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a b s t r a c t 

This paper takes up the reliability and preventive replacement problems for a K -out-of- n 

system, where K is a stochastic parameter provided. Firstly, we consider the case when K 

is predefined as constant numbers as is done with the traditional method, and obtain the 

system reliability R ( t ), mean time to failure (MTTF), and replacement policies, in which the 

number n of units for replacement and replacement time T of operation are, respectively, 

optimized. Secondly, we focus on the above discussions again when K cannot be predefined 

constantly, but it is a random variable with an estimated probability function. Furthermore, 

we give approximate computations in an easier way for MTTF, optimal number n ∗ and 

replacement time T ∗, respectively. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The K -out-of- n (1 ≤ K ≤ n ) system, which can be operating if and only if at least number K of the total n units are

operating [1] , has been widely used in practical fields such as data transmission, redundant networks, redundant copies,

etc. [2] . The reliability characteristics of a K -out-of- n system were investigated [3,4] . The number n of units that should be

on-line to assure at least K units are available to complete an assignment for mass transit was determined [5] . A K -out-

of- n system was also used as a self-checking checker for error detecting codes [6] . Surveys of multi-state and consecutive

K -out-of- n systems [7,8] and parallel and consecutive- K -out-of- n: F systems [9] were conducted. 

Other recent works on K -out-of- n systems, such as system with single vacation [10] , computing tolerance limits for

lifetime [11] , the joint reliability importance (JRI) in K -out-of- n: G systems [12–14] , lifetime and survival functions of two

different multi-state K -out-of- n systems [15] , binary decision diagrams (BDD) and multi-valued decision diagrams (MMDD)

based method for binary and multi-state K -out-of- n: G systems [16] , likelihood ratio order and hazard rate order for K -out-

of- n systems [17] , Monte-Carlo simulation algorithm of mean time to failure for the weighted K -out-of- n: G systems and

linear consecutive weighted K -out-of- n: G systems [18] and the reliability evaluation methodology for multi-state weighted

K -out-of- n system [19] , have been surveyed. 

When a K -out-of- n system is designed, both K and n should be decided at early designing phase to confirm the principal

specifications. The fault tolerant computer is an example of a K -out-of- n system and is commonly applied to aircraft flight

control systems and nuclear power plant controllers. The K is determined by considering a minimum constitution which can

submit the correct outputs and is definitely decided by system design, and n is determined by considering the availability

and maintenance cost of the system. When n is large, i.e ., the system has enough redundancy, fault tolerant ability of the
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system increases and maintenance cost of redundant subsystem also increases. In case of nuclear power plant controllers,

the large n is for high damage tolerance because such systems are demanded to be high reliable. 

The surface of an aluminum-skin airplane is composed of sheet metals which may be 3.8 m long and 1.5 m wide.

Overlapping portions of sheets are called lap joints or lap splices and are joined together with three rows of hundreds of

rivets typically. Lap joint is another example of K -out-of- n systems. When two sheet metals of an airframe is connected with

n rivets, airframe should be designed to withstand maximum load during operation by K ( K < n ) rivets because some rivets

can be broken and loose their strength during flight. Airframe structures should retain their required residual strength for

a period of operation after damage has occurred and such design concept is called damage-tolerance design. The damage

tolerance design is required for civil aircraft developments by regulation after General Dynamics F-111 accident in 1969 and

Dan Air Boeing 707 accident in 1977 [20] . 

Although the damage tolerance design has been inherited, additional requirements are usually settled by regulations after

serious accidents. After Aloha accident in 1988, the widespread fatigue damage (WFD) was firstly introduced to regulations,

and the full-scale fatigue test certificating damage tolerance for WFD was also introduced. The full-scale fatigue test was

obligated to certify of freedom from WFD up to the service period [21] . WFD is defined as the simultaneous presence of

cracks at multiple structural details that are of sufficient size and density whereby the structure will no longer meet its

damage tolerance requirement [22] . From 2011, establishing a limit of validity (LOV) for future civil aircrafts are required

[23] . LOV is a period of time when WFD will not occur in airframe structure. 

To support LOV in design, parameters should be treated probabilistically because stress during each operation is changing

and crack growth rates during each operation are also modifying. When we establish mathematical model of lap joints using

K -out-of- n systems, both K and n may be regarded as stochastic parameters. However, the total number n , which depends

on K , should be pre-specified at preflight checks as it is a number of normal bolts for an inspection standard. For this, one

purpose of this paper is to determine how many n units should be provided according to the stochastic parameter K . 

It has been supposed in most redundant systems that the number of units is constant and could be predetermined, e.g.,

a standard parallel system which consists of n identical units [2] . However, we might not know the exact number of units

of whole system because real systems would be complex and large [24] . Such stochastic phenomena arise in order statistics

when the sample size is random [25–29] . Reliability quantities such as MTTF, and replacement policies for such a parallel

system with a random number n of units were discussed [30] . Similarly, for a K -out-of- n system with stochastic parameter

K , another purposes of this paper are to observe the system reliability R ( t ), to estimate mean time to failure (MTTF), and to

model replacement policies. 

The remainder of this paper is organized as follows: When K is predefined as constant numbers for the above K -out-of- n

system, the system reliability R ( t ) and MTTF are firstly obtained in Section 2 . Optimal number n ∗ of units that should be

provided for replacement and optimal replacement time T ∗ of operation are respectively discussed in Section 2 . Sections 3 –5

survey the models in Section 2 again when parameter K is a random variable with truncated Poisson distribution. Finally,

conclusions of the paper are provided in Section 6 . 

2. Constant number K of units 

2.1. Reliability and MTTF 

Consider a K -out-of- n system (n = 1 , 2 , . . . ) in which K is predefined as constant numbers such that K = 1 , 2 , . . . , n .

We suppose that each unit has an identical failure distribution F ( t ) with finite mean μ ≡ ∫ ∞ 

0 F (t) d t < ∞ , density function

f ( t ) ≡ d F ( t )/d t and failure rate h (t) ≡ f (t ) / F (t ) , where F (t ) ≡ 1 − F (t) , and the system fails when at least number n − K + 1

of units have failed. Then, the reliability of the system at time t is, i.e., the probability that at least number K of units are

operating at time T is [ 1 , p. 216], [ 31 , p. 12]: 

R (t) = 

n −K ∑ 

j=0 

(
n 

j 

)
[ F (t)] j [ F (t)] n − j 

= 

n ∑ 

j= K 

(
n 

j 

)
[ F (t)] j [ F (t)] n − j , (1) 

which decreases with t from 1 to 0, because; 

d R (t) 

d t 
= n f (t) 

n ∑ 

j= K 

{(
n 

j 

)
[ F (t)] j [ F (t)] n − j−1 −

(
n − 1 

j − 1 

)
[ F ( t)] j−1 [ F ( t)] n − j−1 

}
= −n f (t) 

(
n − 1 

j − 1 

)
[ F ( t)] K−1 [ F ( t)] n −K ≤ 0 . 

The mean time to system failure (MTTF) is: 
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Table 1 

Values of μn,K , ˜ μA 
n,K = [ 

∑ n 
j= K (1 / j)] 1 /m and ˜ μB 

n,K = { ln [ n/ (K − 1)] } 1 /m when 

F (t) = 1 − exp (−t m ) (m = 2 , 3) and n = 100 . 

K m = 2 m = 3 

μn,K ˜ μA 
n,K 

˜ μB 
n,K μn,K ˜ μA 

n,K 
˜ μB 

n,K 

1 2 .262 2 .278 2 .277 1 .720 1 .731 1 .731 

2 2 .037 2 .046 2 .146 1 .606 1 .612 1 .664 

5 1 .757 1 .762 1 .794 1 .455 1 .459 1 .477 

10 1 .533 1 .536 1 .552 1 .329 1 .331 1 .340 

20 1 .278 1 .281 1 .289 1 .177 1 .179 1 .184 

50 0 .839 0 .842 0 .845 0 .889 0 .891 0 .894 

60 0 .722 0 .724 0 .726 0 .804 0 .806 0 .808 

70 0 .605 0 .607 0 .609 0 .715 0 .717 0 .719 

80 0 .481 0 .484 0 .486 0 .613 0 .617 0 .618 

90 0 .337 0 .341 0 .341 0 .483 0 .488 0 .488 

100 0 .089 0 .100 0 .100 0 .192 0 .215 0 .216 

 

 

 

 

 

 

 

 

 

 

 

 

 

μn,K ≡
∫ ∞ 

0 

R (t) d t = 

n −K ∑ 

j=0 

(
n 

j 

)∫ ∞ 

0 

[ F (t)] j [ F (t)] n − j d t 

= 

n ∑ 

j= K 

(
n 

j 

)∫ ∞ 

0 

[ F (t)] j [ F (t)] n − j d t , (2)

which decreases with K from 

∫ ∞ 

0 { 1 − [ F (t )] n } d t to 
∫ ∞ 

0 [ F (t )] n d t . 

In particular, when F (t) = 1 − e −λt , 

μn,K = 

1 

λ

n ∑ 

j= K 

1 

j 
, (3)

and it is approximately given by: 

˜ μn,K ≡ 1 

λ
[ ln n − ln (K − 1)] = 

1 

λ
ln 

n 

K − 1 

, (4)

for large n , which is motivated from [24] . In case of K = 1 , ˜ μn,K = (1 /λ)( ln n + γ ) [30] , where γ ≡ 0 . 5772156649 . . . is Euler’s

constant [32] . 

In addition, when the failure time of each unit has a Weibull distribution, i.e ., F (t) = 1 − exp [ −(λt) m ] (m ≥ 1) , MTTF in

(2) is approximately given by: 

˜ μn,K ≈ 1 

λ

( 

n ∑ 

j= K 

1 

j 

) 1 /m 

≈ 1 

λ

(
ln 

n 

K − 1 

)1 /m 

. (5)

Denoting ˜ μA 
n,K 

= [ 
∑ n 

j= K (1 / j)] 1 /m and 

˜ μB 
n,K 

= { ln [ n/ (K − 1)] } 1 /m , Table 1 presents μn,K in (2) , and its approxi-

mations [ 
∑ n 

j= K (1 / j)] 1 /m and { ln [ n/ (K − 1)] } 1 /m in (5) , where F (t) = 1 − exp (−t m ) (m = 2 , 3) and n = 100 . Obviously,

{ ln [ n/ (K − 1)] } 1 /m = ( ln n + γ ) 1 /m when K = 1 . It is much easier to compute approximations in (5) , and Table 1 shows that

the approximate [ 
∑ n 

j= K (1 / j)] 1 /m and { ln [ n/ (K − 1)] } 1 /m are very good approximations of the exact μn,K . 

2.2. Replacement policies 

The system should be replaced with a new one immediately when it fails, we suppose that c 1 is a replacement cost

for each unit and c R is an assembly cost for the new system. Then, the expected cost rate until replacement at failure is

[ 31 , p. 12]: 

C(n, K) = 

nc 1 + c R 
μn,K 

(n = K, K + 1 , . . . ) . (6)

In particular, when F (t) = 1 − e −λt , the expected cost rate is, from (3) , 

C(n, K) 

λ
= 

nc 1 + c R ∑ n 
j= K ( 1 / j ) 

(n = K, K + 1 , . . . ) . (7)

We find optimal n ∗ to minimize C ( n, K ) for given K ( K ≥ 1). From the inequality C(n + 1 , K) − C(n, K) ≥ 0 , 

(n + 1) 
n ∑ 

j= K 

1 

j 
− n ≥ c R 

c 1 
(n = K, K + 1 , . . . ) , 
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i.e. , 

(n + 1) 

( 

n +1 ∑ 

j= K 

1 

j 
− 1 

) 

≥ c R 
c 1 

(n = K, K + 1 , . . . ) , (8) 

whose left-hand side increases strictly with n to ∞ . Thus, there exists a finite and unique minimum n ∗ ( K ≤ n ∗ < ∞ ) which

satisfies (8) and increases with K . 

Next, we suppose that the system is replaced preventively at a planned time T (0 < T ≤ ∞ ) or correctively at system

failure, whichever occurs first. Then, the expected cost rate is [ 2 , p.12]: 

C(T , K) = 

nc 1 + c R 
∑ K−1 

j=0 

(
n 
j 

)
[ F (T )] j [ F (T )] n − j ∑ n 

j= K 
(

n 
j 

) ∫ T 
0 [ F (t)] j [ F (t)] n − j d t 

, (9) 

where c 1 and c R are given in (6) . 

We find an optimal T ∗ for given K (1 ≤ K ≤ n ) which minimizes C ( T, K ). 

Theorem 1. If Q ( T, K ) increases strictly with T to Q ( ∞ , K ), and 

Q(∞ , K) μn,K > 

nc 1 + c R 
c R 

, 

then there exists a finite and unique T ∗ (0 < T ∗ < ∞ ) which satisfies: 

Q(T , K) 
n ∑ 

j= K 

(
n 

j 

)∫ T 

0 

[ F (t )] j [ F (t )] n − j d t 

−
K−1 ∑ 

j=0 

(
n 

j 

)
[ F (T )] j [ F (T )] n − j = 

nc 1 
c R 

, (10) 

where 

Q(T , K) ≡
nh (T ) 

(
n −1 
K−1 

)
[ F (T )] K [ F (T )] n −K ∑ n 

j= K 
(

n 
j 

)
[ F (T )] j [ F (T )] n − j 

. 

Proof. Differentiating C ( T, K ) with respect to T and setting it equal to zero, we have (10) . Letting L ( T, K ) be the left-hand

side of (10) , it can be easily shown that L (0 , K) = 0 , and 

L (∞ , K) = Q(∞ , K) μn,K − 1 , 

d L (T , K) 

d T 
= 

d Q(T , K) 

d T 

∞ ∑ 

j= K 

(
n 

j 

)∫ T 

0 

[ F (t)] j [ F (t)] n − j d t > 0 , 

which follows that L ( T, K ) increases strictly with T from 0 to L ( ∞ , K ). Thus, if Q(∞ , K) μn,K > (nc 1 + c R ) /c R , then there exists

a finite and unique T ∗ (0 < T ∗ < ∞ ) which satisfies (10) to minimize C ( T, K ) in (9) . �

In particular, when F (t) = 1 − e −λt , 

Q(T , K) ≡
nλ

(
n −1 
K−1 

)
∑ n 

j= K 
(

n 
j 

)(
e λT − 1 

)K− j 
, 

which increases strictly with T from 0 to K λ for K < n and is constant n λ for K = n . Therefore, if K < n and

(K/n ) 
∑ n 

j= K+1 (1 / j) > c 1 /c R , then there exists a finite and unique T ∗ (0 < T ∗ < ∞ ) which satisfies (10) . When K = n,

Q(T , K) = nλ, and hence, T ∗ = ∞ . 

3. Random number ofunits 

Suppose that the number K of units for a K -out-of- n system is a random variable with a probability distribution. In other

words, suppose that K is a random variable for a specified n ( n ≥ 1) and has a probability function p k,n ≡ P r { K = k } (k =
1 , 2 , . . . , n ) . Then, the reliability at time t is, from (1) , 

R (t) = 

n ∑ 

k =1 

p k,n 

n −k ∑ 

j=0 

(
n 

j 

)
[ F (t)] j [ F (t)] n − j = 

n −1 ∑ 

j=0 

n − j ∑ 

k =1 

p k,n 

(
n 

j 

)
[ F (t)] j [ F (t)] n − j 

= 

n ∑ 

j=1 

j ∑ 

k =1 

p k,n 

(
n 

j 

)
[ F (t)] j [ F (t)] n − j , (11) 
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Table 2 

MTTF μn,p and its approximation ˜ μn,p when F (t) = 1 −
exp (−t) , n = 100 and E{ K} = ω. 

ω θ μn,p 
˜ θ ˜ μn,p 

1 0 .0 0 0 5 .187 0 5 .187 

2 1 .0 0 0 4 .391 1 4 .391 

5 4 .0 0 0 3 .220 4 3 .220 

7 6 .0 0 0 2 .818 6 2 .818 

10 9 .0 0 0 2 .413 9 2 .413 

20 19 .00 1 .666 19 1 .666 

30 29 .00 1 .243 29 1 .243 

40 39 .00 0 .947 39 0 .947 

 

 

 

 

 

 

 

 

 

and the MTTF is: 

μn,K = 

n −1 ∑ 

j=0 

n − j ∑ 

k =1 

p k,n 

(
n 

j 

)∫ ∞ 

0 

[ F (t)] j [ F (t)] n − j d t 

= 

n ∑ 

j=1 

j ∑ 

k =1 

p k,n 

(
n 

j 

)∫ ∞ 

0 

[ F (t)] j [ F (t)] n − j d t . (12)

Note that when K is a uniform distribution i.e ., p k,n = 1 /n (k = 1 , 2 , . . . , n ) , R (t) = F (t) and μn,K = μ, which correspond

to reliability and MTTF of the one unit system. 

In particular, when F (t) = 1 − e −λt , 

μn,K = 

1 

λ

n ∑ 

j=1 

1 

j 

j ∑ 

k =1 

p k,n = 

1 

λ

n ∑ 

k =1 

p k,n 

n ∑ 

j= k 

1 

j 
. (13)

Clearly, from (4) , MTTF is approximately given by: 

˜ μn,K = 

1 

λ

n ∑ 

k =1 

p k,n ln 

(
n 

k − 1 

)
, (14)

for large n . 

We next consider the following case of a truncated Poisson function for p k,n : When p k,n = [ θ k −1 /

(k − 1)!] / 
∑ n −1 

i =0 (θ
i /i !) (k = 1 , 2 , . . . , n ) (0 < θ < ∞ ) with: 

E{ K} = 

θ
∑ n −2 

i =0 (θ
i /i !) ∑ n −1 

i =0 (θ
i /i !) 

+ 1 , 

where 
∑ −1 

i =0 ≡ 0 , MTTF is: 

μn,p = 

1 

λ

n ∑ 

j=1 

1 

j 

∑ j−1 

k =0 
(θ k /k !) ∑ n −1 

k =0 (θ
k /k !) 

, (15)

which decreases strictly with θ to 1/ λ. 

For large n , p k,n = [ θ k −1 / (k − 1)!] e −θ with mean θ + 1 , i.e ., 
∑ n −1 

i =0 (θ
i /i !) e −θ → 1 , and; 

˜ μn,p = 

1 

λ

n ∑ 

j=1 

1 

j 

j−1 ∑ 

k =0 

θ k 

k ! 
e −θ . (16)

Table 2 presents μn,p in (15) and its approximation 

˜ μn,p in (16) when F (t) = 1 − e −t , n = 100 and E{ K} = ω. The MTTF

μn,p and its approximation 

˜ μn,p can be calculated as follows: (i) Compute θ which satisfies: 

θ
∑ n −2 

i =0 (θ
i /i !) ∑ n −1 

i =0 (θ
i /i !) 

+ 1 = ω. 

Using θ , compute μn,p in (15) . (ii) ˜ μn,p in (16) is calculated when 

˜ θ + 1 = ω. 

4. Optimal number of units 

When K has a probability function p k,n (k = 1 , 2 , . . . , n ) and F (t) = 1 − e −λt , the expected cost rate is, from (7) and (13) , 

C(n, p) 

λ
= 

nc 1 + c R ∑ n 
j=1 (1 / j) 

∑ j p k,n 

(n = 1 , 2 , . . . ) . (17)
k =1 
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From the inequality C(n + 1 , p) − C(n, p) ≥ 0 , 

(n + 1) 
n ∑ 

j=1 

1 

j 

j ∑ 

k =1 

p k − n ≥ c R 
c 1 

(n = 1 , 2 , . . . ) . (18) 

We find an optimal n ∗p which minimizes C ( n, p ) in (17) when p k,n = [ θ k −1 / (k − 1)!] / 
∑ n −1 

i =0 (θ
i /i !) (k = 1 , 2 , . . . , n ) . 

Theorem 2. There exists a finite and minimum n ∗p (1 ≤ n ∗p < ∞ ) which satisfies: 

n + 1 ∑ n −1 
i =0 (θ

i /i !) 

n ∑ 

j=1 

1 

j 

j−1 ∑ 

k =0 

θ k 

k ! 
− n ≥ c R 

c 1 
. (19) 

Proof. When p k,n = [ θ k −1 / (k − 1)!] / 
∑ n −1 

i =0 (θ
i /i !) (k = 1 , 2 , . . . , n ) , the expected cost rate in (17) is: 

C(n, p) 

λ
= 

(nc 1 + c R ) 
∑ n −1 

i =0 (θ
i /i !) ∑ n 

j=1 (1 / j) 
∑ j−1 

k =0 
(θ k /k !) 

, (20) 

and from (18) , we obtain (19) . �

For any large n > n 0 , 

n + 1 ∑ n −1 
i =0 (θ

i /i !) 

n ∑ 

j=1 

1 

j 

j−1 ∑ 

k =0 

θ k 

k ! 
− n − n + 1 ∑ n −1 

i =0 (θ
i /i !) 

n 0 ∑ 

j=1 

1 

j 

j−1 ∑ 

k =0 

θ k 

k ! 
+ n 0 

= 

n + 1 ∑ n −1 
i =0 (θ

i /i !) 

n ∑ 

j= n 0 +1 

( 

1 

j 

j−1 ∑ 

k =0 

θ k 

k ! 
− 1 

n + 1 

n −1 ∑ 

i =0 

θ i 

i ! 

) 

> 0 , 

as for large j , 

j−1 ∑ 

k =0 

(
θ k 

k ! 
− θ j 

j! 

)
> 0 . 

Thus, the left-hand side of (19) goes to ∞ as n → ∞ , and there exists optimal n ∗p (1 ≤ n ∗p < ∞ ) which satisfies (19) . 

When n is large, i.e ., 
∑ n −1 

i =0 (θ
i /i !) e −θ ≈ 1 , MTTF is given in (16) , and the asymptotic expected cost rate is: ˜ C (n, p) 

λ
= 

(nc 1 + c R ) ∑ n 
j=1 (1 / j) 

∑ j−1 

k =0 
(θ k /k !) e −θ

. (21) 

From the inequality ˜ C (n + 1 , p) − ˜ C (n, p) ≥ 0 , 

(n + 1) 
n ∑ 

j=1 

1 

j 

j−1 ∑ 

k =0 

θ k 

k ! 
e −θ − n ≥ c R 

c 1 
, (22) 

where left-hand side increases strictly with n from 2 e −θ − 1 to ∞ . Thus, there exists a finite and unique ˜ n p (1 ≤ ˜ n p < ∞ )

which satisfies (22) . Clearly, note that 2 e −θ − 1 < 0 for θ > 1. 

Table 3 presents optimal n ∗ in (8) , n ∗p which satisfies (19) and 

˜ n p which satisfies (22) when ω = θ + 1 . In addition,

compared (22) with (19) , ̃  n p ≥ n ∗p This indicates that n ∗, n ∗p and ̃

 n p increase with ω and c R / c 1 and are almost the same. 

5. Optimal replacement policy 

When K has a probability function p k,n (k = 1 , 2 , . . . , n ) , the expected cost rate in (9) is: 

C(T , p) = 

nc 1 + c R 
∑ n 

k =1 p k,n 

∑ k −1 
j=0 

(
n 
j 

)
[ F (T )] j [ F (T )] n − j ∑ n 

k =1 p k,n 

∑ n 
j= k 

(
n 
j 

) ∫ T 
0 [ F (t)] j [ F (t)] n − j d t 

. (23) 

Differentiating C ( T, p ) with respect to T and setting it equal to zero, 

Q(T , p) 
n ∑ 

k =1 

p k,n 

n ∑ 

j= k 

(
n 

j 

)∫ T 

0 

[ F (t )] j [ F (t )] n − j d t 

−
n ∑ 

k =1 

p k,n 

k −1 ∑ 

j=0 

(
n 

j 

)
[ F (T )] j [ F (T )] n − j = 

nc 1 
c R 

. (24) 
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Table 3 

Optimal n ∗ in (8) , n ∗p in (19) and ̃  n p in (22) when F (t) = 1 − e −t , ω = θ + 1 

and c R /c 1 = 50 , 100 . 

c R /c 1 = 50 

ω n ∗ C(n ∗ ) 
c 1 

n ∗p 
C(n ∗p ) 

c 1 
˜ n p 

C( ̃ n p ) 
c 1 

1 19 19 .45 19 19 .45 19 19 .45 

2 26 26 .63 24 24 .84 24 24 .84 

5 40 41 .00 38 38 .93 38 38 .93 

7 48 48 .79 46 46 .89 46 46 .89 

10 59 59 .43 57 57 .70 57 57 .70 

20 91 91 .21 89 89 .69 89 89 .69 

30 120 120 .81 119 119 .35 119 119 .35 

40 149 149 .51 148 148 .09 148 148 .09 

c R /c 1 = 100 

ω n * C(n ∗ ) 
c 1 

n ∗p 
C(n ∗p ) 

c 1 
˜ n p 

C( ̃ n p ) 
c 1 

1 32 32 .52 32 32 .52 32 32 .52 

2 42 42 .68 40 40 .21 40 40 .21 

5 61 61 .62 58 58 .98 58 58 .98 

7 71 71 .34 69 69 .00 69 69 .00 

10 84 84 .21 82 82 .15 82 82 .15 

20 120 120 .80 119 119 .09 119 119 .09 

30 153 153 .40 151 151 .82 151 151 .82 

40 184 184 .26 182 182 .74 182 182 .74 

 

 

 

where 

Q(T , p) ≡
nh (T ) 

∑ n 
k =1 p k,n 

(
n −1 
k −1 

)
[ F (T )] k [ F (T )] n −k ∑ n 

k =1 p k,n 

∑ n 
j= k 

(
n 
j 

)
[ F (T )] j [ F (T )] n − j 

. 

We find an optimal T ∗p which minimizes C ( T, p ) in (23) when p k,n = [ θ k −1 / (k − 1)!] / 
∑ n −1 

i =0 (θ i /i !) (k = 1 , 2 , . . . , n ) and

F (t) = 1 − e −λt . 

Theorem 3. If 

n −1 ∑ 

k =0 

θ k 

k ! 

( 

n ∑ 

j= k +1 

1 

j 
− 1 

) 

> 

nc 1 
c R 

, 

then there exists an finite T ∗p (0 < T ∗p < ∞ ) which satisfies: 

λ
∑ n −1 

k =0 [(k + 1) θ k /k !] H k +1 (T ) ∑ n −1 
k =0 (θ

k /k !) 
∑ n 

j= k +1 H j (T ) 

n −1 ∑ 

k =0 

θ k 

k ! 

n ∑ 

j= k +1 

∫ T 

0 

H j (t) d t 

−
n −1 ∑ 

k =0 

θ k 

k ! 

k ∑ 

j=0 

H j (T ) = 

nc 1 
c R 

n −1 ∑ 

k =0 

θ k 

k ! 
, (25)

where 

H j (T ) ≡
(

n 

j 

)(
e −λT 

) j (
1 − e −λT 

)n − j 
( j = 0 , 1 , . . . , n ) . 

Proof. When p k,n = [ θ k −1 / (k − 1)!] / 
∑ n −1 

i =0 (θ
i /i !) (k = 1 , 2 , . . . , n ) and F (t) = 1 − e −λt , the expected cost rate in (23) is: 

C(T , p) = 

nc 1 
∑ n −1 

i =0 (θ
i /i !) + c R 

∑ n −1 
k =0 (θ

k /k !) 
∑ k 

j=0 H j (T ) ∑ n −1 
k =0 (θ

k /k !) 
∑ n 

j= k +1 

∫ T 
0 H j (t) d t 

, (26)

and from (24) , we obtain (25) . �

Let L ( T ) be the left-hand side of (25) . If, ∑ n −1 
k =0 [(k + 1) θ k /k !] H k +1 (T ) ∑ n −1 
k =0 (θ

k /k !) 
∑ n 

j= k +1 H j (T ) 
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Table 4 

Optimal T ∗ in (10) , T ∗p in (25) and ̃  T p in (27) when F (t) = 1 − e −t and c R /c 1 = 

50 , 75 , 100 . 

c R /c 1 = 50 

ω T ∗ C(T ∗ ) 
c 1 

T ∗p 
C(T ∗p ) 

c 1 
˜ T p 

C( ̃ T p ) 
c 1 

1 4 .48 26 .9 4 .48 26 .9 4 .50 27 .2 

2 3 .59 31 .8 3 .78 32 .3 3 .80 32 .7 

5 2 .68 41 .1 2 .74 42 .6 2 .76 43 .3 

7 2 .37 46 .2 2 .41 48 .0 2 .43 49 .0 

10 2 .05 53 .1 2 .08 55 .4 2 .09 56 .9 

20 1 .43 75 .8 1 .45 79 .9 1 .47 83 .0 

30 1 .07 101 .8 1 .09 108 .1 1 .12 113 .9 

40 0 .81 134 .7 0 .85 144 .2 0 .89 154 .5 

c R /c 1 = 100 

ω T * C(T ∗ ) 
c 1 

T ∗p 
C(T ∗p ) 

c 1 
˜ T p 

C( ̃ T p ) 
c 1 

1 3 .87 29 .3 3 .90 29 .3 3 .87 29 .7 

2 3 .25 34 .0 3 .23 35 .2 3 .24 35 .7 

5 2 .49 43 .4 2 .44 45 .8 2 .44 46 .9 

7 2 .22 48 .5 2 .16 51 .1 2 .16 52 .9 

10 1 .93 55 .7 1 .87 59 .5 1 .87 61 .4 

20 1 .35 79 .4 1 .30 85 .9 1 .31 90 .4 

30 1 .01 106 .7 0 .97 117 .2 0 .98 125 .8 

40 0 .76 141 .7 0 .74 158 .4 0 .75 174 .1 

 

increases strictly with T , then L ( T ) also increases strictly with T from 0 to: 

L (∞ ) = lim 

T →∞ 

L (T ) = 

n −1 ∑ 

k =0 

θ k 

k ! 

( 

n ∑ 

j= k +1 

1 

j 
− 1 

) 

. 

Therefore, if L ( ∞ ) > nc 1 / c R , then there exists an optimal T ∗p (0 < T ∗p < ∞ ) which satisfies (25) . 

For large n , when p k = [ θ k −1 / (k − 1)!] e −θ , from (25) , approximate ˜ T p satisfies: 

λ
∑ n −1 

k =0 [(k + 1) θ k /k !] ̃  H k +1 (T ) ∑ n −1 
k =0 (θ

k /k !) 
∑ n 

j= k +1 ̃
 H j (T ) 

n −1 ∑ 

k =0 

θ k 

k ! 
e −θ

n ∑ 

j= k +1 

∫ T 

0 

˜ H j (t) d t 

−
n −1 ∑ 

k =0 

θ k 

k ! 
e −θ

k ∑ 

j=0 ̃

 H j (T ) = 

nc 1 
c R 

, (27) 

where 

˜ H j (T ) ≡ (n e −λT ) j 

j! 
exp (−n e −λT ) ( j = 0 , 1 , 2 , . . . ) . 

Table 4 presents optimal T ∗ in (10) , T ∗p in (25) and its approximate value ˜ T p in (27) when n = 100 , c R /c 1 = 50 , 100 , and

F (t) = 1 − e −t , which are computed as follows: (i) Optimal T ∗ satisfies: 

n 

(
n −1 
K−1 

)
∑ K−1 

j=0 

(
n 
j 

)
( e T − 1) K− j 

n ∑ 

j= K 

(
n 

j 

)∫ T 

0 

( e −t ) j (1 − e −t ) n − j d t 

−
K−1 ∑ 

j=0 

(
n 

j 

)
( e −T ) j (1 − e −T ) n − j = 

nc 1 
c R 

. 

(ii) Optimal T ∗p is computed as: First, compute θ that satisfies: 

θ
∑ n −2 

i =0 

(
θ i /i ! 

)
∑ n −1 

i =0 

(
θ i /i ! 

) + 1 = ω, 

and when ω = 1 , θ = 0 . When n = 100 , from (25) , then compute T ∗p that satisfies: 
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∑ n −1 
k =0 

(k +1) θ k 

k ! 
H k +1 (T ) ∑ n −1 

k =0 
θ k 

k ! 

∑ n 
j= k +1 H j (T ) 

n −1 ∑ 

k =0 

θ k 

k ! 

n ∑ 

j= k +1 

∫ T 

0 

H j (t) d t 

−
n −1 ∑ 

k =0 

θ k 

k ! 

k ∑ 

j=0 

H j (T ) = 

nc 1 
c R 

n −1 ∑ 

k =0 

θ k 

k ! 
. 

(iii) Approximation 

˜ T p is computed as: Compute θ = ω − 1 , and from (27) , when n = 100 and 

˜ H j (T ) =
[(n e −T ) j / j!] exp (−n e −T ) , ˜ T p satisfies: ∑ n −1 

k =0 
(k +1) θ k 

k ! 
˜ H k +1 (T ) ∑ n −1 

k =0 
θ k 

k ! 

∑ n 
j= k +1 ̃

 H j (T ) 

n −1 ∑ 

k =0 

θ k 

k ! 
e −θ

n ∑ 

j= k +1 

∫ T 

0 

˜ H j (t) d t 

−
n −1 ∑ 

k =0 

θ k 

k ! 
e −θ

k ∑ 

j=0 ̃

 H j (T ) = 

nc 1 
c R 

. 

6. Conclusions 

A K -out-of- n system with a stochastic parameter K has been modeled in this paper. When K is given as constant numbers,

discussion of the system is a conventional way that may not meet the real requirement, and when K is estimated as random

variables, we take up the system in an innovative way. We have obtained the system’s reliability and MTTF for a K -out-of-

n system in two cases when K are defined constantly and randomly. The number n of units that should be provided for

replacement and replacement time T of operation have also been optimized, respectively. To make the computations easier,

we have given approximate methods to compute MTTF, number n ∗, and time T ∗, respectively. 

Obviously, it is a practical problem to consider a random K -out-of- n system when designing and maintaining aircraft

systems, as indicated in Introduction. As future works, we may consider for a large K -out-of- n system that the total number

n of units is also a random variable with some probability distribution [30] and the units have different failure probabilities

and their failures have unexpected interdependences. 
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