as migraine (Chaturvedi et al., 2011). The nasal cavity can be exploited for drug 

delivery because of its large surface area (150 cm
2
) and high blood vascularity, offering 

enhanced drug absorption through the nasal epithelium. The nose, as a route of 

administration, is particularly suitable for drugs that undergo extensive first pass hepatic 

deactivation, because the drug is directly absorbed to the systemic circulation without passing 

through the portal vein to the liver (Chaturvedi et al., 2011). Furthermore, the neuronal 

connection in the nose has attracted many researchers to explore the potential of this organ for 

delivering drugs to the central nervous system (Wen 2011; Kumar et al., 2013), which may 

minimize the potential of systemic adverse effects (Kumar et al., 2013).  
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Drugs administered intranasally in the form of solutions are usually cleared rapidly (within 

around 15 min) by mucociliary clearance mechanism from the nasal cavity towards the 

nasopharyngeal region (Mao et al., 2004). Mucoadhesive agents, also referred to as 

bioadhesive agents, have been investigated with the aim of enhancing drug absorption across 

the epithelial cells of the nose (Jiang et al., 2010; Salade et al., 2018). Incorporation of drugs 

into mucoadhesive delivery systems is a highly promising strategy for enhancing drug 

absorption through the nasal epithelium. This is attributed to the ability of mucoadhesive 

polymers to interfere with the movement of the ciliary structures of the nasal membranes, 

resulting in prolonged contact of the drug with the mucosal surfaces and enhanced drug 

absorption (Illum 2003; Lee et al., 2017). 

 

Mucoadhesive polymer excipients are natural, synthetic or semi synthetic that can prolong the 

time of contact between the incorporated drug and the nasal epithelium for up to 5 h, 

depending on the characteristics of the polymer. This can help with enhancing the absorption 

of drugs that are known to have poor bioavailability (Yeom et al., 2017). Patil and co-workers 

(2012) have reported enhanced nasal absorption and bioavailability of carvedilol upon drug 

incorporation into sodium alginate microspheres. 

 

Sodium alginate is a promising natural polyanionic polymer for controlled drug release, 

owing to its low price, minimal toxicity and high biodegradability (Farid et al., 2012). The 

mucoadhesiveness of polymer has been reported to be directly proportional to its molecular 

weight and to the presence of polar groups in its structure (Kharenko et al., 2009). 

Mucoadhesive properties of sodium alginate are attributed to hydrogen bond formation 

resulting from carboxyl-hydroxyl interactions with mucin (Patil et al., 2012; Farid et al., 

2012). Alginate microparticles have demonstrated ability to accommodate a wide variety of 

active constituents including macromolecules (e.g. peptides and proteins) (Coppi et al., 2002), 
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small molecules (e.g. ranitidine) (Szekalska et al., 2015) and lipopolysaccharides (Jain et al., 

2015). 

 

Ropinirole hydrochloride (RH) is a non-ergoline anti-Parkinson drug. RH is a selective 

agonist of D2 dopamine-like receptors (DrugBank, 2013), and is established for management 

of Parkinson’s disease, either alone or in combination with other drugs, in order to minimize 

the on-off fluctuations in response to levodopa. The drug has a relatively low oral 

bioavailability (around 50%), owing to its inactivation by the liver (DrugBank, 2013).  

 

In this work, we employed spray drying to prepare spherically shaped microparticles (i.e. 

microspheres) for incorporation of RH using sodium alginate as a delivery system. The effect 

of spray drying inlet air temperature on the microparticulate powder characteristics including 

particle shape, powder yield, and particle size and size distribution were all investigated. 

Spray drying parameters were optimized and used to develop RH-sodium alginate 

microspheres, and extensive characterization studies were conducted to explore the potential 

of these formulations for intranasal administration. Furthermore, safety of RH-alginate 

microparticles was evaluated through a histopathology study using an isolated nasal sheep 

mucosa.  

 

2 Materials and methods 

 

2.1 Materials 

Ropinirole hydrochloride (RH) was purchased from Shanghai Yancui, Republic of China. 

Low viscosity sodium alginate, sodium hydroxide, sodium phosphate monobasic, 

haematoxylin, eosin and deoxycholate hydrate were supplied by Sigma Aldrich, UK. 
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Absolute ethanol, acetonitrile, water and 1-butanol were all of high performance liquid 

chromatography (HPLC)-grade and were supplied by Fisher Scientific Ltd., UK.  

 

2.2 Methods  

 

2.2.1 Optimization of sodium alginate microsphere (0.5%) formulations 

Formulation and spray drying parameters were optimized for preparing RH-sodium alginate 

microspheres. Sodium alginate (500 mg) was dissolved in HPLC-grade water (100 mL) with 

aid of magnetic stirring. The resulting solution was divided into three equal portions, each 

was spray-dried separately by employing the Büchi-290 Mini Spray-dryer (Büchi 

Laboratories, Switzerland) and using three different inlet temperatures; 120°C, 140°C, and 

160°C while other conditions were fixed (aspirator rate was 100%, spray gas flow was 357L/hr 

and feed pump rate was set at 17  ml/min), which gave outlet temperatures in the ranges of 

56-58°C, 64-71°C, and 72-81°C, respectively. The resultant powdered microspheres were 

characterized in terms of production yield, particle size, particle size distribution and 

microscopic morphology. 

 

2.2.2 Production yield determination 

The production yield was calculated as the percentage weight of the yielded spray-dried 

powder over the total amount of RH and alginate originally used prior to spray-drying (Omer 

et al., 2018), using the following equation:  

Yield (%) = (
W1

W2
) ∗ 100                                                            (Eq. 1) 

Where W1 is the weight of spray-dried microparticles and W2 is the initial dry weight of the 

starting material before spray drying.  
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2.2.3 Size analysis of microparticles 

Size measurements were conducted by weighing 5 mg of the alginate microparticles 

generated by spray drying, followed by dispersion in 1-butanol (3 mL) and sonication for 15 s 

to deaggregate the particles. The resultant particulate dispersion was further diluted with 1-

butanol and size was analyzed using laser diffraction (Malvern Mastersizer 2000, Malvern 

Instruments Ltd., UK). The size was expressed as the volume median diameter (VMD; D0.5; 

50% undersize), and size distribution (i.e. polydispersity) was expressed as Span (a term 

introduced by Malvern Instruments Ltd, UK, to express size distribution of particles): 

Span =
(D0.9−D0.1)

D0.5
                                                                      (Eq. 2) 

where D0.5, D0.9 and D0.1 are 50% undersize (VMD), 90% undersize and 10% undersize, 

respectively (Gavini et al. 2006; Khan et al., 2015). 

 

2.2.4 Scanning electron microscopy (SEM) of spray-dried microparticles 

Microparticles were mounted onto a carbon pad (Agar Scientific, UK), and coated with a thin 

film of gold using the sputter coater of the microscope (Bio-Rad, England). The morphology 

of the particles was investigated under vacuum using the Quanta 200 scanning electronic 

microscope. 

 

2.2.5 Compatibility studies between RH and the polymer 

The compatibility between the drug and the polymer was studied using spray-dried RH-

loaded alginate microparticles (1:1 w/w). Fourier Transform Infrared (FTIR) spectroscopy 

and thin layer chromatography (TLC) were employed to detect possible interactions or bond 

formation between RH and sodium alginate. The IR spectrum of the formulations and 

physical mixture of the drug and the polymer were then analyzed in comparison with the 

spectrum of RH raw material. The solution of RH raw material, physical mixture, and RH-

loaded microparticles (1:1 w/w) equivalent to 400 µg/mL of the drug were prepared and 
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studied separately using TLC and then dried using a lab drier. The TLC chamber was filled 

with the mobile phase (methanol and acetonitrile; 80:20 v/v), and a drop of glacial acetic acid 

was added to prevent possible tailing of the spot. The chamber was allowed to saturate with 

the mobile phase at room temperature for 20 min prior to starting the TLC experiments. The 

spotted TLC had been placed into the chamber and left for enough time before it was dried at 

room temperature. The spots of RH were then detected using UV (Patel and Chaudhari, 

2012).  

 

2.2.6 Preparation of RH-loaded sodium alginate microparticles 

Using a range of polymer to drug ratios (Table 1), five formulations were prepared using low 

viscosity sodium alginate (melting point > 300
o
C) and RH (melting point 235-243

o
C). Spray-

dried RH-free microparticles (0.5% w/v; formulation A1) were prepared for comparison using 

the same spray drying parameters. The feed solutions were prepared by dissolving the drug 

and the polymer in 100 mL of HPLC-grade water, followed by viscosity determination of the 

resultant solution using an automated microviscometer (described in the subsequent section) 

before commencing spray drying. The feed solution (200 mL) was spray-dried through the 0.7 

mm nozzle, using an inlet temperature of 140
o
C, outlet temperature of 64 - 71

o
C, aspiration 

rate of 100%, gas flow rate at 357 L/h and pump ratio of 17% (5 - 6 mL/min).  

 

2.2.7 Measurement of feed solution viscosity and density 

Prior to conducting spray drying, solution viscosity and density were measured at 20
o
C using 

the Anton Paar microviscometer (AMVn automated model, Anton Paar, Austria) and DMA 

35N density meter (Anton Paar, Austria), respectively.  
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2.2.8 Encapsulation efficiency of RH in alginate microparticles 

The encapsulation efficiency of the drug in the polymeric microparticles was investigated. 

Drug-loaded microparticles (4 mg) were dispersed into phosphate buffer solution (30 mL; pH 

6.5) and left for 5 h before vortex mixing for 1 min to extract the entrapped drug. The solution 

was then filtered through micro filters (0.22 µm) and analysed using HPLC (Agilent 1200, 

Agilent technology Ltd., USA) to determine the drug encapsulation efficiency (EE) and drug 

loading (DL) in the microparticles using equations 3 and 4, respectively.  

EE(%) = (
Amount of encapsulated drug

Theoritical drug content
) x 100                                             (Eq. 3) 

DL(%) = (
Weight of drug loaded in microspheres

Total Weight of microspheres
) x 100                                (Eq. 4) 

 

2.2.9 Zeta potential analysis  

Microparticles were dispersed in phosphate buffer solution (pH 6.5), then corresponding zeta 

potential measurements were conducted by measuring the electrophoretic mobility through 

using the Malvern Zetasizer instrument with the relevant software option (Malvern 

Instruments Ltd. UK).   

 

2.2.10 X-ray diffraction studies 

RH, sodium alginate and RH-loaded microparticles were studied using X-ray diffractometry 

(Equinox 2000 Inel, France). The powder samples were spread onto the metal sample holders 

of the instrument, and glass slides were used to smoothen the powder surfaces. The diffraction 

intensity was recorded at 2-theta and the run duration was 20 min. The current and voltage 

generator were set at 28 mA and 32 KV, respectively. 

 

2.2.11 Differential scanning calorimetry (DSC) 

Thermal behaviour of the drug formulations was investigated using differential scanning 

calorimetry (DSC823e, Mettler Toledo, UK). In this study, a physical mixture of the drug 
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with the polymer was compared to the drug-loaded microparticles and polymer-free drug 

samples. Before running of samples, DSC was calibrated with indium and zinc oxide. 

Approx. 3.5 - 4 mg of each sample was placed into the aluminium pan (40 µL) which was 

then sealed and heated at 10
o
C/min from 35 to 300

o
C.  

 

2.2.12 Thermogravimetric analysis (TGA)  

Weight loss as a result of heating was studied using thermogravimetric analysis (TGA) by 

employing the SDTA851e thermogravimetric analyser (Mettler Toledo, UK) under a purge of 

nitrogen gas. Approx. 4.9 mg of powder was placed into the aluminium pan (40 µL) and 

sealed using a sealing crucible. The cover of the pan was pierced with a pin to allow 

evaporation of moisture during heating. The sample was then placed onto the highly sensitive 

balance (0.01 mg accuracy) and the heating rate applied was 10
o
C/min between 20 and 300

o
C. 

The change in mass was determined and the percentage weight loss was calculated for each 

sample.  

 

2.2.13 In vitro drug release 

Microparticle powder containing 2 mg of RH was dispersed into phosphate buffer solution 

(70 mL; pH 6.5) within a glass container. The temperature was maintained at 37
o
C ± 0.20, 

and shaking was performed in a water bath (100 rpm). Samples were taken at time intervals 

(0.5, 1, 2, 5, 10, 20, 30, 60 and 90 min) and replaced with the same volume of formulation-

free dissolution medium in order to keep a sink condition. The rate of drug release was 

analysed using HPLC (Huh et al., 2010). 

 

2.2.14 Histopathological study 

The histopathology study was conducted on the nasal tissue of an animal that had already 

been sacrificed. Ethical clearance application was submitted to the College of Pharmacy at 
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Hawler Medical University. Following approval at the College level, the application was 

forwarded to the research committee of the university, which subsequently approved the 

planned experiments within the scope described in this section. Accordingly, fresh nasal 

mucosa was isolated immediately after sacrificing a healthy eight month Makui sheep, 

according to the procedure previously described by Seju et al., (2011). The nasal mucosa was 

sectioned into four pieces; each was treated for 2 h with formulation dispersion containing 2 

mg/mL of RH-loaded into alginate microspheres (90:10 polymer to drug ratio). Drug in 

phosphate buffer solution (2 mg/mL; pH 6.5) was used for comparison in parallel 

experiments. In our studies, phosphate buffer (pH 6.5) and sodium deoxycholate (1% w/v) 

solutions were used as negative control and positive control, respectively. Subsequently, 

tissue samples were washed with NaCl (0.9%) and fixed in 10% buffered formalin and 

embedded in paraffin wax for 4 h. Paraffin sections 7 - 5 mm were placed on glass slides and 

stained with haematoxylin and eosin, followed by light microscopy examination to investigate 

whether any damage during incubation had happen in the sample tissue. Examination 

included all essential components of the nasal epithelium cells such as goblet cells, ciliated 

cells, mucosal and sub-mucosal layers, and sero-mucinous glands. The samples were studied 

for possible epithelial necrosis, and sloughing of the epithelial and inflammatory cells.  

 

2.2.15 Statistical analysis 

All experiments were conducted three times. One-way Analysis of Variance (ANOVA) and 

student's t-tests were employed, to compare more than two groups of data and two groups of 

results, respectively. The measured values were calculated as mean ± standard deviations and 

when p was less than or equal to 0.05, the difference between the samples compared was 

regarded to be statistically significant.  
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3. Results and discussion 

 

3.1. Optimization of sodium alginate microparticles 

(i) Production yield 

The production yield (%) of alginate microparticles at different inlet temperatures was 58.87 

% ±2.95 (inlet temp. 120°C), 68.13 % ±0.37 (inlet temp. 140°C), and 70.27 % ±1.26 (inlet 

temp. 160°C). In the study of the effect of inlet temperature on the powder production yield, 

all other spray-drying parameters were kept constant. The production yield (%) of alginate 

microparticles decreased (p<0.05) from 70.27 ± 1.26 to 58.87 ± 2.95 as the inlet temperature 

was decreased from 160
o
C to 120

o
C, which caused a decrease in the outlet temperature from 

77.2 ± 2.7
o
C to 59.2 ± 2

o
C, respectively. This might be ascribed to the lower heat energy 

available in the drying chamber, which is required to dry the atomized droplets quickly before 

they leave the spray drying without being appropriately dried. Rathananand and co-workers 

(2007) have reported that increasing the inlet air temperature during spray drying resulted in 

yield promotion, agreeing with our findings in this study.  

 

(ii) Particle size and size distribution of the alginate microparticles 

The volume median diameter (VMD; 50% undersize) and size distribution (expressed as 

‘Span’) of sodium alginate microparticles prepared at different inlet temperatures were 

respectively 2.35±0.12 µm and 2.11±0.53 (Inlet temperature 120°C), 2.58±0.06 µm and 

2.71±0.02 (Inlet temperature 140°C), and 2.5±0.10 µm and 1.94±0.41 (Inlet temperature 

160°C).  

The size of microparticles had a narrow range (between 2.35 ± 0.10 and 2.58 ± 0.06 µm) and 

the Span was 2.11 ± 0.53 and 2.71 ± 0.02 for microparticles prepared at 120
o
C and 140

o
C, 

respectively. Thus, no statistical difference in size or size distribution as a result of changing 

the inlet air temperature (comparing 160°C to 120
o
C) was observed (p>0.05). However, a 
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propensity of particle size to decrease was observed when relatively low inlet temperature was 

used (i.e. 120
o
C). These results are in disagreement with the findings previously reported by 

Tee et al., (2012) who prepared spray-dried Sirih coated by maltodextrin using spray drying. 

This suggests that different excipients, as a result of having different physicochemical 

characteristics, may have different drying behaviour during spray drying.   

 

(iii) Microparticle morphology studies using SEM 

Figure 1 shows SEM morphology characteristics of microparticles prepared using different 

inlet temperatures (120, 140 and 160
o
C). SEM images demonstrated that many particles 

generated at 160
o
C inlet temperature were dimpled and perforated. By contrast, microparticles 

prepared using a lower inlet temperature (e.g. 120
o
C) were spherical, and their surface had 

fissures/cracks. This can be attributed to the incomplete water evaporation from the atomized 

droplets at this low temperature (Figure 1c). Based on our experiments, inlet air temperature 

of 140
o
C was selected as it was found to minimize the propensity of spherical particles to 

become perforated during drying. Spherical microparticles are established to have higher 

flowability than their non-spherical counterparts. Thus, in this study, the inlet temperature of 

140
o
C was used to prepare various RH-loaded sodium alginate formulations. 

 

(iv) Compatibility studies 

Compatibility studies were conducted to detect possible interactions between RH and the 

polymer. Undesirable interactions between the drug and excipients can reduce formulation 

stability, and affect drug dissolution (Taylor and Zografi, 1997). Interactions between RH and 

sodium alginate were investigated using TLC and FTIR spectroscopy. When the drug (as a 

co-spray dried in the formulation), the physical mixture of the drug with the polymer and the 

polymer-free pure drug were compared, TLC studies showed that Rf values of RH were 
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similar (Rf =0.55), and no extra spot was detected on the TLC plate. This observation 

indicates that no chemical interaction between the drug and the polymer has occurred.  

 

In an attempt to validate the TLC compatibility findings, FTIR was used. Thus, FTIR 

spectrum of RH, sodium alginate, physical mixture of RH and sodium alginate and spray-

dried microparticle formulations (50:50 w/w) were compared (Figure 2). Sharp peaks of RH 

were found at 1241.19, 1455.36, 1702.18 and 3068.95 cm
-1

 for C-N, C=C stretching, C=O 

stretching and N-H stretching functional groups respectively, whilst the IR spectrum of 

sodium alginate showed peaks at 3273.05, 1595.09 1408.25 and 1026.88  cm
-1

 for O-H 

stretching, C=O stretching, COO- and C-O-C stretching respectively. When IR spectrum of 

pure RH was compared to the IR spectrum of physical mixture and spray dried RH loaded 

alginate microspheres, no remarkable band-shifts of wave number were observed. Thus, FTIR 

confirmed no merging of peaks of the drug with the polymer has occurred, indicating no 

chemical interaction between the components.  

 

3.2 Product yield and Size of microparticles  

Earlier, it was shown that inlet temperature of the spray drier significantly affected the yield. 

However, when the inlet temperature was fixed at 140
o
C, aspiration rate at 100%, gas flow 

rate at 357 L/h and pump ratio at 17% (5 - 6 mL/min), no effect of formulation was found on 

product yield, being around 70% for all polymer to drug ratios (Table 2). Particle size (i.e. 

VMD) of RH-sodium alginate microspheres was smaller for formulation A2 compared to 

formulation A5 (Table 2). The increase in drug to polymer ratio resulted in an increase in the 

measured size of microparticles (p<0.05). Generally, particle size of the spray-dried particles 

is dependent on the characteristics of droplets atomized into the spray-drying chamber. In 

previous spray drying studies, droplet size has been reported to increase by increasing 

solution viscosity and feed rate, and to decrease by increasing gas flow rate (Chegini and 
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Taheri, 2013). Hence, it is expected that size and size distribution of the microparticles 

produced can be engineered by manipulating the properties of the feed solution.  

 

Size distribution was affected by formulation (p<0.05), so that Span values were dependent 

on formulation. In our experiments, changes in Span values between formulations are 

possibly caused by changing solution viscosity (Table 2). The significant decrease in feed 

solution viscosity (p<0.05) might be attributed to the decrease in the intermolecular 

entanglement, promoting the freedom of individual polymer chains movement in the solution 

(Graessley 1974). Thus, the decrease in polymer concentration (i.e. decrease in viscosity of 

feed solution) has produced larger particles with broader size distribution during atomization 

(Table 2). Interestingly, particle size and Span of RH as a raw material, without spray drying, 

were 59.72 ± 3.07 µm and 1.63 ± 0.14 respectively (findings not shown in the tables). 

However, following spray drying, the size and Span became 23.62 ± 4.66 µm and 1.84 ± 0.48, 

respectively (findings not shown in the tables).  

 

3.3. Drug loading and encapsulation efficiency  

Figure 3 shows drug loading and encapsulation efficiency in the polymeric microparticles. 

Microsphere formulations had high encapsulation efficiencies (EE) (e.g. 101.55% ± 3.18 for 

A3 and 106.99% ± 1.77 for A4 formulations). This might be due to the rapid evaporation of 

solvent from the droplets in the drying chamber, resulting in enhanced drug entrapment upon 

solidification of the excipient (Rathananand et al., 2007). These results are in agreement with 

those obtained by Alhalaweh and co-workers (2009) who reported entrapment efficiency 

values in the range of 93-105% for zolmitriptan loaded into chitosan microspheres designed 

for intranasal administration.  
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3.4. Zeta potential of microparticles 

Zeta potential of particles represents a major influence on their bioadhesive properties and 

ability to interact with epithelial cells (Patil et al., 2012). Alginate is negatively charged due to 

the ionization of the carboxyl moiety, causing hydrogen bond formation or Vander Waals 

interactions with mucin or sialic acid of the epithelial tissue (Patil et al., 2012). Zeta potential 

values of the formulations used in this study are presented in Table 2, clearly demonstrating 

higher negative charge intensity for formulations with higher alginate content. Clogston and 

Patri (2011) have reported that particles are likely to be stable when zeta potential values are 

higher than 25 mV, regardless of the charge type (i.e. negative or positive). Our findings 

demonstrated that the negative zeta potential values of the alginate microparticles decreased 

significantly (p<0.05) when the concentration of the polymer was decreased from A1 to A5 

formulation (Table 2), possibly due to the decrease in the overall negative charge in the 

formulation when lower polymer proportions were used.  

 

3.5. Surface morphology of microparticles  

Figure 4 shows scanning electron microscopy images of RH powder before and after spray 

drying. RH particles became spherical upon spray drying in polymeric formulation (Figure 5) 

compared to spray-dried RH alone (i.e. without using the alginate polymer) (Figure 4).  

 

The decrease in polymer to drug ratio decreased the proportion of perforated particles, which 

was evident in formulation A3 (Figure 5c). Further decrease in polymer to drug ratio made the 

particles spherically shaped and apparently increased surface roughness of the particles. For 

intranasal administered powders, optimization of particle size and morphology is needed to 

minimize the risk of nasal mucosa irritation, and to improve powder flowability and nasal 

deposition (Behl et al., 1998). The absence of irregular shape in the SEM images (Figure 5) 

indicates efficient encapsulation of RH in the microparticles. The success of spray drying to 
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manufacture spherical microparticles is expected to enhance formulation flowability and 

facilitate powder delivery from nasal devices (Behl et al., 1998; Omer et al., 2018). 

 

3.6. X-Ray diffraction studies 

The physical behaviour and crystallinity of the spray-dried formulations were investigated 

using X-ray diffraction. X-ray diffraction spectra for drug, drug-free microparticles, drug-

loaded microparticles and a physical mixture of RH and sodium alginate are all shown in 

Figure 6. RH raw material showed sharp peaks at different angles, indicating crystallinity of 

the drug (Figure 6g). Crystal peak intensity decreased when the drug was spray-dried in 

polymeric formulations. The decrease in peak intensity (i.e. reduced crystallinity) was directly 

proportional to the ratio of polymer to drug. For example, the peaks were completely absent 

when polymer to RH ratio was as high as 90:10 (i.e. for A2 formulation) (Figure 6b), 

indicating that RH has converted to the amorphous form and was molecularly dispersed into 

the polymeric network, complying with previous research observations using other drug 

molecules and different excipients (Mahajan et al., 2012). On one hand, the amorphous form 

of a drug is known to have higher dissolution and possibly promoted bioavailability compared 

to its crystalline form (Remenar et al., 2003; Blandizzi et al., 2015). On the other hand, 

amorphous form is less stable and may have tendency to recrystallize during storage, causing 

changes in the physical properties of the formulation (Learoyd et al., 2008). Accordingly, the 

stability of RH-alginate microspheres (formulation A2) upon storage for two months was 

investigated at low (5°C ± 1) and room (20
o
C ± 2) temperatures. Experiments revealed that 

microsphere formulations had no marked changes in the X-ray spectra, regardless of the 

temperature used over the time course investigated (Figure 7). In the future, we will 

extrapolate our stability investigations to include higher temperatures and accelerated stability 

studies.  
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3.7. Thermogravimetric analysis (TGA) 

Moisture content studies using thermogravimetric analysis (TGA) can give information about 

the long term stability of drug and excipients (Ståhl et al., 2002). TGA revealed that residual 

water content was in the following order: 18.03 ± 0.65 (%) for A1 > 8.45± 1.59 (%) for A2 > 

7.53± 0.54 (%) for A3 > 5.43± 0.15 (%) for A4 > 4.54 ± 0.69 (%) for A5 (Graph not shown), 

indicating the influence of polymer to drug ratio on residual moisture content of the spray 

dried formulations. Decreasing the polymer to drug ratio caused a decrease in the residual 

moisture content of the alginate microparticles (p<0.05). Thus, sodium alginate can retain 

water within the particle matrix and reduce water evaporation during spray drying. Further 

studies are needed in the future to evaluate the long-term stability of our polymeric 

formulations at various temperatures.  

 

3.8. Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry (DSC) is commonly used to investigate possible interactions 

between blended materials. The thermal profiles of RH (raw material), drug-free 

microparticles, the physical mixture of sodium alginate and RH with different polymer to 

drug ratios (90:10, 70:30, 50:50, and 30:70) and RH loaded sodium alginate microparticle 

formulations (A2, A3, A4 and A5) are all presented in figure 8. For the sodium alginate 

polymer, an endothermic peak was first detected at around 100
o
C, which can be attributed to 

evaporation of residual water present within the polymeric network. This was followed by an 

exothermic peak at 239
o
C, which is due to decomposition of the polymer. These findings 

agree with the TGA behaviour of this polymer reported previously by another investigator 

(Soares et al., 2004). However, the exothermic peak was absent when the polymer to drug 

ratio was low. The sharp endothermic peak observed for RH (raw material) at 248.57
o
C (∆H 

= 117.35 J/g) represents its melting point, and indicates the high crystallinity of the drug, as 

also shown in other studies (Avachat et al., 2011). However, as the polymer ratio in the 
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formulation is increased, the sharpness of the drug’s endothermic peak is decreased with a 

forward shift of the onset temperature of the endotherm (from 212.58 to 224.88
o
C) (Figure 8); 

this indicates partial loss of crystallinity of RH upon incorporation into the microspheres. The 

peak was absent in formulation A2, indicating that the drug existed in amorphous form and 

was uniformly distributed within the polymeric matrix (Pradhan et al., 2016).  

 

3.9. Drug release profile in vitro 

In vitro drug release study was performed in phosphate buffer solution (pH 6.5) in an attempt 

to simulate the acidic environment of the human nasal mucosa. Figure 9 shows the cumulative 

release for formulations A2, A3, A4 and A5 at different time intervals. The time required for 

drug release to reach its maximum level (>95%) was 60, 30, 10 and 1 min for A2, A3, A4 and 

A5 formulations, respectively. The rapid drug release is attributed to the high aqueous 

solubility of both drug and polymer and the small particle size of the microspheres. Polymer 

to drug ratio played a role in the drug release rate, so that decreasing the polymer 

concentration (e.g. when comparing A2 with A5) caused an increase in the drug release rate. 

Using low polymer concentrations caused the drug to diffuse through shorter channels within 

the polymeric network connecting the core to the surface of the microparticles. By contrast, 

when higher polymer concentrations are used, the network density of the polymeric matrix 

may increase, causing drug movement through longer channels to reach the particle’s surface 

and be released. Rathananand and co-workers (2007) have investigated the release rate of 

levocetirizine from chitosan microparticles, and reported slower release rate upon increasing 

polymer concentration, agreeing with our findings. Rapid release of RH from alginate 

microparticles can possibly indicate absence of strong bonding between the drug and the 

polymer. Gavini and co-workers (2005) have reported a possible interaction between sodium 

alginate and metoclopramide hydrochloride, causing more prolonged release (>3h).  
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3.10. Histopathological investigation of RH-loaded sodium alginate microparticles 

From our characterization studies, the most appropriate formulation seemed to be A2. Thus, 

the potential safety of this formulation for intranasal administration was further investigated 

using an isolated nasal sheep mucosa. Phosphate buffer solution (pH 6.5) was used as the first 

negative control and the corresponding drug-free alginate microparticles was employed as a 

second negative control, whilst sodium deoxycholate (1% w/v) solution was used as positive 

control. The protocol of our histopathology experiments was adapted from an established 

study published three decades ago by Hermens and Merkus (1987).  

 

Microscopic images of the microparticles (formulation A2) and drug-free microparticles did 

not show remarkable effects on the overall appearance of the animal’s nasal mucosa (Figure 

10a, b), which is contrary to the positive control (Figure 10c). Thus, the cilia lining mucosa 

and its components were apparently normal, and no necrosis was detected (Figure 10 a,b). As 

shown in Table 3, goblet cells, sero-mucinous glands and ciliated cells were intact, with 

detection of only slight focal sloughing of the cells. These findings agree with the 

observations of Kolsure and Rajkapoor (2012) who used nasal gels of zolmitriptan, and Patil 

and co-workers (2012) who used carvedilol-sodium alginate microspheres for intranasal 

administration. Microscopic results in this study suggested that optimized RH-loaded sodium 

alginate microsphere formulations had no apparent harmful effect on the nasal mucosa, and 

RH-loaded alginate microspheres are potentially safe and further in vivo animal experiments 

are needed in the future. To the best of our knowledge, this is the first study that reported the 

development of spray dried RH microspheres using the sodium alginate polymer. Further 

studies should take these formulations to the in vivo phase to demonstrate the advantages of 

nasal delivery of RH compared to oral administration. 
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4. Conclusions 

This study has demonstrated that spray drying is highly suitable for preparing RH-loaded 

sodium alginate microspheres. Inlet temperature had remarkable effect on morphology and 

yield of the spray-dried microparticles. Furthermore, formulation had an obvious effect on 

morphology, size and size distribution of the microparticles. Accordingly, alginate to drug 

ratio of 90:10 (w/w) was considered the best performing formulation. Additionally, X-ray 

diffraction studies revealed that the spray-dried microparticles prepared in this study were 

stable for at least two months. Importantly, the release rate of RH was significantly affected 

by polymer concentration in the formulation. The histopathological investigation showed that 

RH loaded sodium alginate was non-toxic to an isolated sheep mucosa. In-vivo studies using 

animal models are needed in the future to determine the amount of drug that may reach the 

brain, cerebrospinal fluid (CSF) and blood circulation after administration of RH-alginate 

microspheres in the forms of nasal powders. 
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Legend to Figures: 

 

Figure 1: SEM images of sodium alginate microparticles at inlet air temperatures of (a) 

160
o
C, (b) 140

o
C, and (c) 120

o
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Figure 2: FTIR spectrum of (A) RH, (B) sodium alginate, (C) physical mixture of sodium 

alginate and RH (1:1 w/w), and (D) spray dried RH loaded sodium alginate microparticles 

(50:50 w/w). The lower graph magnifies the wave numbers area between 900 and 1900 cm
-1 
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Figure 3: Drug loading (DL) and entrapment efficiency (EE) of spray-dried microspheres at 

various sodium alginate to drug ratios. Polymer to the drug ratios (w/w) were: A2 (90:10), A3 

(70:30), A4 (50:50), and A5 (RH 30:70). (n=3 ± SD) 

  

Acc
ep

te
d 

M
an

us
cr

ipt



 

 

 

Figure 4: SEM images of RH (a) before spray drying and (b) after spray drying  
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Figure 5: SEM images of (a) A1 (i.e. drug-free microspheres), (b) A2, (c) A3, (d) A4, and (e) 

A5 
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Figure 6: X-Ray diffractogram of (a) drug free microparticles, (b) A2, (c) A2 physical 

mixture, (d) A3, (e) A4, (f) A5, and (g) RH raw material 
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Figure 7: X-Ray diffractogram of (a) fresh A2 formulation, (b) A2 formulations stored at low 

temperature (5°C) and (c) A2 formulations stored at room temperature (20°C) for two months 
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Figure 8: DSC thermograms of (a) drug-free microsphere, physical mixture of alginate-RH; 

(b) 90:10, (c) 70:30, (d) 50:50, (e) 30:70, RH loaded alginate microspheres; (b) A2, (c) A3, 

(d) A4, (e) A5 and (f) pure drug 
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Figure 9: Release profile of various spray dried RH-loaded sodium alginate microsphere 

formulations carried out in phosphate buffer solution (pH 6.5) (n=3 ±SD) 
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Figure 10: Microscopic images of sheep nasal mucosa treated with (a) A2 formulations, (b) 

drug free microparticles, and (c) positive control (10 x 10 magnification, n=3). Sloughness is 

abbreviated as "S", necrosis is abbreviated as “N”, and Inflammation is abbreviated as "I" 
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Table 1: Sodium alginate microsphere formulations 

Formulation 

code 

Ratio (w/w) 

(polymer: RH)  

Sodium alginate 

(mg) 

RH 

(mg) 

Total weight 

(mg/ 

100 mL) 

A1 100:0 500 0 500 

A2 90:10 450 50 500 

A3 70:30 350 150 500 

A4 50:50 250 250 500 

A5 30:70 150 350 500 

 

 

Table  2: Particle size, size distribution, zeta potential and feed solution viscosity of 

alginate microparticle formulations using an inlet temperature of 140°C ( n=3 ± SD) 

Formulation 

Code 

 

Viscosity 

(mPa.s) 

Product 

yield (%) 

VMD (µm) Span Zeta Potential 

(mV) 

A1 6.52±0.001 70.27±1.26 2.60±0.03 2.71±0.01 -70.07 ±0.73 

A2 5.60±0.003 69.50±0.68 2.58±3.35 1.72±0.06 -62.57 ±0.21 

A3 4.04±0.002 69.70±1.03 3.05±0.53 1.52±0.03 -56.93 ±3.73 

A4 2.80±0.003 69.37±1.58 3.87±0.17 2.11±0.04 -46.35 ±1.23 

A5 2.05±0.001 68.07±1.12 4.37±0.29 4.13±1.19 -39.82 ±2.38 

 

  

Acc
ep

te
d 

M
an

us
cr

ipt



 

 

Table 3: The comparative histopathological evaluation of nasal mucosa treated with a 

range of formulations and RH-loaded sodium alginate microparticles 

Treated nasal mucosa Necrosis Ciliated cells Goblet cells Inflammatory cell infiltrate 

in the sub mucosa 

Sero-

mucinous 

glands 

Sodium deoxycholate 

solution  

(positive control) 

Severe Mostly sloughed Present Severe sub mucosal 

inflammation and increased 

intraepithelial lymphocytes 

Inflamed 

Alginate 

microparticle 

dispersion 

Absent Intact with focal 

sloughing 

Not affected Mild sub mucosa 

inflammation 

Not affected 

Alginate: RH (90:10) 

(A2) 

Absent Focal sloughing  Not affected Mild sub-mucosa 

inflammation 

Not affected 
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