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  Abstract
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Diabetes-associated complications, such as retinopathy, nephropathy, cardiomyopathy, and atherosclerosis, the main consequences
of long-term hyperglycemia, often lead to organ dysfunction, disability, and increased mortality. A common denominator of these
complications is the myofibroblast-driven excessive deposition of extracellular matrix proteins. Although fibroblast appears to be
the primary source of myofibroblasts, other cells, including endothelial cells, can generate myofibroblasts through a process known
as endothelial to mesenchymal transition (EndMT). During EndMT, endothelial cells lose their typical phenotype to acquire
mesenchymal features, characterized by the development of invasive and migratory abilities as well as the expression of typical
mesenchymal products such as α‐smooth muscle actin and type I collagen. EndMT is involved in many chronic and fibrotic diseases
and appears to be regulated by complex molecular mechanisms and different signaling pathways. Recent evidence suggests that
small RNAs, in particular microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are crucial mediators of EndMT. Furthermore,
EndMT and miRNAs are both affected by oxidative stress, another key player in the pathophysiology of diabetic fibrotic
complications. In this review, we provide an overview of the primary redox signals underpinning the diabetic-associated fibrotic
process. Then, we discuss the current knowledge on the role of small RNAs in the regulation of EndMT in diabetic retinopathy,
nephropathy, cardiomyopathy, and atherosclerosis and highlight potential links between oxidative stress and the dyad small
RNAs-EndMT in driving these pathological states.
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Abstract 29 

Diabetes-associated complications, such as retinopathy, nephropathy, cardiomyopathy, and 30 

atherosclerosis, the main consequences of long-term hyperglycemia, often lead to organ 31 

dysfunction, disability, and increased mortality. A common denominator of these complications is 32 

the myofibroblast-driven excessive deposition of extracellular matrix proteins. Although fibroblast 33 

appears to be the primary source of myofibroblasts, other cells, including endothelial cells, can 34 

generate myofibroblasts through a process known as endothelial to mesenchymal transition 35 

(EndMT). During EndMT, endothelial cells lose their typical phenotype to acquire mesenchymal 36 

features, characterized by the development of invasive and migratory abilities as well as the 37 

expression of typical mesenchymal products such as α-smooth muscle actin and type I collagen. 38 

EndMT is involved in many chronic and fibrotic diseases and appears to be regulated by complex 39 

molecular mechanisms and different signaling pathways. Recent evidence suggests that small 40 

RNAs, in particular microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are crucial 41 

mediators of EndMT. Furthermore, EndMT and miRNAs are both affected by oxidative stress, 42 

another key player in the pathophysiology of diabetic fibrotic complications. In this review, we 43 

provide an overview of the primary redox signals underpinning the diabetic-associated fibrotic 44 

process. Then, we discuss the current knowledge on the role of small RNAs in the regulation of 45 

EndMT in diabetic retinopathy, nephropathy, cardiomyopathy, and atherosclerosis and highlight 46 

potential links between oxidative stress and the dyad small RNAs-EndMT in driving these 47 

pathological states. 48 

 49 

 50 

 51 

 52 
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Introduction 55 

Diabetes mellitus (DM) is one of the most common chronic diseases worldwide (1). A prediction 56 

study estimated a significant further increase in the number of people suffering from diabetes, 57 

especially in developing countries, with a global prevalence of 7.7% (439 million adults) by 2030 58 

(1, 2). Long-term hyperglycemia is the main driver of the onset and the progression of common 59 

diabetic complications, particularly those affecting the eye, kidney, nervous system, and 60 

cardiovascular system (3). Such complications are secondary to structural and functional 61 

alterations of organs and tissues that are caused by an increased cellular glucose uptake (4). This 62 

activates inflammatory pathways which ultimately leads to excessive deposition of extra cellular 63 

matrix (ECM) proteins and consequent thickening of the vessel wall (4, 5). Tissue fibrosis is 64 

therefore the common denominator of most diabetic complications, including atherosclerosis, 65 

cardiomyopathy, nephropathy and retinopathy (6). Myofibroblasts are the key mediators of 66 

pathological ECM accumulation (7). These cells are normally involved in tissue repair and are 67 

subsequently removed by apoptosis at the end of the repair process. However, under pathological 68 

situations, their unrestrained activation leads to excessive ECM deposition (8). Myofibroblasts 69 

originate from different precursor cells, depending on the organ and the type of initial injury (9). 70 

Although fibroblasts represent the primary source of myofibroblasts, the latter can also originate 71 

from the inresident or bone marrow-derived mesenchymal cells as well as epithelial and 72 

endothelial cells (ECs), through a process known as epithelial/endothelial to mesenchymal 73 

transition (7, 8). In particular, endothelial to mesenchymal transition (EndMT), the process 74 

involving ECs, is emerging as an important player in the pathogenesis of diabetic fibrosis (10-12). 75 

ECs, constituting the inner layer of blood vessels, are responsible for maintaining vascular 76 

homeostasis in response to endogenous and exogenous perturbations (13, 14). There is good 77 

evidence that ECs, when exposed to hyperglycemia, undergo significant alterations that result in 78 

an imbalance between vasodilation and vasoconstriction as well as the development of 79 

inflammatory and vascular complications (15, 16). Moreover, high glucose concentrations have 80 

been shown to trigger the shift of the endothelium toward the mesenchymal phenotype (17, 18). 81 

Overall, EndMT appears to represent the key link in the interaction between inflammation and 82 

endothelial dysfunction in diabetic complications (19, 20). In the setting of EndMT, ECs lose their 83 

typical cobblestone morphology and tight junctions and acquire increased motility and the ability 84 

to secrete ECM proteins (21). In addition, concurrently with the loss of typical endothelial markers, 85 
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such as vascular endothelial cadherin (VE-cadherin), platelet endothelial cell adhesion molecule 86 

(PECAM-1), also known as CD31, and von Willebrand Factor (vWF), they acquire the ability to 87 

express several mesenchymal markers, such as alpha-smooth muscle actin (α-SMA), smooth 88 

muscle protein 22 alpha (SM22α), fibronectin, vimentin, and fibroblast specific protein-1 (FSP-1) 89 

(21, 22). EndMT is involved in many chronic and fibrotic disease states and appears to be regulated 90 

by several factors (23-25). In diabetes, oxidative stress is emerging as an important trigger of the 91 

ECs transformation into myofibroblasts and vascular remodeling (25, 26). Indeed, hyperglycemia 92 

can increase the production of reactive oxygen species (ROS), which in turn activate signaling 93 

pathways leading to the disruption of ECs hemostasis (27-30). Several signaling pathways have 94 

been demonstrated to be involved in EndMT regulation, e.g., transforming growth factor-beta 95 

(TGF-β) signaling, Notch signaling, fibroblast growth factor/fibroblast growth factor receptor 1 96 

(FGF/FGFR1) signaling pathway, Smad2/3-mediated pathways (31) and pro-inflammatory 97 

signaling cascades (32, 33). An important role in the regulation of EndMT is also played by micro 98 

RNAs (miRNAs), a class of short endogenous non‐coding RNAs that regulate gene expression at 99 

post-transcriptional level by binding to the 3′-untranslated region of messenger RNA (mRNA) (34, 100 

35). A single miRNA can target multiple mRNAs, thus influencing several processes such as cell 101 

differentiation, proliferation, and apoptosis (36). miRNAs can also target significant parts of 102 

pathways since miRNAs with similar (seed) sequence target similar sets of genes and thus similar 103 

sets of pathways (37). Moreover miRNAs can, either positively or negatively, regulate gene 104 

expression (38). As a result, they represent promising markers and druggable targets for many 105 

diseases, including diabetes (39-41). An increasing amount of evidence also suggests that diabetes 106 

progression is linked to the alteration of miRNAs expression profiles; indeed, profibrotic miRNAs, 107 

such as miR-125b, let-7c, let-7g, miR-21, miR-30b and miR-195 have been shown to be 108 

upregulated in EndMT. By contrast, antifibrotic miRNAs, such as miR-122a, miR-127, miR-196 109 

and miR-375, with inhibitory action toward genes responsible for EndMT, have been shown to be 110 

downregulated (42-44). In addition to miRNAs, recent studies have also demonstrated the 111 

involvement of another class of small RNAs, known as long non coding RNAs (lncRNAs), in 112 

diabetes-associated EndMT (45, 46). Compared to miRNAs, the concentrations of lncRNAs are 113 

almost tenfold lower, with the latter exhibiting significant tissue and cell specificity (47). However, 114 

the knowledge of the function and the regulation of lncRNAs are still limited. This review aims to 115 

summarize and discuss the available knowledge on the role of small RNAs in the regulation of 116 
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EndMT in diabetes-associated fibrotic complications such as retinopathy, nephropathy, 117 

cardiomyopathy, atherosclerosis, and its potential link with oxidative. 118 

 119 

Diabetic nephropathy 120 

Diabetic nephropathy (DN) is the leading cause of chronic kidney disease in about 40% of patients 121 

with type 1 and type 2 diabetes (48). Poorly controlled blood glucose concentrations can damage 122 

the filtering functionality of the kidneys, which become unable to remove waste products and extra 123 

fluids from the body (49, 50). The symptoms of DN do not generally manifest in the early stages, 124 

but rather when kidney function has significantly deteriorated (51). Therefore, a tight blood 125 

glucose control is key to prevent the onset and progression of DN (50, 52). The progression of DN 126 

is defined by various clinical stages which reflect the gradual involvement of tissue damage to 127 

different kidney compartments: glomerulus, tubules, vasculature and interstitium (53). The final 128 

stage of DN is characterized by renal fibrosis and organ failure, which are the result of the 129 

excessive accumulation of ECM (54). Renal fibrosis is driven by multiple mechanisms, including 130 

glucose metabolism abnormalities associated with oxidative stress, inflammatory processes, and 131 

hemodynamic changes (55). Consequently, many signaling pathways and cell types (mesangial 132 

cells, endothelial cells and podocytes) are involved in the fibrotic process (56, 57). As mentioned 133 

above, alterations of glucose metabolism not only activate various signaling pathways, (56, 57) 134 

but also induce oxidative stress, a key pathophysiological step in the onset and progression of 135 

diabetes-associated vascular complications (58-60). Indeed, high glucose concentrations activate 136 

the diacylglycerol-protein kinase C (DAG-PKC) pathway, which is associated with endothelial 137 

dysfunction, increased production of extracellular matrix and activation of cytokines and 138 

transforming growth factor-β (TGF-β) (61, 62). In addition, protein kinase C (PKC) induces 139 

oxidative stress by activating mitochondrial NADPH oxidase (18, 63). Increased glucose can also 140 

activate aldose reductase and the polyol pathway, leading to the depletion of Nicotinamide 141 

Adenine Dinucleotide Phosphate (NADPH), which is also required for the generation of the 142 

cellular antioxidant nitric oxide (NO) (64-67). The reduced NO availability compromises the 143 

balance between reactive oxygen species (ROS) generation and antioxidant defense, one of the 144 

leading causes of endothelial dysfunction (68). Furthermore, hyperglycemia enhances the 145 

formation of advanced glycation end products (AGEs), proteins or lipids that become glycated as 146 
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a result of exposure to sugars (69). AGEs increase ROS production and promote inflammation and 147 

fibrosis through the activation of PKC, the nuclear factor kappa light chain enhancer of activated 148 

B cells (NF-kB) and TGF-β, (56, 70). Within the hemodynamic factors driving renal fibrosis, an 149 

important role is played by the over-activation of the renin-angiotensin-aldosterone system 150 

(RAAS), a crucial hormone system in blood pressure regulation and fluid balance (71, 72). 151 

Hyperglycemia and insulin resistance increases the release of angiotensin II (Ang II) a potent 152 

vasoconstrictor belonging to the RAAS system (72-74). Angiotensin II plays an important role in 153 

renal fibrosis by activating a number of factors responsible for ECM production such as TGF-β, 154 

PKC and NF-κB (56, 57). On the other hand, Angiotensin-converting enzyme2 (ACE2), the main 155 

modulator of the RAAS system (72), prevents the accumulation of Ang II by catalyzing the 156 

conversion of Ang II into the vasodilator Angiotensin I (Ang I) (74, 75). Although no cure is 157 

available for DN, the control of blood sugar levels and blood pressure, together with a healthy 158 

lifestyle, can slow or stop its progression. The most common DN treatments are based on the 159 

RAAS system inactivation; precisely with the use of either the ACE inhibitors (ACEis) or 160 

angiotensin receptor blockers (ARBs) or their combination (76, 77). This type of treatments allows 161 

the lowering of proteinuria and the blood pressure within the glomerular capillaries. In addition, 162 

ACEis can also ameliorates kidney fibrosis in combination with other drugs. Is this the case of N-163 

acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) an antifibrotic peptide that, in combination with the 164 

ACEi, imidapril, improves kidney fibrosis restoring antifibrotic miRNAs, such as miR-29 and 165 

miR-let-7 and increasing the inhibition of the profibrotic dipeptidyl peptidase-4 (DPP-4) (78, 79). 166 

DPP-4 inhibitors are another class of medicines used for DN's treatment. In this context, due to the 167 

highest affinity for DPP-4, the drug Linagliptin is one of the most widely used (80). In addition, 168 

promising data also come from treatments aiming at restoring Sirtuin 3 (SIRT3), which appear to 169 

ameliorate renal damage, via inhibition of aberrant glycolysis and preserving mitochondrial 170 

homeostasis (81, 82)  171 

 172 

miRNAs regulation of DN-associated EndMT 173 

The ECM is a three-dimensional network of macromolecules (proteoglycans and fibrous proteins), 174 

present in all tissues and organs, that contributes to tissue morphogenesis, differentiation and 175 

homeostasis. Collagens, elastins, fibronectins and laminins are the main proteins constituting the 176 
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ECM (83, 84). The excessive deposition of ECM components is the hallmark of fibrosis, which 177 

represents a key pathophysiological step in many chronic inflammatory diseases, including 178 

diabetes (85). Myofibroblasts are the main cellular mediators of fibrosis as they have the ability to 179 

invade the interstitial space and produce excessive amounts of ECM proteins (86). Although 180 

resident mesenchymal cells are the main source of myofibroblasts, the latter can also derive from 181 

other type of cells including pericytes, fibrocytes, epithelial and endothelial cells (ECs). The 182 

process involving ECs, known as EndMT, has been shown to actively contribute to the progression 183 

of renal fibrosis (87-89). Besides, the mesenchymal shift contribution to kidney fibrosis can also 184 

be accelerate by the crosstalk between endothelium and epithelium, since EndMT can influence 185 

and induce EMT in tubular cells (90). In this context, N-acetyl-seryl-aspartyl-lysyl-proline 186 

(AcSDKP) plays a crucial role in inhibiting both EndMT and EndMT-mediated EMT. Its 187 

inhibitory action is exerted by targeting the fibroblast growth factor receptor 1 (FGFR1), an 188 

antifibrotic endothelial receptor (90), and by controlling the metabolic switch between glucose and 189 

fatty acid metabolism. Indeed, defects in normal kidney metabolism can accelerate EndMT and 190 

EndMT-mediated EMT contributing to kidney fibrosis (81, 91). An increasing body of evidence 191 

suggests that miRNAs are key regulators of EndMT as they appear differentially expressed under 192 

fibrotic stimuli such as high glucose, TGFβ, and hypoxia (92). This differential expression also 193 

reflects the specific role, profibrotic or antifibrotic, played by miRNAs (44, 93). The most potent 194 

inducer of kidney fibrosis is TGF-β (94) (95), which can trigger EndMT either by activation of 195 

specific signaling pathways, such as Akt and Smad (94, 95), or by increasing the expression of 196 

pro-fibrotic miRNAs (44). In this context, TGF-β mediates EndMT through the up-regulation of 197 

miR-21, a key modulator of fibrosis (11, 96). Specifically, TGF-β elicits miR-21 increase through 198 

the activation of Smad3 which regulates miR-21 expression both at a transcriptional and a post-199 

transcriptional level (97). In addition, Smad3 modulates the expression of other miRNAs and 200 

activates the expression of various fibrotic genes (98). Another mechanism used by miR-21 to 201 

stimulate renal fibrosis is the inhibition of Smad7 protein, a negative regulator of TGF-β1/Smad3 202 

signaling. In this context, Smad7 has been shown to suppress renal fibrosis by down-regulating 203 

pro-fibrotic miRNAs such as miR-21 and miR-192 while up-regulating the anti-fibrotic miR-29b 204 

(98, 99). Additionally, miR-21 also regulates TGF-β-mediated EndMT through the PTEN/Akt 205 

pathway (100). Specifically, TGF-β increases the endothelial expression of miR-21, which in turn 206 

decreases the expression of PTEN, ultimately promoting EndMT by Akt activation. (100-102). 207 
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Another molecule linked to TGF-β signaling in kidney fibrosis is the dipeptidyl peptidase-4 (DDP-208 

4), a multi-functional protein expressed on the surface of most cell types, including ECs (103). 209 

DPP-4 overexpression induces TGF-β-mediated EndMT in diabetic nephropathy (104, 105). 210 

Furthermore, recent studies have reported a relationship between DPP-4 and miR-29 in diabetic 211 

kidney fibrosis, where the overexpression of DPP-4 results associated with the suppression of miR-212 

29s family anti-fibrotic activity (106, 107). In line with these observations, the use of the DPP-4 213 

inhibitor, linagliptin, ameliorates kidney fibrosis by restoring miR-29s and consequentially 214 

inhibiting EndMT in diabetic mice (108). The anti-fibrotic peptide, AcSDKP which suppresses the 215 

TGF-β-induced EndMT in diabetic kidney (109, 110) can also, alone or in combination with 216 

angiotensin-converting enzyme inhibitor (ACEi), ameliorates renal fibrosis by suppressing DPP-217 

4 and restoring the anti-fibrotic miR-29s and miR-let-7s expression in TGF-β-induced EndMT 218 

(79). The crosstalk between miR-29s and miR-let-7s is crucial for maintaining endothelial cell 219 

homeostasis and AcSDKP potentiates this crosstalk regulation (44). Indeed, the presence of 220 

AcSDKP upregulates the antifibrotic miR-let-7 families, especially miR-let-7b, which suppress 221 

TGFβR1 and TGFβ signaling (111). Suppression of TGFβ signaling results in the up-regulation of 222 

the miR-29 family expression, which in turn induce FGFR1 phosphorylation, a critical step for 223 

miR-let-7 production (44, 111). The associated expression of miR-29 and miR-let-7 is also 224 

regulated by an alternative mechanism involving interferon-gamma (IFNγ) (44). Precisely, miR-225 

29 target the profibrotic IFNγ (112) blocking its inhibitory action toward FGFR1 which in turn 226 

induces the expression of miR-let-7 (44, 113). Although not strictly related to DN, an additional 227 

anti-fibrotic mechanism, occurring by the suppression of DPP‐4, involves miR‐448‐3p. EndMT 228 

inhibition and amelioration of vascular dysfunction has been indeed observed in both diabetic mice 229 

and cell models overexpressing miR‐448‐3p (114). A further regulatory mechanism of EndMT in 230 

diabetic nephropathy involves miR-497 and its two targets, ROCK1 and ROCK2, which belong to 231 

the rho-associated kinases (ROCKs) family and are activated in diabetes (115-117). A recent study 232 

showed that ROCKs inhibition, following treatment with melatonin (N-acetyl-5-233 

methoxytryptamine), suppressed TGF-β2-induced EndMT. Specifically, the negative modulation 234 

of ROCK1 and ROCK2 is associated with the melatonin-induced up-regulation of miR-497, both 235 

in glomerular cells and diabetic rats (115). See figures and associated tables to overview of the 236 

signaling pathways involving both anti-fibrotic (Figure 1, Table 1) and pro-fibrotic (Figure 2, 237 

Table 2) miRNAs. 238 
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 239 

Diabetic cardiomyopathy 240 

Diabetic cardiomyopathy (DCM), another common complication in diabetes, refers to myocardial 241 

dysfunction in the absence of conventional cardiovascular complications (coronary artery disease, 242 

valvular disease) and risk factors (hypertension, dyslipidemia) (118, 119). In the early stages, 243 

DCM is usually asymptomatic and characterized by left ventricular (LV) hypertrophy, LV diastolic 244 

dysfunction with diastolic filling abnormalities, myocardial fibrosis and cell signaling 245 

abnormalities. Disease progression leads to systolic dysfunction (left ventricular low ejection 246 

fraction) accompanied by heart failure, which is characterized by marked hypertrophy and fibrosis 247 

in the advanced stages (118-120). Hyperglycemia, insulin resistance, lipid metabolism defects and 248 

oxidative stress up-regulate the production of advanced glycation end-products (AGEs) and Ang 249 

II, which in turn induce mitochondrial dysfunction in cardiomyocytes and ECs (121-124). 250 

Mitochondrial dysfunction, as well as the Ang II-induced NADPH oxidases stimulation, increases 251 

ROS production and oxidative stress (124, 125). Additionally, oxidative stress is also increased by 252 

lipid accumulation caused by an insulin resistance-induced cardiomyocytes metabolic shift. 253 

Indeed, the increased intake of fatty acid is not adequately metabolized by β-oxidation resulting in 254 

lipotoxicity (118, 120). Oxidative stress can in turn trigger endoplasmic reticulum (ER) stress, 255 

impairment of mitochondrial Ca2+ uptake, cardiomyocyte hypertrophy, ECs damage, 256 

microvascular dysfunction and the profibrotic responses by fibroblasts and inflammatory cells 257 

(118, 120). All these effects contribute to the accumulation of ECM, especially collagen type I and 258 

III, leading to myocardial fibrosis (119, 126). The main signaling pathways underlying these 259 

pathophysiological events include TGFβ/SMAD, NFκB/SMAD, PKC, MAPK, Wnt/β-catenin, 260 

Notch2 and AcSDKP-FGFR1 signaling pathway (90, 127-131). Most of these pathways lead to 261 

the development of cardiac fibrosis through the differentiation of fibroblasts into myofibroblasts 262 

as well as the endothelial-to-mesenchymal or epithelial-to-mesenchymal transition (132). 263 

Furthermore, increasing evidence suggests that miRNAs are the main players in the regulation of 264 

multiple pathways and cellular processes leading to cardiac fibrosis (130, 133, 134). 265 

 266 
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miRNAs regulation of DCM-associated EndMT 267 

The hyperglycemia-induced ECs damage and activation, resulting in vascular remodeling and 268 

EndMT, has been confirmed in myocardial fibrosis (135). As suggested by experimental evidence, 269 

cardiac fibrogenesis involves the presence of a subset of EndMT-derived activated cardiac 270 

fibroblasts (135-137). Similarly, miRNAs are an important regulatory mechanism in cardiac 271 

fibrosis and heart failure (138, 139). In this context, miR-21, which has been widely described in 272 

pulmonary and renal fibrosis (140), plays an important role also in the pathogenesis of cardiac 273 

fibrosis and diabetic cardiomyopathy (133, 141-143). A recent in vivo study confirmed the 274 

involvement of miR‐21 in EndMT activation and myocardial fibrosis, showing that the 275 

hyperglycemia-induced up-regulation of miR‐21 in diabetic mice is associated with the down-276 

regulation of endothelial markers and the up-regulation of fibroblast markers (144). Moreover, 277 

similarly to the mechanism described in diabetic nephropathy (97), miR-21 regulates EndMT 278 

through the NF‐κB-SMAD signaling pathway by targeting SMAD7. The consequent SMAD7 279 

inhibition increases SMAD2 and SMAD3 phosphorylation, resulting in EndMT activation (144). 280 

An additional mechanism, requiring the TGF-β/SMAD pathway, involves miR-142-3p, which has 281 

been shown to attenuate the hyperglycemia-induced EndMT in human aortic endothelial cells 282 

(HAECs) (145). Indeed, miR-142-3p overexpression inhibits EndMT by inactivating both TGF-283 

β1 and the downstream target gene SMAD2. By contrast, TGF-β1 overexpression significantly 284 

abolishes the inhibitory effects of miR-142-3p (145). A negative regulation of glucose-induced 285 

EndMT in the heart is also played by miR-200b (146). In a recent study, the expression of specific 286 

fibrotic markers, such as vascular endothelial growth factor (VEGF) (147), zinc finger E-box–287 

binding homeobox (Zeb2) (148), and TGF-β1 (149) was prevented in diabetic mice overexpressing 288 

miR-200b (146). Moreover, miR-200b overexpression also induces the down-regulation of p300, 289 

a transcription coactivator known to contribute to cardiac fibrosis and hypertrophy via TGF-290 

β/SMAD (146, 150). Although the inhibitory role of the whole miR-200 family is well established, 291 

both in EMT (151, 152) and EndMT (146, 153), unexpectedly a recent study shown that miR-292 

200c-3p exerted the opposite effect, being able to promote EndMT and aortic graft remodeling 293 

both in vivo and in vitro (154). Finally, a further TGF-β/SMAD pathway-mediated regulatory 294 

mechanism involves miR-451 whose effects on EndMT are AMPK-dependent. Indeed, miR451 295 

knockdown in diabetic mouse hearts suppresses EndMT through the activation of AMPK, which 296 

in turn inhibits the TGF-β/SMAD pathway (155). As previously mentioned, in addition to TGF-297 
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β/SMAD, other pathways underlie the pathophysiological events leading to cardiac fibrosis. One 298 

of them is the Wnt signaling pathway, known to promote fibroblast activation and proliferation 299 

(156). On the other hand, the anti-fibrotic role of miRNA-221/222 family has been confirmed, as 300 

their down-regulation was associated with heart failure (157). The interplay between Wnt and 301 

miR‐222 in EndMT regulation has been recently suggested (158); specifically, miR‐222 is able to 302 

suppress the hyperglycemia‐induced EndMT and inhibit cardiac fibrosis by negatively regulating 303 

the Wnt/β‐catenin pathway in diabetic mice (158). Lastly, a further protective effect versus EndMT 304 

is exerted through the notch pathway and involves miR-18a-5p (159). The role of the notch 305 

pathway in heart development and control of the balance between fibrotic and regenerative repair 306 

in the adult heart has been widely confirmed (129). Moreover, Notch2 activation results essential 307 

for driving ECs differentiation (160, 161) in cardiovascular disease and for promoting EndMT 308 

independently or in association with TGF-β/SMAD3 signaling (162, 163). Notch2 is a target of 309 

miR-18a-5p which recently confirmed its antifibrotic role via the suppression of Notch2 and 310 

consequent inhibition of hyperglycemia-induced EndMT in human aortic valvular endothelial cells 311 

(HAVECs) (159). See figures and associated tables to overview of the signaling pathways 312 

involving both anti-fibrotic (Figure 1, Table 1) and pro-fibrotic (Figure 2, Table 2) miRNAs. 313 

 314 

Diabetic retinopathy 315 

Diabetic retinopathy (DR) is a common and severe microvascular complication of the eye that 316 

represents the leading cause of blindness in diabetes (164). The prevalence increases with disease 317 

progression and consequently with the exposure to the major risk factors, hyperglycemia and 318 

hypertension (165, 166). Generally, a tight blood glucose control is cornerstone to reduce the risk 319 

of DR progression (167). The condition is initially characterized by an asymptomatic stage, non-320 

proliferative diabetic retinopathy (NPDR), that involves increased vascular permeability and 321 

capillary occlusion. Retinal neovascularization, by contrast, predominates in a later stage, 322 

proliferative diabetic retinopathy (PDR) (168, 169), as consequence of hypoxia. However, as new 323 

vessels are relatively fragile, they tend to bleed into the macular region causing vision difficulties 324 

and, in the worst-case scenario, diabetic macular edema (DME), the main cause of blindness in 325 

DR (170). DME is described as a swelling of the macula due to fluid accumulation following 326 
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breakdown of the blood-retinal barrier (BRB). This event can occur both in the PDR and in the 327 

NPDR stage (171, 172). The BRB is composed of two distinct barriers: the outer BRB, consisting 328 

of retinal pigment epithelium and the inner BRB, composed of endothelial cells regulating the 329 

transport across retinal capillaries. Besides, the BRB is established by tight cellular junctions, both 330 

in the inner and outer barrier, as well as by the scarcity of endocytic vesicles within cells, which 331 

further ensure the integrity of the BRB (173, 174). In addition, pericytes, specialized mural cells 332 

with a central role in angiogenesis, regulate and stabilize this tight structure through the 333 

Angiopoietin-1/Tie-2, platelet-derived growth factor (PDGF) and TGF-β signaling pathways (175, 334 

176). BRB breakdown is a complex process involving different mechanisms; it can occur either in 335 

the inner BRB, the outer BRB, or both sites. The loss of integrity of the endothelial cell-cell 336 

junctions, the loss of pericytes and the thickening of the basement membrane are the major 337 

alterations observed in the inner BRB (172, 177). Several studies have shown that hyperglycemia 338 

represents the main risk factor contributing to the pathogenesis of diabetic retinopathy (172, 178, 339 

179). Furthermore, using a BRB model formed by retinal pericytes, astrocytes and endothelial 340 

cells, it has been recently reported that high glucose exposure elicits BRB breakdown, enhances 341 

BRB permeability and reduces the levels of junction proteins such as ZO-1 and VE-cadherin (180). 342 

Besides, elevated ROS as well as pro-inflammatory mediators (IL-1β, IL-6) and oxidative stress-343 

related enzymes (iNOS, Nox2) have also been shown to be increased (180). The major biochemical 344 

pathways involved in the BRB breakdown are the polyol pathway, the AGEs pathway, the PKC 345 

pathway and the hexosamine pathway. Oxidative stress and inflammation are responsible for the 346 

upregulation of growth factors and cytokines, such as vascular endothelial growth factor (VEGF), 347 

tumor necrosis factor (TNF), interleukins (ILs), and matrix metalloproteinases (MMPs), which 348 

contribute to the BRB breakdown and to the development of DME (172, 181-183). Studies have 349 

confirmed the role of the pro-angiogenic factor VEGF as main modulator of PDR and DME. VEGF 350 

is secreted by retinal pigmented epithelial cells, pericytes, and endothelial cells in response to 351 

hypoxia conditions caused by the obstruction and loss of retinal capillaries (171, 183). VEGF, in 352 

addition to promoting neovascularization in PDR, participates in the breakdown of the BRB via 353 

increasing permeability of retinal vessels (184). Indeed, high levels of VEGF increase the 354 

expression of the inflammatory intercellular adhesion molecule-1 (ICAM-1) which in turn 355 

facilitates the adhesion of leukocytes to the diabetic retinal vasculature, promoting capillary 356 

occlusion (171, 182, 185). 357 
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 358 

miRNAs regulation of DR-associated EndMT  359 

Hyperglycemia-induced increased production of ECM and thickening of the vascular basement 360 

membrane is the hallmark of diabetic retinopathy (186). As previously mentioned, hyperglycemia 361 

promotes fibrosis progression through the generation of ECs-derived myofibroblasts, EndMT. 362 

This process has been shown to play an important role also in the pathogenesis of DR (10). Similar 363 

to other diabetic complications, TGF-β is an important EndMT mediator, mainly through the 364 

activation of the SMAD signaling pathways (10, 187, 188). Moreover, the transcriptional activator 365 

p300, already known for increasing the expression of ECM proteins (189), and miR-200b have 366 

been described as key regulators of the TGF-β-mediated EndMT in diabetic mice (10). Although 367 

the specific mechanism played by miR-200b and p300 remains partially unknown, the anti-fibrotic 368 

activity of miR-200b, already described in other diabetic complications (146, 190), has also been 369 

confirmed in DR. Specifically, the EndMT observed in the retinas of wild-type diabetic mice was 370 

suppressed by the overexpression of miR-200b (10). As mentioned before, the outer BRB is 371 

composed of tight junctions of retina pigment epithelial cells (RPECs) which secrete various 372 

factors, nutrients and signaling molecules that influence the surrounding tissues (191, 192). 373 

Chronic hyperglycemia alters RPECs functions contributing to the fluid accumulation in DME and 374 

the development of DR (193). Under stress conditions RPECs cells can release large amounts of 375 

exosomes, nanoscale vesicles that mediate many intercellular activities such as cell-to-cell 376 

communication, immune regulation, inflammatory response, extracellular matrix turnover and 377 

neovascularization (194, 195). A recent study confirmed the importance of the crosstalk between 378 

ECs and RPECs cells in the progression of fibrosis in patients with DR (196). Specifically, it was 379 

observed that hyperglycemia increased the ability of RPECs to release miR-202-5p-enriched 380 

exosomes. On the other hand, hyperglycemia induced EndMT through the TGFβ signaling 381 

pathway activation in ECs. However, when ECs were treated with RPECs-derived exosomes, the 382 

hyperglycemia-induced TGFβ signaling pathway activation was significantly counteracted as well 383 

as the increased proliferation and migration (196). In addition, miR-202-5p, by targeting 384 

specifically TGFβR2, was responsible for the TGFβ signaling pathway inactivation and EndMT 385 

suppression (196). This study, in addition to providing additional evidence that hyperglycemia-386 

induced EndMT involves the activation of TGFβ signaling, also showed that the release of miR-387 
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202-5p-enriched exosomes from RPE cells leads to the suppression of EndMT. The RPE cells-388 

derived exosomes are therefore important mediators of the ECs-RPE cells c rosstalk in the 389 

development of DR (196). Additional miRNAs involved in EndMT regulation in DR include two 390 

members of the mi-RNA29 family, miR-29a and miR-29b, already described in fibrosis 391 

development associated with diabetic complications (79, 108, 197, 198). The anti-fibrotic activity 392 

of miR-29a/b has been recently confirmed also in DR where their overexpression suppressed the 393 

hyperglycemia-induced EndMT in human retinal microvascular endothelial cells (HRMECs) 394 

(199). The inhibitory effect of miR-29a/b was exerted through the down-regulation of the 395 

transmembrane protein Notch2, known to activate morphological and functional changes of ECs 396 

as well as promote EndMT (199, 200). See figures and associated tables to overview of the 397 

signaling pathways involving both anti-fibrotic (Figure 1, Table 1) and pro-fibrotic (Figure 2, 398 

Table 2) miRNAs. 399 

 400 

Atherosclerosis 401 

Atherosclerosis (AS) is characterized by plaque formation, secondary to the deposition of fats, 402 

cholesterol, and calcium, which lead to ischemia and its clinical manifestations, such as myocardial 403 

infarction and stroke (201). Although AS is classically associated with alterations of lipid 404 

metabolism and hypercholesterolemia (202), its pathogenesis is more complex and involves 405 

various factors. Endothelial dysfunction and inflammation are key steps in the sequence of events 406 

leading to AS (203, 204). The presence of mechanical stress, such as blood flow turbulence, can 407 

activate the endothelium, which responds by recruiting monocytes, adhesion molecules and pro-408 

inflammatory cytokines. Monocytes, facilitated by adhesion molecules and cytokines, infiltrate the 409 

intima and can differentiate in macrophages which actively participate in lipid uptake through 410 

phagocytosis (205). Diabetes and AS share several pathological mechanisms (206); indeed, the 411 

metabolic alterations that drive the development of diabetes are also involved in the pathogenesis 412 

of atherosclerosis (207, 208). In addition, both type 1 and type 2 diabetes can either induce 413 

atherosclerosis and accelerate its progression (207). In this context, a crucial role is played by the 414 

prolonged exposure to hyperglycemia and insulin resistance which are responsible for the 415 

increased atherosclerosis-related inflammation of the arterial wall (209, 210). In addition to 416 

triggering the onset and progression of diabetes, insulin resistance also promotes dyslipidemia, 417 
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hypertension and other metabolic abnormalities, important components of the pro-atherogenic 418 

milieu (209, 211). At the same time, an insufficient insulin signaling elicits an abnormal lipid 419 

metabolism and glucose transport and increase the production of glucose in the liver. Pancreatic β 420 

cells respond to hyperglycemia by increasing insulin secretion; however, the continued stimulation 421 

of β cells leads to their progressive functional failure and diabetes development (212, 213). 422 

Prolonged exposure to hyperglycemia increases oxidative stress (27, 214), the primary activator 423 

of signaling pathways driving AS and diabetes progression (215, 216). Overproduction of ROS 424 

increases the formation of advanced glycation end-products (AGEs), modifications of proteins or 425 

lipids that become non enzymatically glycated (209, 217). AGEs are involved in each step of 426 

atherosclerosis, being responsible for monocyte migration into the sub-endothelial space, release 427 

of cytokines by macrophages and stimulation of vasoconstriction (209). Moreover, the binding of 428 

AGEs to the receptor RAGE activates TGF-β, ERK, JNK, p38, NF-kB, PKC and the polyol 429 

pathways as well as maintaining the chronic pro-inflammatory state of the arterial wall (209, 218). 430 

 431 

miRNAs regulation of AS-associated EndMT  432 

As previously mentioned, endothelial dysfunction driven by oxidative stress plays a critical role 433 

in the development of AS. Persistent activation of ECs induces EndMT, which contributes to both 434 

the initiation and the progression of atherosclerosis (219, 220). Moreover, the extent of EndMT in 435 

the human plaque appears to be strongly correlated with the severity of the disease (12). A recent 436 

study showed the up-regulation of 17 miRNAs in atherosclerotic plaques; among them, miR-449a, 437 

already known for its role in lipid and cholesterol anabolism as well as inflammation (221), was 438 

significantly higher compared with normal arteries (222). The authors reported that miR-449a 439 

induces EndMT and promotes the development of AS by targeting the interaction between 440 

adiponectin receptor 2 (AdipoR2) and E-cadherin in lipid rafts (222). In this context, miR-449a 441 

has displayed a multilevel and complex regulatory mechanism by promoting proliferation and 442 

enhancing the migrating ability of ECs as well as their expression of atherosclerotic markers (222). 443 

The ability to induce EndMT was confirmed by the reduced E-cadherin expression concurrently 444 

with the increased expression of α-SMA and SMAD3 (222). miR-449a pro-atherosclerotic 445 

properties are exerted by inhibition AdipoR2 and E-cadherin migration into the lipid raft fractions 446 

of ECs and consequent suppression E-cadherin-AdipoR2 of interaction. Additionally, the authors 447 
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reported that blocking miR-449a protects diabetic mice from developing AS (222). Similarly to 448 

miR-449a, miR-374b was reported to be up-regulated both in atheroprone regions from mice and 449 

pigs and in TGF-β1-treated ECs (223). Additionally, the overexpression of miR-374b was 450 

associated with a reduction in endothelial markers (VE-Cadherin and eNOS), and a concomitant 451 

increase of mesenchymal markers (TAGLN and Calponin). Besides, miR-374b was able to induce 452 

EndMT through the silencing of the Mitogen-Activated Protein Kinase 7 (MAPK7) also known as 453 

ERK5 (223). MAPK7 is an antagonist of EndMT and its signaling activity is generally lost in 454 

vessel areas that are undergoing pathological remodeling (224, 225). Similarly, MAPK7 signaling 455 

activity was lost in the sites of vascular remodeling, providing an additional confirmation of the 456 

inhibitory action of miR-374b. By contrast, the recovery of MAPK7 signaling abrogated the 457 

pathological effect of miR-374b (223). miR-122, another miRNA recently reported as EndMT 458 

mediator in AS, has been shown to be up-regulated both in the aortic intima of diabetic mice and 459 

in the cellular EndMT model (226). The regulatory action of miR-122 is mediated by the neuronal 460 

PAS domain protein 3 (NPAS3). Indeed, inhibition of miR-122 prevented atherosclerosis and 461 

regulated NPAS3-mediated EndMT (226). miR-122 might therefore represent a druggable target 462 

in preventing EndMT-associated atherosclerosis. See figures and associated tables to overview of 463 

the signaling pathways involving both anti-fibrotic (Figure 1, Table 1) and pro-fibrotic (Figure 2, 464 

Table 2) miRNAs.   465 

 466 

Long non-coding RNAs regulation in diabetes-associated EndMT 467 

Besides miRNAs, small RNAs also include long non-coding RNAs (lncRNAs) and circular RNAs 468 

(circRNAs) which are emerging as key regulators implicated in a significant number of biological 469 

processes (227, 228). Unlike linear RNAs, circRNAs form a covalently closed continuous loop, 470 

without 5' or 3' ends (229). LncRNAs are instead linear RNAs, with a nucleotide length >200, that 471 

can affect gene transcription both at the epigenetic, transcriptional and post-transcriptional level 472 

(230, 231). Thus, LncRNAs can differently interact with mRNAs, proteins, and DNA elements; 473 

moreover, the binding of transcriptional factors to the lncRNA promoter's target sites can regulate 474 

their expression. (232). LncRNAs are also precursors of many types of miRNAs, although more 475 

frequently they overlap both physically and functionally with the latter. Moreover, lncRNAs 476 

compete with miRNAs for the binding to the same target genes and can trigger miRNAs 477 
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degradation (232, 233). Hence, lncRNAs are involved in a variety of human diseases where they 478 

appear differentially expressed or genetically perturbed (234, 235). In this context, most of the 479 

knowledge pertaining to lncRNAs is derived from cancer however there is increasing evidence of 480 

their involvement in other conditions, such as Alzheimer’s disease, diabetes, cardiac complications 481 

(46, 236, 237) and fibrosis (238-240). One important function of lncRNAs is their role as a 482 

molecular sponge to certain miRNAs, hindering their expression (241). This mechanism has been 483 

confirmed in diabetic kidney fibrosis, where the down-regulation of the anti-fibrotic miR-29 was 484 

associated with lncRNA H19 up-regulation, whereas its knockdown restored miR-29 activity and 485 

significantly inhibited TGF-β2-induced EndMT in diabetic mice (242). However, the role of H19 486 

in diabetes-associated EndMT remains unclear; indeed, H19 overexpression prevented glucose-487 

induced EndMT by reducing the TGF-β1 levels in DR (243). Further studies are required to clarify 488 

the role of H19 in regulating EndMT in diabetic conditions. Another lncRNA involved in DR is 489 

the maternally expressed gene 3 (MEG3) which showed an inhibitory effect on hyperglycemia-490 

induced EndMT. MEG3 resulted indeed able to suppress EndMT both in vivo and in vitro by 491 

inhibiting the PI3K/AKT/mTOR signaling pathway (244). On the other hand, MEG3 methylation 492 

mediated by DNA methyltransferase 1(DNMT1) attenuated MEG3 expression and consequently 493 

accelerated EndMT (244). This finding clarifies the role of MEG3 in EndMT and provide 494 

additional confirmation that increased levels of DNA methylation represent a potential risk factor 495 

for the development of DR (245). As previously reported, oxidized low density lipoproteins (ox-496 

LDL), being able to trigger plaque formation and EndMT, are key players in AS development 497 

(246). A recent study reported that miR-30c-5p and LINC00657, also known as noncoding RNA 498 

activated by DNA damage (NORAD), are both involved in ox-LDL-induced EndMT but with 499 

opposite effects (247). miR-30c-5p inhibited ox-LDL-induced EndMT via activation of the 500 

Wnt7b/β-catenin pathway whereas LINC00657, acting as sponge of miR-30c-5p, suppressed the 501 

EndMT inhibition (247). Indeed, the expression level of LINC00657 resulted elevated both in sera 502 

from AS patients and in ox-LDL-stimulated ECs (247). 503 

 504 

Potential ROS-EndMT-small RNAs interplay in diabetes-associated fibrotic conditions  505 

Oxidative stress is a key player in the diabetic complications' pathophysiology described in this 506 

review. Hyperglycemia is not only the main factor responsible for the increase in ROS but also 507 
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favors the increase of inflammatory mediators, which ultimately leads to vascular dysfunction 508 

(248). Both genetic and epigenetic factors can regulate the development and exacerbation of 509 

oxidative stress; in this context, different studies have highlighted the key role played by miRNAs 510 

(249). Indeed, hyperglycemia can alter miRNAs expression, which in turn contributes to the 511 

development of endothelium dysfunction and diabetic vascular disease (248). Besides, in diabetic 512 

complications the molecular mechanisms and signaling pathways triggered by oxidative stress 513 

appear similar to those involved in miRNAs regulation (249, 250). Finally, hyperglycemia-induced 514 

oxidative stress can affect the expression of specific miRNAs, which in turn can exacerbate 515 

oxidative stress, in addition to regulating the fibrotic process through the mechanisms summarized 516 

in this review (249, 250). On the other hand, oxidative stress is emerging as a key trigger of EndMT 517 

(25, 26). Therefore, although a direct oxidative stress-small RNAs-EndMT link has not been 518 

demonstrated in diabetes yet, a substantial body of evidence supports this interplay. For example, 519 

an indirect proof of a ROS-miR-21-EndMT link has been reported with kallistatin, an endogenous 520 

protein with beneficial effects on EndMT-associated fibrosis (251). Kallistatin treatment blocked 521 

TGF-β-induced EndMT, NADPH oxidase-dependent ROS formation and the expression of the 522 

pro-fibrotic miR-21, confirming the role of both miR-21 and ROS as major mediators of EndMT 523 

(251). Many studies indicated a direct link between mi-R21 and oxidative stress in diabetic 524 

subjects, where ROS generation has been suggested as a downstream effect of miR-21 525 

overexpression (252). The pro-oxidant effect of miR-21 is exerted through the suppression of 526 

genes which usually limit oxidative damage such as KRIT1 (Krev/Rap1 Interaction Trapped-1), 527 

Nuclear Factor erythroid Related Factor 2 (NRF2), and MnSOD2 (Manganese-dependent 528 

Superoxide Dismutase2). By contrast, inhibition of miR-21 decreases ROS levels (249, 253). A 529 

relationship between up-regulation of miR-21 and increased ROS levels has also been shown 530 

during the development of diabetic cardiac dysfunctions (254). The miR-200 family, the anti-531 

fibrotic activity of which has been described both in diabetic nephropathy and retinopathy, has 532 

also been shown to be associated with a decrease in oxidative stress in diabetes; specifically, the 533 

antioxidant effect of miR-200 is exerted by silencing the O-GlcNAc transferase, also known as 534 

OGT, whose enzymatic activity is associated with diabetic complications and endothelial 535 

inflammation (250). Another proof of the oxidative stress-small RNAs-EndMT interconnection 536 

comes from a study investigating the activity of miR-451 (255). The latter, previously described 537 

for its ability to induce EndMT in diabetic mouse heart (155), has been recently reported to be up-538 
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regulated in diabetic subjects with high oxidative stress. The association between miR-451 and 539 

oxidative stress has been further confirmed with the use of the antioxidant Vitamin C; indeed, 540 

Vitamin C administration in diabetic subjects decreased both the expression of miR-451 and ROS 541 

levels (255). Finally, an interplay being the basis of mitochondrial functions in kidney ECs 542 

involves the miR-let-7 family, (FGF)/FGFR1 signaling pathway and SIRT3 (256). The integrity 543 

of the FGFR1-miR-let-7 axis, on which depends the modulation of SIRT3, is crucial for 544 

maintaining the mitochondrial functionality (256). SIRT3, for its part, controls mitochondrial 545 

redox homeostasis by modulation of ROS levels (257, 258) mainly via activation of the antioxidant 546 

enzyme superoxide-dismutase 2 (259). On the contrary, the loss of the FGFR1-miR-let-7axis 547 

impairs SIRT3 and miR-29 levels with consequent disruption of mitochondrial integrity and 548 

activation of pro-mesenchymal signaling (Wnt signaling, BMP, Notch, TGF-β signaling) 549 

promoting EndMT (256) 550 

 551 

Conclusion and future directions 552 

This review has highlighted the key role of EndMT in the fibrotic process occurring in the 553 

development of the major diabetic complications. Environmental factors (high glucose, hypoxia, 554 

oxidative stress, pro-inflammatory cytokines) are important determinants of EndMT induction 555 

through the activation of specific signaling pathways, such as TGF-β, Notch, Wnt, and the 556 

modulation of the expression of microRNAs. The evidence reviewed in this article indicates that 557 

some microRNAs, e.g., miR-29, miR-200, and miR-Let7, have anti-fibrotic effects and inhibit 558 

EndMT whereas others, e.g., miR-21 and miR-122, possess pro-fibrotic properties and promote 559 

EndMT. The anti-fibrotic activity of some microRNAs appears univocal not only within diabetic 560 

complications but also in other pathological conditions. For instance, miR-29a/b and miR-200b 561 

have been shown to inhibit fibrosis in pulmonary fibrosis (260, 261), systemic sclerosis (106) as 562 

well as in DCM, DN and DR (10, 108, 146, 199). Similarly, miR-21 is generally up-regulated in 563 

different fibrotic diseases (96, 140) as well as in diabetic complications such as DN, DR and DCM 564 

(11, 144, 262). Moreover, since the expression levels of miR-21 in the plasma of diabetic patients 565 

were correlated with disease progression, miR-21 might be used as a marker of diabetes severity 566 

(263). On the other hand, the function of other microRNAs is only partially established in in vitro 567 

models or in specific pathological conditions. Further, for some miRNAs the evidence is still 568 
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controversial, such as the case of the lncRNA H19 which showed pro-fibrotic activity in DN (242) 569 

and an opposite effect in DR (243). Additionally, since the markers for EndMT used in individual 570 

studies are often different, a complete understanding of the regulatory mechanisms played by 571 

miRNAs, or an exact comparison between them, is currently challenging. In this regard, future 572 

directions in the study of diabetic complications should involve a) a thorough characterization of 573 

the mechanisms involved in the ROS-EndMT-small RNAs interplay and its relationship with the 574 

onset and severity of specific complications, b) the conduct of epidemiological studies 575 

investigating the association between specific miRNAs and lncRNAs and metabolic control, 576 

surrogate markers of organ damage, and morbidity and mortality in patients with diabetes, and c) 577 

the effects of specific pharmacological and non-pharmacological interventions targeting EndMT 578 

on the risk and progression of diabetic complications. Such studies might contribute to the 579 

identification of new diagnostic and therapeutic strategies to prevent or limit the structural and 580 

functional damage that leads to organ and system failure in diabetes. 581 
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Figures and Tables 601 

 602 

Figure 1. Anti-fibrotic miRNAs in diabetic complications.  603 

miR-142-3p and miR-200b inhibit EndMT by inactivating the TGF-β-SMAD pathway. The 604 

antifibrotic activity of miR-200b is played by down-regulating the TGF-β/SMAD pathway 605 

coactivator p300. miR-497 suppresses TGF-β-induced EndMT by ROCK1 and ROCK2 606 

inactivation. The overexpression of DPP-4 is associated with the suppression of the miR-29s 607 

family anti-fibrotic activity. However, both linagliptin and AcSDKP suppresses EndMT by 608 

restoring miR-29 and miR-let-7s activities. Furthermore, miR‐448‐3p inhibits EndMT via DPP‐4 609 

suppression. AcSDKP upregulates the antifibrotic miR-let-7 which suppresses TGFβR1 and TGFβ 610 

signaling. The block of TGFβ signaling results in up-regulation of miR-29 gene expression, which 611 

in turn causes FGFR1 phosphorylation. FGFR1 phosphorylation is critical for miR-let-7 612 

production. miR-29 can also target the profibrotic IFNY blocking its inhibitory action toward 613 

FGFR1. The miR-29s family inhibits high glucose-induced EndMT by down-regulating Notch2, 614 

which is also suppressed by miR-18a-5p. However, DPP-4 inhibitor and AcSDKP suppresses 615 

EndMT by restoring of miR-29 and miR-let-7s activities. Furthermore, miR‐448‐3p inhibit 616 

EndMT via DPP‐4 suppression. The miR-29s family inhibits high glucose-induced EndMT by the 617 

downregulation of Notch2 which is also suppressed by miR-18a-5p. High glucose-induced EndMT 618 

is also suppressed by miR-221/222 family, via the negative regulation of Wnt/β‐catenin, and by 619 
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miR-202-5p via inhibition of TGFβR2/TGFβ signaling pathway. Pro-fibrotic miRNAs are showed 620 

in dark, anti-fibrotic miRNAs in red. 621 

 622 

Anti-fibrotic miRNAs in diabetic complications 

miRNAs DN DR Other DCM Reference 

miR-142-3p    TGFβ-SMAD (145) 

miR-200b 

 

miR-200b 

  

TGFβ1-

p300 

 TGFβ-p300 (10) 

(146) 

miR-202-5p  TGFβR2   (196) 

miR-497b ROCK1/2    (115) 

miR-221/222 

 

miR-221/222 

   Wnt-β/Catenin (157) 

(158) 

miR-29s 

 

miR-29s 

 

TGFβ signaling 

Notch2   (199) 

(44, 79, 111) 

miR-Let7 TGFβ signaling    (44, 79, 111) 

miR-448-3p   TGFβ 

signaling 

 (114) 

miR-18a-5p    Notch2 (159) 

 623 

Table 1. Anti-fibrotic miRNAs in diabetic complications. Table 1 summarizes the references 624 

describing the anti-fibrotic miRNAs in diabetic complication. DN: Diabetic Nephropathy; DR: 625 

Diabetic Retinopathy; DCM: Diabetic Cardiomyopathy. 626 

 627 

  628 
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 629 

Figure 2. Pro-fibrotic miRNAs in diabetic complications.  630 

TGF-β increases miR-21 expression through Smad3 activation. miR‐21 expression is also directly 631 

increased by TGF-β and high glucose. miR-21 can in turn activates EndMT through releasing 632 

PTEN of Smad7 inhibition (red arrow). Indeed, both PTEN and SMAD7 are negative regulators 633 

of EndMT via the Akt and TGF-β1/Smad3 signaling respectively. SMAD7 can also suppress 634 

fibrosis by down-regulating the pro-fibrotics miR-21 and miR-192, and up-regulating the anti-635 

fibrotic miR-29b. miR451 triggers EndMT by blocking AMPK, an inhibitor of the TGF-β/SMAD 636 

pathway. miR-449a induces EndMT by inhibiting AdipoR2 and E-cadherin interaction in the lipid 637 

rafts. miR-374b plays its profibrotic activity by releasing MAPK7/ERK5-mediated EndMT 638 

inhibition. Finally, miR-122 activates EndMT via the neuronal PAS domain protein 3 (NPAS3). 639 

Pro-fibrotic miRNAs are shown in dark, anti-fibrotic miRNAs in red. 640 

 641 

 642 

 643 

 644 
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Pro-fibrotic miRNAs in diabetic complications 
miRNAs DN DR AS DCM Reference 

miR-21 TGFβ-SMAD    (11) 

miR-21 PTEN/Akt    (100) 

miR-21    NFkB/SMAD (144) 

miR-451    TGFβ-SMAD (155) 

miR-449   E-Cadherin/AdipoR2  (222) 

miR-374b   MAPK7/ERK  (223) 

miR-122   NPAS3  (226) 

 645 

Table 2. Pro-fibrotic miRNAs in diabetic complications. Table 2 summarizes the references 646 

describing the pro-fibrotic miRNAs in diabetic complications. DN: Diabetic Nephropathy; DR: 647 

Diabetic Retinopathy; DCM: Diabetic Cardiomyopathy; AS: Atherosclerosis. 648 
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